Microsoft Word - 187-203 187 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Synthesis and Characterization of Some Mixed-Ligand Complexes Containing Azo Dye and 1,10-phenanthroline with CoII, ZnII, CdII and HgII Ions Hasan A. Hasan Wasan M. Alwan Riyadh M. Ahmed Enaam I.Yousif Dept. of Chemistry/ College of Education for Pur Sciences (Ibn -Al-Haitham)/ University of Baghdad Received in: 10/June/2015, Accepted in: 19/October/2015 Abstract In this work, the ligand was obtained from the reaction of diazonium salt of naphthyl amine with 1-amino-2-naphtol-4-sulfonic acid. The bidentate ligand type (NO) donar atoms was reacted with 1,10-phenanthroline and matel salt in a 1:1:1 mole ratio to give the complexes, using NaOH as a base. Physical-chemical teqnichas were used to characteriz the prepared compounds FT-IR,U.V-Vis, fluorescence and 1HNMR spectroscopy, atomic absorption , chloride content along with conductivity and melting point measurements .Finally, thermal analysis was used to confirm the presence of coordination H2O molecule in the complexes structure. According to memtioned characterization methods, the general formula proposed for CoII ZnII, CdII and HgII complexes is [M(L)(phen)(H2O)Cl]. Keywords: Azo-dye , Ligand , Complex , 1,10-Phenanthroline 188 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Introduction Azo compounds are a very important class of chemical compounds that received attention in scientific research. They are highly colored and have been used as dyes and pigments for a long time [1,2]. Furthermore, they have been studied widely because of their excellent thermal and optical properties in applications such as optical recording medium [3-6], link-jet printing[7,8] and oil- solution light fast dyes [9]. 1,10- phenanthroline has a rigid framework and possesses a super, ability to chelate many metale ions via two nitrogen donors, which shows potential for technological applications , due to their high charge transfer mobility , bright light-emission and good electro- and photo -active properties [10-15]. Azo metal chelates have also attracted increasing attention due to their interesting electronic and geometrical features in connection with their application for molecular memory storage , nonlinear optical elements and printing systems [4],[6]and[16].The presence of aromatic and /or heteroaromatic groups in the structure of nitrogen donors gives these ligands additional properties, for instance, poly nitrogen donors containing aromatic and/or heteroaromatic groups conjugate the ligational ability with the photophysical properties typical of these groups and accordingly, they have been widely used as chemosensors for metal ions in solution, since their coordination may affect the properties of the photosensitive group giving rise to an optical response [17-19]. Recently Man Singh and Sushma Anant prepared a new azo dye, N,Ndimethylazoleucine, composed of leucine (NH2CH-(CH2CH(C2H6))COOH) as basic moiety and 1,2-dimethyl aniline (C6H5N(CH3)2) and its Pr(III) complex with 1,10 phenanthroline (heterocyclic compound) adduct to assess the possibilities of Pr(III) complexes formation and spectral changes that occur due to complexation [20].In this paper, Preparation of new complexes of mixed ligand containing(2-(2-(naphthalen-5-yl)diazenyl)-4-amino-3- hydroxynaphthalene-1-sulfonic acid) and 1,10-phenanthroline were reported, the fluorescence properties of the prepared compound were studied. Experimental An electro thermal apparatus stuart melting point was used to measure the melting points. Infrared spectra were performed using FI-IR testscan shimadzu (FT-IR)- 8300 series spectrophotometer in the range (4000– 400 cm–1); Spectra were recorded as potassium bromide discs at College of Education for pure science