Conseguences of soil crude oil pollution on some wood properties of olive trees Chemestry|69 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Synthesis , Characterization and Biological Evaluation of the Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu (II), Zn(II), Cd(II) and Hg(II) IonComplexes with Mixed Ligands (Quinolone Antibiotics and α-Aminonitrile Derivatives) Mohammed H. A. Al-Amery Saad Khudhur Mohammed Dept. of Chemistry / College of Science / University of Baghdad Received in:27/Janury/2016,Accepted in:15/March/2016 Abstract Quinolones L1 (ciprofloxacin) are manufactured wide range anti-infection agents with great oral ingestion and magnificent bioavailability. Because of the concoction capacities found on their core (a carboxylic corrosive capacity at the 3-position) and much of the time an essential piperazinyl ring (or anothertN-heterocycle) at the 7-positionh and a carbonylvoxygenc atomi atothel 4-positioni) quinolones bind metal particlesiframing buildings which can go about as bidentate. Bidentateiligands L2=2-phenyl-2-(P-methoxy anilinee) acetonitrilel was set up by the response of Primiryiaminejwithjbenzaldehyde, in nearness of potassiumbcyanidej and acidicimedia . Theimetalledifices were portrayed by the miniaturized scale component examination (C.H.Ni), chloridekcontentei, 1H-iNMR , 13C- NMRb, FT-iIR and UV-Viis spectra, molariconductivityiand in addition attractive vulnerability estimation. The coordination science and holding practices ofitheemetal particlesaandaligands has been contem plated by spectrayofjthebbuildingsion UV-visiand IR districts. As per the got information the possibleecoordinationngeometriesnofithese buildings werejproposed as octahedral. Somenbuildingsiwere observedhto beinoni- electrolytenothersiwereeobserved toebeiweaknelectrolyte.iThe accompanying metal particle buildings were set up alongeside theirerecommended formulaenbased onithe accompanying: The metal particle edifices of the ligands (L1 and L2) by buildiup an answer blend of [Cr(III),iMn(II),iFe(II), Fe(III), Co(II), Ni(II), Cu(II),iZn(II),eCd(II) andl Hge(II)] particles separately,inabsoluteethanolewithimixingegaveethevformulaei:e[ML1L2Cl(H2O)].2H2OeWhere eM:{iMn 2+,. Fe2+,Co2+,Ni2+ ,Cu2+,Zn2+,Cd2+ and Hg2+i}and [ML1L2Cl(H2O)]Cl.xH2O. Where M:{Cr3+,Fe3+},x:{2or3} Keywords: quinolonesi(ciprofloxacin) 2-phenyl-2- (P-methoxy aniline) acetonitrileetransition metal-ions. Chemestry|70 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Introduction The utility of quinolone subsidiaries in territories of medication, nourishment, "impetus, color, materials , refineries and gadgets is well established."As an outcome, the amalgamation of quinolone centereand its isubordinates have been an appealing objective for the engineered naturalescientific expert.iQuinolones shape metal buildings because of their ability to tieemetal ions [1]. Ingtheir metalybuildingse, the quinolone sn cango aboutj as bidentate ligande, as unidentateeligand and as crossing over ligand. Much of the time, the quinolones are composed in a ibidentateeway,tthrough one of the oxygen iatom of deprotonated carboxylic of the ringeandithe ring of the carbonylgoxygennmolecule. The nonspecific term "quinolone anti infection agents"alludes to the ring of manufactured anti- infectioneagents with bactericidal,ithe principal compound of the arrangement, was presented in treatment in the 1960i[2]. The clinical utilization of nalidixic corrosive was restricted by its limited range of movement. A few changes were made on the premise core keeping in mind the end goal to broaden theeantibacterialirangent and to enhance the pharmacoikinetics properties, twop of the seconsideredbas beingy real: presentationj of apiperazine moiety or anotheriN- heterocycliciintheposition7aandipresentationoof a fluoridehparticlemat the positionh6[3].The new 4-quinolonesh, fluoroquinolonesi, have beenifoundb beginning in the1980[4]. Preparation of the Ligand Theiligandi(L2) was set up by taking after a formerly reported aside from changing of essentialaaromatic amine (P-methoxy aniline). Potassiumjcyanidee(0.13g, 0.002moll) was dissolvedi in (4mL) of distilledi waterj and cooledibelow 5°C. To this solutionn, benzaldehydee(0.212g, 0.002molb) in (25mL of 95% ethanol) was aadded. The mixturee was mixed keeping up temperature belowi5°C. glacial acidic acidee (0.12g, 0.002mol) was included withcconstant mixing with keeping the temperaturebbelow 5°C, this was trailed by the expansion of P-methoxy aniline (0.476g, 0.002mole) in (10mL of 95% ethanol) and (5mL) of glacialaacidicaacide (cooled at 5°C) with constant blending in all around ventilatedehood. Theetemperature wasikept up at (15°C). By stirring the mixture about 2 hrs and was ikept at room temperature for one day. The obtained pricipitate (longiPurple needles), was washed with diluted HCl (0.2imole) to remove any excess of potassium cyanide. The compound wasrrecrystallized with 95%eethanol. The percentageeyield of this procedure was (70.9%). The synthesis of the ligand was shown in reaction belowi: Benzaldehyde P-methoxyaniline 2-phenyl-2-( P-methoxy aniline )acetonitrile(L2) Chemestry|71 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Preparation of complexes(C1-C10) Preparation of (C1) complex: aisolution of (0.385gb, 1mmoln) of ciprofloxacin ligand (L1) in (10mL) of absoluteethanol and (0.258gm, 1mmoll) of 2-phenyl-2-(P-methoxy aniline) acetonitrile ligand in (10mL) of absoluteethanol was added drop wise to an answer of 1.0mmoln of metalvchloridec(0.197g, 0.266g, 0.198g, 0.270g, 0.238g, 0.237g, 0.170g, 0.135g, 0.209g and 0.271g) for(rCrCl3.6H2O,iiMnCl24H2O,rFeCl2.4H2O,rFeCl3i.6H2O, rCoCl2.6H2O,rNiCl2.6H2O,rCuCl2.2H2O,rZnCl2 andrHgCl2i) separately, dissolved in (20mL) of total ethanolrand refluxedrwith mixing under anhydrous surroundings utilizing Na2SO4 (anhydrous) for 24 hrs [7]. The acquired buildings were gathered after vanishing and thercompounds wereyleftu in the desiccatorj to be dried undereP2O5. Resultsband Discussionc The significance of making α-aminonitrile compounds stand up from their versatilitym as startingnmaterials forbthe synthesisxofnmanybcompounds[8]. The configurations of preparedm α-aminonitrilesiwere identified by C.iH.iN. (Table 1), FT-IRc(Table 2), 1H-NMRcand 13C- NMR spectra (Table 3) and UV-visiblec (Table 4) techniques. FTIRvspectra of ciprofloxacin and α-aminonitrilehligandsh TheeFT-IR spectral data oficiprofloxacin (L1)iand α-aminonitrilebligand (L2) were shownniniTable (2). L1 ligandc was showed the band at (1706icm -1) which was assigned to the υ(C=iO)sstretchingxvibrationnof the carboxylicbgroup (L1) and thebmostkimportantkstretchingvmodes exhibited by (L2) which was represented by α-amino and nitrileegroups. Theebandsgassignedeto stretchingfvibrationeof aromatic and aliphaticc(C-H) of L1 and L2 ligands appeared at (3000i- i3170) cm -1 and (2850i-i3000) cm-1rrespectively [9]. The band relatedito υ(C≡iN)istretching vibration ofethe freeiligandhappearediat (2176cm -1)[10]. Theeband correlated tooυ(N- H)estretchingbvibrationsslooked at (3348 cm -1)[11]. The band related to υ (N-iH)bbending vibrationn appeareddat (1621) cm - 1[12-14]. FT-IRvspectra of the complexes (C1-C10) The FT-IRispectralidataiof the complexesiwereishowniin Table (2) anditherspectrumiofi(C8)iwas showniin Figuree(1). The spectraiof all the complexesiexhibitedicharacteristicibands ofeeithericoordinatediwater appearedi at (3445- 3506) cm-1 aassigned to υ(OH) of theecompexess(C1-C10) or cross section water showed up at (748-792) cm-1 assigneddto ρw(H2O) in all complexess[15-17]. iNew groups were presented up in the area (414-493) cm-1 and (501-585) cm-1 were assigneddto υ(M-iO) and υ(M- iN),rrespectivelyi[18]. The band i whichaappeared at 3348 cm -1 iwas assignedsto ithe υ(N-H) extending vibrationsto the (N-H) groupiof (L2)iwassshifted in theispectra of theecomplexess(C1-iC10) toi(3357, 3358, 3361,3356,3363,3386,3357,3357,3357 and 3357)cm - 1 rrespectively.Thisigave a signithat theiligand was collectediwithitheiimetal ionnthrough the nitrogeni atom of α-aminoi groupp[19]. The band which appeareddat (2176icm -1)iwas allocated to the extending vibration of υ(C≡iN)ggroup of (L2) which was moved in the spectra of complexes (C1-iC4 and C6i-C10) to lower frequenciesi (2163, 2166,i2170, 2163, 2162, 2163, 2165, 2160 and 2166) cm-1rrespectively which alludes toitheilinkage ofi(C≡iN) groupifrom nitrogenaatom. The range of complexx(C5) demonstrated an expanded move in υ(C≡N) extending vibration towards higher frequency as an effect of coordinationiwith metaliiion throughi the solitary combine electrons of nitrogenaatom [20]. The declines of υ(C≡iN) extending vibration of metal-ion complexes(C1-C4 and C6-C10) were ascribed to metal dπ to ligand pπ∗ back-holding. Yet, the