Ibn- Al- Haitham/ Baghdad University. The electronic spectra of the compounds were obtained using (U.V–Vis) spectrophotometer UV-1800, in the range (1100– 200 nm) using quartz cell of (1.0) cm length with concentration (10–3) mole L–1 of samples in DMSO at 25C and Fluorescense spectrophotometer type agilent, the measurement conducted was in central labrotary of College of Education for pure science Ibn- Al- Haitham Bagdad University .Atomic absorption and chloride content were determined by potentiometric titration method on (686-titro proceccor-665 dosinat metrome Swiss) in Ibn Sina Company Ministary of Industary Baghdad Iraq . Electrical conductivity measurements of the complexes were recorded at (25C) for (10–3–10–5) M solutions of the samples in DMSO using Eutech 150 conductivity meter. 1HNMR,  Spectra for the ligand and CdII complex were recorded in DMSO-d6 using Brucker, model: ultra sheild 400 MHz, origin: Switzerland and are reported in ppm (s), at Kashan University Iran, TG and DSC, thermograph were obtained using apparatus type STA PT-1000 LINSEIS as the temperature range of 30-600C0, the measurement obtained in central laboratory, College of Education for pure science Ibn- Al- Haitham Bagdad university. Synthesis of the ligand (HL) This compound was prepared as described in the literature [21,22]. A mixture of 1-naphthyl amine (1g, 6.98 mmol) in water (10 mL) and concentrated hydrochloric acid (2.62 mL, 30.00 mmol) was stirred until a clear solution was obtained.The mixture was cooled to 0– 5C and a solution of sodium nitrite (0.76g, 11.00 mmol) in water (5 mL) was then added dropwise, maintaining the temperature below 5C. The resulting mixture was stirred for an additional 1h in an ice bath and then a little urea was added and was buffered (pH 6–7) with solid sodium acetate (solution 1). 1-Amino-2-naphtol-4- sulfonic acid (1.67g, 6.98 mmol) was dissolved in 10 mL aqueous NaOH (10 mmol) solution, cooled to 0 - 5C in an ice bath (solution 2).The solution was then gradually added to the cold solution 1, and  189 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 the resulting mixture was continually stirred at 0- 5C for 2 hrs. The resulting crude precipitate was filtered by acidification and washed several times with cold water.Yield 72%,m.p(290C dec.). Synthesis of the complex [Co(L)(phen) (H2O)Cl] To a solution of (0.5 g,1.27 mmol ) of the ligand dissolved in 15 mL of methanol,it was added (0.051 g, 1.27 mmol) of sodium hydroxide dissolved in 10 mL methanol and (0.25 gm, 1.27 mmol) of 1,10-phenanthroline in 10 mLwith stirring and heating, of cobalt (II) chloride (0.30 g, 1.26 mmol) hexahydrate dissolved in 10 mL methanol was added to the a bove solution .The resulting mixture was refluxed for 2 hrs., the product was filtered off, washed with absolute methanol and recrystallized from methanol.Yield 77%,m.p(over 320 C dec). Synthesis of the complexes [Zn(L)(phen)(H2O)Cl], [Cd(L)(phen) (H2O) Cl] and [Hg(L) (phen) (H2O) Cl] A similar produce described to that mentioned in preparation of CoII complex was used to prepare the complexes of [HL] with [ZnII ,CdII and HgII],ions . Table No.(1) shows some physical properties of the prepared [HL], and its complexes and their reactants quantities. Results and Discussion Mixed potentially bidentate ligand type NO donor atoms and 1,10-phenanthroline with metal salt were used in a 1:1:1 molar ratio to synthesiz complexes using methanol as a solvent as shown in Schem No.(2). The ligand contains labile proton [HL] and by removing this proton an ionic(-1) bidentate system is formed. The ligand [HL] was synthesized by the reaction of diazonium salt with 1- amino-2-naphtol-4-sulfonic acid in a 1:1 molar ratio using methanol as a solvent as shown in Schem No.(1). I.R. spectrum for ligand [HL], Figure No.