expansion of υ(C≡N) extending vibrationb of complexi (C5) Chemestry|72 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 recognized to presenceiof π accepter ligandsi into complexi (C5) should decreasei the back bondingi of electrons fromi the metali into the nitrileiligand. The bandiat 1631 cm -1 whichi was consignedg to thei δ(N-H) bendingivibrationi of(N-H) group of (L2) was shiftediin the spectra of metal-ion complexesi (C1-C10) to (1631, 1629,r1616, 1628, 1629, 1604, 1627, 1616 and 1627) cm-1 rrespectivelyi, this provideimore submission that theligandiwas coordinatedi with metal-ions throughithe nitrogeniatom of α-aminogroup and thus supports the complexesiformation [21]. The band at 1706 cm -1 whichiwas assignedito the υ(C=iO) stretchingivibration of the carboxylicigroupj of (L1i) as well ,ionic carboxy likcgroupihave two absorption bandsi in the range of (1600-i1510) cm -1and (1400-i1257) cm -1 iwhichicould bea ssignedi to υ(C-O-C) asymmetrice and symmetrice which was removed in the spectrai of stretching vibrationiseparately[22]. The absorptioni band appeariaround (1485-1494) cm –1, agreeing to the stretchingivibrationsc of (C–iC) and (C–iN) bonds in quinolone ring (L1). The coordination by two oxygen atomsi from quinoloneimolecule (one oxygen from pyridinei and the ether fromithe carboxylicigroup)[22]. 1H-NMRz and 13C-NMRaspectra of the ligands and complexesoo 1H-NMRz The two ligands (L1 and L2) were considered by 1H-NMR and spectroscopichmethodsj, in additionf to sex complexesf(C2, C5, C7-C10) usinghDMSOx (d6) as showns in Table (3) and Figure (2). The 1H-NMRfspectrarof thevligandd(L1) presentedufiveupeaksy; the firstj one looked at δ(1.42) ppmo which wastassignedhtoothee(-CH2-), the secondtpeakuappearediat δ(2.22) ppmk was assignedjto theh(=NH) protonb while the thirdppeak appearedj at δ(3.46) ppmjwhichnwasuagreedito the (-CH2-N=) [21]. The forward peakz showed up at δ(7.45-7.55) ppm was ascribed to the fragrant protons and the last one showed up at δ(8.92) ppmlassignedzto the (-iCOOH) [22]. The 1H-iNMR spectra ofbthe ligandt(L2) demonstrated five peakse; The first one was showed up at δ(i2.51)ippm which was related to the (-iO- CH3i)pprotons, the second peakxshowediup δ(i2.77)ippm was assignedito the dissolvable peakeof (DMSOn), the third peakr showed up at δ(i3.62) ppm was compares to the (- NH) protoni, theifourthione was showedbup at δ(i5.35) ppmnwhich was credited to the (-iCH- C≡N) proton andi the lastkpeaksshowed up at δ(6.82-i8.00) ppmnwhichuwasicompared toithe fragrant protons [23]. The 1H-iNMRv spectra of theerest of the complexese(C2, C5, C7-C10 ) were likewise like that of the ligands, the main distinction wasvthatbthe standard of (N-H) of theiligandbjwas move in these compoundsrby (0.52, 0.36 and 0.36) ppml erespectively this provided a sign for organizations arrangement. 13C-NMR spectra The twoiligandst(L1 and L2) were described by 13C-NMR spectroscopic techniques,i in additionrto sex compoundsr(C2, C5, C7-C10) utilizing DMSOj (d6) as appeared in Table (i3) and Figure (3). The 13C-iNMR range of (L1) demonstrated seven peaksr; the principal peakk showed up at δ(7.7) ppmh which was related to the (-iCH2-iCH2-). The second peakr showed up at δ(35.8) ppmf was compared to the (= CHg-N=) carbon, the third peaktshowed up at δ(i45.8)ippm was allocated to the (- CH2-iNH-) carbong, the forward peaknshowed up at δ(51.3) ppm was assignedtto the (-iCH2-N=) carbonc, thehfifthi peakxshowed up at δ(166.2) ppm which was appointed to the (-iCOOHi) carbonu, the 6th peakc showed up at δ(i176.4) ppm was assignednout to the (-iC=O) carbonc, andb the lasti peakr showed up at δ (102-115) ppml was alloted to the sweet-smelling carbon molecules [21]. The 13C-NMRf range of theiligandm (L2) demonstrated threeicharacter tops; the firest principal top was Chemestry|73 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 showed up at δ(38.04) ppmk which wasicompared to the dissolvable peakr 0f (DMSO), the secondj peakf was showed up at δ(52.20)ppmiwhich related to the (-zCH-C≡N) carbon and the last peaki showed up at δ (i115.37) ppmiwas appointedito the (- CH-sC≡N) carbon particle [22]. The 13C-NMRuspectrar of theo complexesr (C2, C5, C7-C10) were like that of the ligands, the main contrast waspthatvthecstandardg of (-iCHz-C≡N) carbon of the (L2) ligandl (was moved in these complexestby (0.83, 8.41, 3.38, 0. 29, 1.23 and 3.7) ppmtrespectively. The standard of (- CH-iC≡N) carbon was moved inithese compoundst by (1.99, 1.75, 4.66, 1.4, 1.26 and 1.4 2) ppm and the standard of (-iCOOH) of (L1) was moved in these complexeseby (1.99, 1.75, 4.66, 1.40, 1.26 and 1.40 ) and the standard of (-zC=O) of a similar ligand was moved in these complexesnby (3.00, 0.74, 2.41, 1.75, 0.21rand1.96)erespectively,ithissgaveaaisigntforrbuildingsiarrangement[23]. Electronic spectra(UV-Vis.) Thei electroniciabsorptiongdatatof theuligandsi(L1 and L2) and their metal ionicomplexes wererrecordediin ethanolbathroomhtemperaturekwas shownj in Table(5), while some of their spectraiwere shownf in Figuresi(4, 5 and 6). The spectra of the two ligandsswasishown a high intensityibands looked in thekregiont(48543 and 41666 )cm-1u respectively, assignedj to π→π∗ of conjugatedksystemi[24]. Lowrintensityfbandscappearediin near UV-visible regioni(31645 and 34364) cm-1 correspondingly, wereygiven to n→π∗ transition, ithe concentrationiand positions of theseibands be influenced by the structurefof moleculesf and the natureiof the used solventi[25]. The electronic spectra ofkthe complexeshexhibitedvnewdbands, iwith intensities and places of these bandsiare mostlyidependentionntheiligandf field effects, istereochemistry of complexes and electron shapeiofithegmetali ionsz[26]. Thermal analysis of complexes Warm decay of the comlexess(C1-C3 and C5-C9) takes after TG strategies, warming extent (30-450)°C and warming rate (10 °C/min). The warm decay information for all comlexesshave three stages where given in Table (5) and their thermographs of Zn(II) complex (C8) was appeared in Figure (7). The accompanying results were acquired: 1.The principal organize which occurred at temperature scope of (50-150)°C. incorporate leaving the lattice water atoms and counter chloride particles [27,28]. 2.The accompanying stage incorporate leaving the organized water particles and takeioff the chloride particles at temperatures relying upon security energies came about because of coordination ofiligands [29,30]. 3.The last phase of warm decay of comlexess gave metal oxides as last live contingent upon the sort of metal particle and on (M-L) proclivity [31,32].h InnvetronAntibacterialnActivityy The antibacterial exercises of all compoundsswere divided against test microbes in particular; Staphylococcuaurouss,iBacillus subtilish (Gram+ 7), Escherichiac and Pseudomonasyaeruginp (Gram-). Agarx, (well-dispersion strategy) used to decide the movement [33]. Borerj of 0.6 mm distanceb across was utilized, the convergence of all compounds was (10-3M) utilizing (DMSOo) as a dissolvable and was utilized as a controlfGramgnegativeiwhile ciprofloxacingwas utilized as a controlhGramkpositive. The dissolvable (DMSOg) demonstrated no action againstctheh tried microscopic organisms, while some of arranged compounds indicated great results [34]. Tablei(6) demonstrates the hindrance zones ofithe dissolvable and the arranged buildings. The hindrance zones Chemestry|74 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 wereumeasuredj in (mm) and contrasted with the restraint zone of expansive range anti- infection. All edifices demonstrated no movement against the gram negative bacterium (iEscherichia coli), which can bring about ailment, for instance, enter toxigenic strains deliver a poison in the gut, coming about regularly in looseness of the bowels [35]. The complexese(C2 and C4) demonstrated most elevated movement against Pseudomonas and Staphylococcus aureus. This bacterium is known for its imperviousness to the greater part of the created anti-infection agents and is known to be the real instance of numerous medical problems and contaminations [36]. Numerous elements were accounted for to control the organic exercises of metal buildings [37]. Sort of ligand, kind ofumetal, chargeiof complex, the move arrangement, design of metal particle and geometryr of metalucomplexiare affected on organic activity[38]. Thernomenclature of suggestedxstructurescof the complexesn Theisuggestedgstructuresyofitheipreparedhcomplexesewereiconfirmedxbyntheirnelemental analysise(C.H.N.), thermal analysis, infrared,1H-NMRnvand 13C-NMRc spectra, UV- Vis.spectroscopyband by molar conductanceh values. Accordingd to the observationiobtainedc the structuresj of the metal ion complexesbarehsuggestedu as illustratedginhFigures (8, 9 and 10)bbelow:m : References 1- Buchbinder, M. Webb, J.C. Anderson, L.V and McCabe, W.R, 1962, Laboratory studies and clinical pharmacology of nalidixic acid (WIN 18, 320). Antimicrob. Agents Chemother, 2 , 308–317. 