(1), displayed a band at (3234.62) cm–1 may be attributed to the interference of the v(N.H)asym and v(N.H) sym bands of (NH2) group [23] .The band at (3095.75)cm-1 may be referred to aromatic (C-H) [24]. A broad band at (2912.51)cm-1 may refer to the phenolic OH group [25-27]. This band was ascribed of intramolecular hydrogen bonding (N…H- O) and (NH…O-H) groups [28] .The spectrum showed a weak band at (1656.85)cm-1 referred to the bending of (N-H) group. The medium bands at (1598.99-1527.62)cm-1 assigned to (C=C) stretching of aromatic rings [24] . While band at (1467.83)cm-1 can be attributed to (N=N) azo group [29] . The spectrum showed band at (1352.10)cm-1 attributed to phenolic (C-O) stretching [23] . Finally the spectrum showed two bands at (1166.93 and 1043.49)cm-1can be attributed to the v(SO3H)asym ,v(SO3H)sym stretching respectively [30] . The spectrum of the 1,10-phenanthroline. Figure No.(2) shows the band at (3363.86)cm-1 attributed to OH group of the adsorbed water molecules (C12H8N2.H2O) and bands at (3062.96)cm -1 , (1645.28)cm-1 and ( 1585.49-1525.70)cm-1 may be assigned to v(C-H)aro. , v(C=N)phen. and v(C=C)aro groups respectively , while the bands at (1344.38-1217.08)cm-1 may be assigned to the v(C-N) stretching, the assignment of characteristic bands are summarized in table No.(2). The I.R. spectra for complexes of CoII, ZnII, CdII and HgII are shown in figures No.(3),(4),(5) and (6) respectively . The bands arising due to vibrational v(C=N)phen. mode at (1645.28)cm-1 frequency in the free 1,10-phenanthroline were observed to be shifted to lower frequencies , and appears at (1620.21)cm-1,(1624.06)cm-1, (1618)cm-1 and (1614.42)cm-1 for complexes of CoII, ZnII, CdII and HgII respectively .The movement of v(N=N) stretch of the complexes to relatively lower frequencies ,at ( 1425.04), (1423.47), (1421) and (1450.47)cm-1 for complexes CoII, ZnII, CdII and HgII respectively , compared to that of free dyes or ligand indicates coordination via the N=N group [31-33]. On the other hand the band at (1352.10)cm-1 referred to v(C-O) of free ligand , shifted to lower frequency and appeared at (1280.37), (1296.16), (1230) and (1257.59)cm-1 for complexes of CoII, ZnII, CdII and HgII respectively.The see result indicaties the involvement of nitrogen of pyridime ring oxygen and nitrogen the azo ligand in the 190 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 complex formation[34-36]. The spectra of complexes displayed a band at (3215.34),(3307.92) and (3273.20)cm-1 for complexes of Co, Zn, Cd and Hg respectively can be attributed to v(NH2) group[24]. While the band at (3431)cm-1in Cd complex spectrum may assign to interference of v(NH2) stretch with the OH group of the coordinated water molecule [23].The spectrum of Co complex displayed a band at (3379.29) cm-1 may indicates OH group of the coordinated water molecules[23].Finally the spectra showed new bands at [(653.87 , 657.73 , 675 and 665.44)] ; [(601.79 ,634.58 , 621 and 663.15)] and [(551.64 , 611.43 , 523 and 561.29)] cm-1 can be refer to v(M-N)azo. , v(M-N)phen. and v(M-O) for complexes Co, Zn, Cd and Hg respectively. The new bands also supported the coordination of the ligand to the metal center through azo group nitrogen , phen. group nitrogens and phenolic oxygen atoms. These results are supported by several reports [ 37,38]. The characteristic bands are summarized in table No.(2) . The U.V-vis spectrum for [HL], Figure No.(7) , shows peak at (253nm) (39525 cm-1) (max= 3843molar-1 cm-1) assigned to –* transition of the aromatic ring [23]. Peak at (333nm) (30030 cm-1) (max= 2750molar-1 cm-1) assigned n–* transition. Finally peak at(437nm)(22883 cm-1)(max= 1063molar-1cm-1in ligand spectrum may be attributed to the azo group (N=N) [27]. U.V-Vis spectrum for 1,10-phenanthroline , Figure No.