2- Brighty, K.E .and Gootz, T.D, 2000, Chemistry and Mechanism of Action of the Quinolone Antibacterials. In The Quinolones, 3rd ed.; Andriole, V.T., Ed.; Academic Press: San Diego, CA, USA 12(3), 33–97. 3- Senf, H.J, 1988, Fluorochinolone (Gyrasehemmer). Pharmazie , 43, 444–447. 4- Smith, J.T. and Lewin, C.S, 1988, Chemistry and Mechanisms of Action of the Quinolone Antibacterials. In The Quinolones; Andriole, V.T., Ed.; Academic Press: London, UK, 22 , 23–81. 5- Surya, K, 2005, Nickel (II) chloride catalyst one-pot synthesis of α- aminonitriles Journal of Molecular Catalysis A: Chemical, 225, 169-171. 6- Arban, KShah, Noor-ulH.Khan and GovindSethia , 2012, Tin exchanged zeolite as catalyst for direct synthesis of α-aminonitriles under solvent-free condition, Applied Catalysis A: general arpan, 4(19), 22-30. 7- Syamala, M, 2009, Recent progress in three-Component reactions an update. Organic Preparation and Procedures International, 41, 12-13. 8- Abdul, Majeed. S and Balamurgan, R , 2012, Titanium compounds and process for cyanation of imines, Patent application publication No: US \ 0209007 A9. 9- March, J, 1974, Advanced organic chemistry, reaction, mechanisms and structure, 2nd Edition, John Wiley & Sons, 22, 874. 10- Taillades, J. and Commeyras. A, 2012, Formation mechanism in aqueous solution of α- alcoyl amino isobutyronitrile from acetone , hydrogen cyanide and ammonia , methyl or dimethyl, Tetrahedron, 30, 2493-2501. 11- Stanley, J. W. Beasly. J.G. and Matheson, L. W, 1972, Evidence for a cationic imine intermediate in N,N-disubstituted α-aminonitrile formation, J. O. Chem, 37, 3746. 12- Ogata, Y. and Kawasaki. K.1971. Mechanistic aspects of the streckeraminonitrile synthesis, J. Chem .Soc, 32, 325-329. Chemestry|75 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 13- Salomons, T. W, 1988, Organic chemistry 4th Edition, 11, 1103. 14- Mowry, D. T.1948. The preparation of nitriles, 42, 189-283. 15- Mohammad. G. Dekamin, Mojtaba. Azimoshan and Leila, R.2013, Chitosan: highly efficient renewable and recoverable bio-polymer catalyst for expeditious synthesis of and imines under mild condition Green Chemistry, 10, 1. 16- Westeringh, C. V. Daele, P. Van, Herman. B. Eycken, C. V and Janssen. P. A. G, 1964, 4-Substituted piperidines. I. derivatives of 4-t-Amino-4- piperidinecarboxa- mides, J. Med. Chem, 7, 619-623. 17- Enders. D. and Shilvok. J. P, 2002, Some recent applications of alpha-amino nitrile chemistry, 29, 359-373. 18-MarijaZupanIztokAr ,P. B. and AlojzKodre, C, 2002, Physico-chemical Study of the Interaction of Cobalt(II)Ion with Ciprofloxacin CCACAA 75(1)1-12 19- MarijaZupan, I. T. Peter B. rewJ, P. White, B. and David, J. W, 2001, Synthesis and Characterization of Two Novel Zinc (II)Complexes with Ciprofloxacin ,CCACAA 74 (1) 61- 74. 20- Kathiravan. M. K., Slake. A. B., Chothe. A. S., Kale A. N., Kulkarni. M. M. Mundhe. P. J., Dudhe. P. B., Phalke. P. L. and Kavade. S. R, 2012, A rapid and facile synthesis of α- aminonitriles employing ionic liquid. Chemistry Journal, 2 ,199-205. 21- Anacona, J.R and Toledo, C, 2001, Synthesis and antibacterial activity of metal complexes of ciprofloxacin, 26, 228-231. 22- Sultana, N. Arayne, M.S. Rizvi, S.B.S. Haroon, U and Mesaik, M. A, 2013, Synthesis, spectroscopic and biological evaluation of some levofloxacin metal complexes. Med. Chem. Res, 22: 1371-1377. 23- Mehandjiev. D.R. and Bontchev. P. R, 2010, Application of magnetic methods to the study of 3d transition metal complexes. Journal of the University of Chemical Technology and Metallurgy, 45(4), 415-420. 24- Paola Galletti, M. P and Daria, G, 2011, catalyst-Free strecker reaction in water: A simple and efficient protocol usingacetone cyanohydrins as cyanide source, issue 20-21, Eur.J.Org. Chem, 20(11), 3896-3903. 25- Alan. R. Katritzky, P. P. Mohapatra, S andKostyantyn, K, 2005, Synthesis of α-amino amides via α-amino imidoylbenzotriazoles, J. Serb. Chem. Soc, 70(3), 319-327. 26- Ahmad, A. Z. Beg,2001. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant humanpathogens, Journal of Ethnopharmacology, 74(2), 113–123. 27- TaquiKhan, B. Najmuddin, K. Shamsuddin, S. Annapoorna, K and Bhatt, J, 1991,Synthesis, antimicrobial, and antitumor activity of a series of palladium(II) mixed ligand complexes, Journal of Inorganic Biochemistry, 44(1), 55–63. 28- James, B. Kaper, J. P and Harry. L. T. 2011. Mobley, Pathogenic escherichia coli, microbiology, 2: 123-140. 29- Banin, E. Brady, K. M and Greenberg, E. P.2012. Chelator-induced dispersal and killing of pseudomonas aeruginosa cells in biofilm, Applied and Environmental Microbiology, 72, 2064-2069. 30- Mutalik, R.B. and Gaikar, V. G.2010. Cell permeabilization for extraction of penicillin asylase from Escherichia coli reverses micellar solution, Enzyme and Microbiological Technology, 32 :14-26. 31- Shelke, V.A . Shankarwar1, S.G. Munde A.S and Chondhekar1,T.K, 2012, Synyhesis, Characteraization, Anti-bacterial and Anti-fungal Studies of some transit -ion and rare earth metal complexes of N- benzylidene-2-hydrox ybenzohydrazine, Bull. Chem. Soc. Ethiop, 25(3), 381-39. Chemestry|76 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 32- Huda, K. J. Mahasin, F. A and Tamara abed Al-Azez Kareem, 2012, Preparation , charactarazition and biological activity of some complexes of potassium 2-carbomethoxy amino-5- trithiocarbonate 1,3,4-thiadiazole, J. Baghdad for Sci, l.9(3), 511-520. 33- TaquiKhan, B. Najmuddin, K. Shamsuddin, S. Annapoorna, K. and Bhatt, J, 1991, Synthesis, antimicrobial, and antitumor activity of a series of palladium(II) mixed ligand complexes, Journal of Inorganic Biochemistry, 44(1), 55–63. 34- James, B. Kaper, J. P. and Harry. L. T, 2004, Mobley, Pathogenic escherichia coli, microbiology, 2, 123-140. 35- Banin, E. Brady, K. M and Greenberg, E. P, 2006, Chelator-induced dispersal and killing of pseudomonas aeruginosa cells in biofilm, Applied and Environmental Microbiology, 72, pp2064-2069. 36- Mutalik, R.B. and Gaikar, V. G, 2003, Cell permeabilization for extraction of penicillin asylase from Escherichia coli reverses micellar solution, Enzyme and Microbiological Technology, 32, 14-26. 37- Shelke, V.A .Shankarwar1, S.G. Munde A.S and Chondhekar1. T.K, 2011, Synyhesis, Characteraization, Anti-bacterial and Anti-fungal Studies of some transition and rare earth metal complexes of N- benzylidene-2-hydroxybenzohydrazine, Bull. Chem. Soc. Ethiop, 25(3), 381-39. 38- Huda, K. J. Mahasin, F. A and Tamara abed Al-Azez Kareem, 2012, Preparation , charactarazition and biological activity of some complexes of potassium 2-carbomethoxy amino-5- trithiocarbonate 1,3,4-thiadiazole, J. Baghdad for Sci, 9(3), 511-520. Chemistry | 77 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table [1]: Elementalhmicro analysis and somej physical iproperties ofithe ligands (L1 and L2) and their preparedicomplexes COMP. FORMULA M.W.T YIELD % COLOR M.P (°C) C % CAL (FOUND) H % CAL (FOUN) CAL (FOUN) M % CAL (FOUND) CHLORIN E % L1 C17H21FClN3O4 (385.8) ----- Light White 255-257 52.87 (52.20) 5.44 (5.13) 10.88 (10.07) ------ 9.18 (8.65) L2 C15H14N2O (238) 77.6 Leaden 79-83 75.63 (74.88) 5.88 (5.27) 11.76 (11.08) ------ ------ C1 Cr[L1L2Cl(H2O)]Cl.3H2O (764.7 ) 86.2 Green 317 Dec. 50.21 (49.48) 4.05 (3.66) 9.15 (7.98) 6.66 (5.19) 9.27 (7.87) C2 [MnL1L2Cl(H2O)] 2H2O (749.2) 71.7 Pall Yellow 350-352 51.25 (49.76) 3.87 (4.03) 9.34 (7.90) 7.32 (6.10) 9.46 (7.90) C3 [FeL1L2Cl(H2O)] 2H2O (714.6) 65.8 Yellow 319 Dec. 53.73 (50.76) 4.05 (3.37) 9.56 (8.84) 7.62 (6.78) 4.84 (3.09) C4 [FeL1L2Cl(H2O)]Cl.2H2O (750.1) 75.2 Yellow 329-332 51.19 (48.75) 3.86 (3.59) 9.33 (7.43) 7.43 (6.1) 9.45 (8.11) C5 [CoL1L2Cl(H2O)] 2H2O (717.7) 82.4 Blue 290 Dec. 53.50 (50.68) 4.04 (3.85) 9.75 (8.03) 8.20 (7.26) 4.93 (93.38) C6 [NiL1L2Cl(H2O)] 2H2O (717.4) 73.6 Metallic Bronze 310-312 53.52 (51.73) 4.04 (4.13) 9.75 (8.10) 8.16 (6.56) 4.93 (3.57) C7 [CuL1L2(H2O)2] Cl.1.5H2O (695.3) 73.4 Gray 285 Dec. 55.23 (54.91) 4.31 (3.92) 10.06 (8.76) 9.13 (7.1) 5.09 4.78 C8 [ZnL1L2Cl(H2O)] 2H2O (724.2) 68.9 White 294 Dec. 53.02 (50.42) 4.00 (4.58) 9.66 (8.47) 9.03 (7.32) 4.88 (3.75) C9 [CdL1L2Cl(H2O)].2H2O (771.2) 79.1 White 288 Dec. 49.79 (46.76) 3.76 (4.39) 9.07 (7.16) 14.57 (13.03) 4.59 (3.10) C10 [HgL1L2Cl(H2O)] 2H2O ( 894.8) 67.1 White 308 Dec. 43.82 (---) 4.56 (-- -) 7.98 (--- ) 22.82 (---) 8.02 (---) Dec.=Decomposition Chemistry | 78 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table(2): Characteristichinfrared absorptionubands ofnligandsk(L1 and L2) andtheircmetal ions com plexes where: s=strongh, m=mediumy, w=weakh, v=very, br=broadh, sh=sharp Comp. υ(Ν−Η) cm-1 υ(C≡N) cm-1 υ(C=O) cm-1 δΝ−Η cm-1 υ(C-O-C) (asy)cm-1 υ(C-O-C) (sy)cm-1 υ(M-O) cm-1 υ(M-N) cm-1 L1 3378 w.sh ------ 1707 v.sh 1625 s.sh ------ ------ ------ ------ L2 3348 w.sh 2176 s.sh ------ 1621 ------ ------ ------ ------ C1 3357 m.sh 2164 s.sh ------ 1631 m.sh 1520 w.sh 1300 s.sh 585 w 418 w C2 3358 w.sh 2167 m.sh ------ 1629 s.sh 1557 m.sh 1300 s.sh 501 w 441 w C3 3361 m.br 2170 m.sh ------ 1616 w.br 1514 w.sh 1292 s.sh 555 w 443 w C4 3356 m.br 2163 m.sh ------ 1628 v.sh 1504 m.sh 1247 m.sh 547 w 483 w C5 3363 m.br 2204 w.br ------ 1629 v.sh 1571 s.sh 1305 m.sh 572 w 420 w C6 3386 m.br 2162 w.sh ------ 1622 s.sh 1504 s.sh 1247 s.sh 547 w 493 w C7 3357 w.sh 2165 m.sh ------ 1604 m.sh 1562 m.sh 1302 s.sh 574 w 420 w C8 3357 m.sh 2165 v.s.sh ------ 1627 m.sh 1573 w.sh 1402 w.sh 514 w 414 w C9 3357 m.sh 2160 m.sh ------ 1616 s.sh 1566 w.sh 1271 s.sh 541 w 470 w C10 3357 m.sh 2166 s.sh 1712 m.sh 1627 m.sh ----- ----- 557 w 458 w Chemistry | 79 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (3): 1H-NMRxand 13C-NMR of the ligands (L1 andbL2) and som of theirgmetal iongcomplexes y Comp. Formula Groups Chemical Shifts δ(ppm) Groups Chemical Shifts δ(ppm) L1 C17H21FClN3O4 (-CH2-) (=NH) (-CH2-N=) (Ar-H) (-COOH) 1.42 2.22 3.46 7.45-7.55 8.92 (-CH2- CH2-) (-C-H-N=) (- CH2-NH-) (- CH2-N=) (- COOH) (-C=O) Ar-H 7.7 35.8 45.8 51.3 166.2 176.4 102-115 L2 C15H14N2O (-O-CH3) (=NH) (=CH- ≡N) (Ar-H) 2.51 3.62 5.35 6.82-8 (- CH-l≡N) (-CH-C≡lN) 52.20 115.37 C2 [MnL1L2Cl(H2O)]Cl.2H2O (-NH) (=CH-C≡N) (Ar-H) 3.98 5.59 7.62-7.93 (- CH-Cl≡N) (-CH-Cl≡N) (-lCOOH) ( -Cl=O ) 60.01 120.06 167.46 176.19 C5 [CoL1L2Cl(H2O)] 2H2O (-NH) (=CH-C≡N) (Ar-H) 3.55 5.87 6.90-7.89 (- CH-Cl≡N) (-CH-Cl≡N) (-lCOOH) (-Cl=O) 57.95 118.91 168.19 179.40 C7 [CuL1L2(H2O)2] 1,5H2O (=NH) (=CH- ≡N) (Ar-H) 3.91 5.80 6.81-7.92 (- CH- ≡N) (-CH-C≡N) (- COOH) (-C=O) 58.49 115.98 167.60 178.15 C8 [ZnL1L2Cl(H2O)] 2H2O (=NH) (=CH-C≡N) (Ar-H) 3.83 5.71 6.81-7.85 (- CH-Cl≡N) (-CH-Cl≡N) (-lCOOH) (-Cl=O) 55.40 119.40 161.54 173.99 C9 [CdL1L2Cl(H2O)] 2H2O (=NH) (=CH-C≡N) (Ar-H) 3.84 5.71 6.98-7.92 (- CH- ≡N) (-CH-C≡N) (- COOH) (-C=O) 50.37 119.38 167,95 177.14 C10 [HgL1L2Cl(H2O)]Cl.2H2O (-NH) (=CH-C≡N) (Ar-H) 3.79 5.71 6.88-7.92 (- CH- ≡N) (-CH-C≡N) (- COOH) (-C=O) 55.08 119.39 164.78 178.36 Chemistry | 80 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (4): Electronicjspectra,lparameter,lmolar conductance,lmagneticssusceptibility andssuggested stereo chemical of thebligandsnand their metallion complexess. Comp. Wavlengt h (λ)lnm Wave no. cm-1 Assignment MolarlCond. Ω-1 lcm2lmol-1 B.lM B- cm-1 β Dq/B- 15B- cm-1 Geometry Suggested L1 316 280 31645 48543 n→π* π→π* ------- ---- ---- ---- ---- ---- --------- L2 291 240 34364 41666 n→π* π→π* ------ ------ ---- ---- ---- ---- --------- C1 ---- 600 448 16111* 16666 22321 4A2g→ 4T2g 4A2g→ 4T1g(F) 4A2g→ 4T1g(P) 50.9 3.91 771 0.840 1.25 11566 Octahedral C2 506 19762 6A1g→ 4T1g 22.3 1.41 ---- ---- ---- ---- Octahedral C3 503 19880 5T2g→ 5Eg 18 2.34 ---- ---- ---- ---- Octahedral C4 758 645 13192 15503 6A1g→ 6T1g(G) 6A1g→ 4A1g + 4Eg 29.1 5.72 ---- ---- ---- ---- Octahedral C5 659 ---- 490 15174 15501* 20408 4T1g(F)→ 4T2g(F) 4T1g(F)→ 4A2g 4T1g(F)→ 4T1g(P) 23.3 4.68 641 0.660 1.24 9613 Octahedral C6 778 591 224 12853 16920 44642 3A2g→ 3T1g 3A2g→ 3T1g(F) 3A2g→ 3T1g(p 23.5 ---- ---- ---- ---- Octahedral C7 503 19880 2Eg→2T2g 35.8 1.97 ---- ---- ---- ---- Distorted Octahedral C8 327 288 30581 34722 n→π* 21.2 ----- ---- ---- ---- ---- Octahedral C9 321 284 31152 35211 n→π* 23.1 ----- ---- ---- ---- ---- Octahedral C10 310 281 32258 35587 n→π* 13.6 ----- ---- ---- ---- ---- Octahedral * calculated value Chemistry | 81 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (5):Thermal decomposition data for some metal ion complexes Comp. Molecularcformulah stepj Temp. rang of theiDecompositionn C° SuggestedbFormula of resultant compound Mass loss% Cal. ifound C1 [CrL1L2Cl(H2O)]Cl.3H2O 1 2 3 80-170 170-210 210-375 Cri[L1L2(H2O)(Cl)]Cl Cr[L1L2] Cr2O3 7.04 11.6 76.8 5.86 10.4 74.5 C2 [MnL1L2Cl(H2O)]Cl.2H2O 1 2 3 94-152 152-233 233-397 Mnf[L1L2(H2O)(Cl)]C lMn[L1L2] MnO 4.58 11.3 74.9 4.04 10.2 73.5 C3 [FeL1L2Cl(H2O)] 2H2O 1 2 3 50-105 105-175 175-380 [FeL1L2Cl(H2O)] [FeL1L2] FeO 4.92 7.3 76.7 3.78 6.14 73.7 C5 [CoL1L2Cl(H2O)] 2H2O 1 2 3 60l-140 140l-195 195l-360 Cog[L1L2(H2O)(Cl)] [CoL1L2] CoO 4.9 7.27 80.1 3.89 6.24 76.8 C6 [NiL1L2Cl(H2O)] 2H2O 1 2 3 73l-127 127l-186 186l-350 Nib[L1L2(H2O)(Cl)] Ni[L1L2] NiO 4.9 7.28 80.2 4.3 6.8 79.10 C7 [CuL1L2(H2O)2] 1,5H2O 1 2 3 54l-100 100l-153 153l-388 Cub[L1L2(H2O)2] Cu[L1L2] CuO 3.95 5.27 86.2 3.76 4.89 85.1 C8 [ZnL1L2Cl(H2O)] 2H2O 1 2 3 57l-142 142l-165 165-376 Zn[L1L2(H2O)2]Cl Zn[L1L2] ZnO 4.85 7.15 79.4 3.76 6.01 78.6 C9 [CdL1L2Cl(H2O)] 2H2O 1 2 3 55-130 130-215 215-380 Cdv[L1L2(H2O)(Cl)] Cd[L1L2] CdO 4.56 6.72 74.7 3.74 6.3 72.8 Table (6):Inhibition zonesbmeasuredhin (mm) oflDMSO, ciprofloxacin and metal ion complexess Compoundl Inhibitionlzone (mm)lEscheric hia coli Inhibition zone (mm)Pseudom onaslaerugino sa Inhibitionlzo ne (mm)Staphyl ococcus aureus Inhibitionlzone (mm) Streptococci DMSO ---- ---- ---- ---- L1(ciprofloxacin) 18.50 23.70 18.15 12.23 C1 12.00 35.00 7.00 14.00 C2 8.00 44.00 21.00 18.80 C3 11.00 25.10 6.00 13.00 C4 21.00 40.70 21.00 15.00 C5 22.00 29.40 22.50 18.00 C6 14.00 12.00 5.80 12.10 C7 12.00 14.00 23.00 13.00 C8 11.50 10.50 6.02 13.70 C9 10.00 11.00 22.50 15.20 Chemistry | 82 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 8of ChIR spectrum-(1): FTcureFig Figure(2): 1H-NMR spectrum of C8 Chemistry | 83 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure(3): 13 C-NMR spectrum of C8 1of L Visible Spectrum-(4): UVureFig Chemistry | 84 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure(5): UV-lVisible Spectrumlof L2 Figure(6): UV-Visible Spectrum of C1 Chemistry | 85 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 8of C (7): ThermographcureFig Where: M {Cr 3+ or Fe 3+ } and x{2 or 3} [CrL1L2Cl(H2O)]Cl.3H2O [chloro mono aqua ciprofloxacin {2-phenylh-2-(P- methoxyhanilino) acetonitrile}chrome (III)] chloride (3)hydrate [FeL1L2Cl(H2O)]Cl.2H2O [chloro mono aquauciprofloxacinb {2-phenyl-2-(P- methoxyanilino)acetonitrile} iron(III)] chlorideddihydrate Figure (8): Suggestedhthe structuresbof C1 and C4 complexes ML1L2Cl(H2O)].2H2O Where: M {Mnh 2+ , Feh 2+ , Coc 2+ ,Nix 2+ , Znc 2+ , Cd 2+ and Hg 2+ } [chloro mono aqua ciprofloxacinh {2- phenyl-2-( P -methoxyaniline)acetonitrile } metalh(II)] dehydrate Figure (9): Suggestedystructurehof C2, C3, C5, C6 , C8 and C10 complexes Chemistry | 86 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 [CuL1L3(H2O)2]Cl. 2H2O [diaquagciprofloxacinb {2-phenyln-2-( P- methoxyanilinet) acetonitrilec} copper(II)]Chloride dihydrate Figure(10): SuggestedgstructurecofgC7 complex Chemistry | 87 2016( عام 3العدد ) 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 المنغنيز و (III) الكروم من البيولوجي الفعالية تقييم و تحضير وتشخيص (II )الحديدو (II )الحديدو (III )والكوبلت (II )النيكلو (II )والنحاس (II ) ليكندات المعقدات من مزيج ايون( II) والزئبق( II) الكادميومو( II) والزنك ومشتقات الفا امينو نتريل()سبروفلوكساسين العامري عباس محمد حسين سعد خضر محمد جامعة بغداد /كلية العلوم /قسم الكيمياء 2016اذار/15 /،قبل في:2016/كانون األول/27استلم في: الخالصة طريق الفم الكينولين )سيبروفلوكساسين( هي المضادات الحيوية االصطناعية واسعة الطيف مع امتصاص عن . ونظرا إلى وظائف مادة كيميائية موجودة في النواة )وظيفة حمض الكربوكسيلية في ةممتاز ةجيدة والفعالية البيولوجي ( وذرة 7)ع( في موق N-heterocyclicأو ) piperazinyl)الحاالت حلقة األساسية ) ( وفي معظم3موقف ) -2. بروابط ثنائي السن ( وارتباط الكينولين بأيونات المعادن ثنائي السن4) عأوكسجين مجموعة الكربونيل في موق ميثوكسي األنيلين( األسيتو نتريل بواسطة تفاعل األمينات األولية مع بنزيلديهايد، في وجود سيانيد -Pتم إعداد ) /-2-فينيل طيف , C.H.Nالبوتاسيوم في الوسط الحمضية. شخصت المعقدات المحضرة كميا ونوعيا باستخدام تحليل العناصر الخاصية ,االمتصاص الذري ,نووي المغناطيسي المرئية الرنين ال-طيف االشعة فوق البنفسجية ,األشعة تحت الحمراء وفقا للبيانات التي تم الحصول عليها اقترح الشكل الهندسي التنسيق .التحاليل الحرارية وقياس التوصيلية ,المغناطيسية أعدت اآلخرين غير موصل لتيار الكهرباء.-المحتملة لهذه المعقدات ثماني السطوح. بعض المعقدات موصل لتيار الكهرباء ( من 2Lو 1L) اتالمعقدات أيونات المعادن التالية معهما الصيغ المقترحة على ما يلي: المعقدات أيون الفلز من الليكند ( II( والنحاس )II(والنيكل )II(والكوبلت )III(والحديد )II(والحديد )II(والمنغنيز )III]الكروم ) منخالل التكثيف خليط ([ األيونات على التوالي، في االيثانول مع التحريك أعطى الصيغ األتية :II( والزئبق )II(والكادميوم )IIوالزنك ) O2O)].2H2Cl(H 2L1[ML حيث M :} 2+, Mn 2+, Fe2+, Co2+, Ni2+, Cu 2+, Zn2+,Cd 2+{ Hg O.2O)]Cl.xH2Cl(H2L1[ML حيثM :} 3+, Fe3+{Cr :x {2 ,3} اليةميثوكسي انلين( اسيتوىتريل ايونات العناصر االنتق-)ح-2-فينايل-2-: كوينولونز )سبروفلكساسين(المفتاحيةالكلمات