(8) , shows peak of shortest wave length presenting at (257nm) (38910 cm-1) (max= 1352molar-1 cm-1) may be assigned to over lape of n–* and –* transition ,[39-41] .The absorption data of the ligand and 1,10-phenanthroline are given in table No.(3) Figures No.(9),(10), (11) and (12) show the (U.V-Vis) spectra of the complexes Co, Zn, Cd and Hg respectively. Table No.(3) summarized the absorption peaks of the complexes, in each case the spectrum showed intense peaks in the (U.V) region at (260nm) (38461 cm-1) (max= 3933molar-1 cm-1); (298nm) (33557 cm-1) (max= 3887molar-1 cm-1); (244nm) (40983 cm-1) (max= 1756molar-1 cm-1) and (228nm) (43859 cm-1) (max= 735molar-1 cm-1) for complexes of Co, Zn, Cd and Hg respectively , which can be assigned to –* transition [23]. The peaks at (260nm) (38461 cm-1) (max= 3933molar-1 cm-1); (300nm) (33557 cm-1) (max= 3887molar-1 cm-1); (293nm) (34129 cm-1) (max= 3952molar-1 cm-1) and (302nm) (43859 cm-1) (max= 735molar-1 cm-1) for complexes of Co, Zn, Cd and Hg respectively , assigned the n–* transition .The bands at (339nm) (29498 cm-1) (max= 4000molar-1 cm-1); (345nm)(28985cm-1) (max= 3730molar-1 cm-1) ; (310nm) (32258 cm-1) (max= 1833molar-1 cm-1) and (425nm) (23529 cm-1) (max= 755molar-1 cm-1) for complexes of Co, Zn, Cd and Hg respectively , may assigned to ML charge transfer transition [23].The N=N band of the free ligand at (437nm) (22883 cm-1) (max= 1063molar-1 cm-1) shifted to lower wave lengthes in the complexes and appeared at (403nm) (24813 cm-1) (max= 3032molar-1 cm-1); (421nm) (23752 cm-1) (max= 2037molar- 1 cm-1); (411nm) (24330 cm-1) (max= 951molar-1 cm-1) and (441nm) (22675 cm-1) (max= 755molar-1 cm-1) for complexes of Co, Zn, Cd and Hg respectively as a consequence of coordination when binding with a metal , confirming that the azo nitrogen was coordinat to the metal atom. The peak in the visible region can be associated with d-d transition . The CoII complex shows a band at (620nm) (16129 cm-1) (max= 1788molar-1 cm-1) assignable to 4T1g(F)4A2g(F) suggesting distorted octahedral geometry around CoII ion . Finally ZnII, HgII and CdII complexes with an electronic configuration of d10 did not show any (d-d) transitions. Instead the absorption bands in the spectra were due to charge transfer transitions which suffered from blue shift with hyper chromic effect [42]. The 1HNMR spectra of DMSO-d6 solution of ligand and it CdII complex showed well resolved signals Figure(13) and Figure(14), table(4) .The spectrum of the free ligand showed multiplet chemical shift at the range (  =7.3-7.8 ppm) assigned to aromatic protons. The characteristic signals at(  = 8.8 ppm) and (  =11.1 ppm) were assigned to NH2 and OH 191 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 phenolic groups respectively , because of intramolecular hydrogen bonding with the nitrogen atom on the phenolic ring [23]. The 1HNMR spectrum of CdII complex showed the aromatic protons at chemical shifts at the range( = 7.2-8.2 ppm), signal observed at ( =8.8 ppm) assigned to NH2 group and ( =9.2 ppm) assigned to NH proton of azo group, this information supports the fact that there is keto hydrazone tautomer for the synthesized ligand [43]. The chemical shifts at( = 11.1 ppm) which can be attributed to the proton of the phenolic group in the ligand spectrum , disappeared in the complex spectrum due to the deprotonation process. Fluorescence Emission Spectra The emission spectra of the ligand and 1,10-phenonthroline are shown in Figure (15) and Figure(16), respectively complexes spectra are shown in Figures (17-20).The fluorescence emission spectra of ligand display maximum emission wavelengths (λem,max) at 455 nm with excitation wavelengths at 437 nm , while 1,10-phenonthroline shows maximum emission wavelengths (λem,max) at 348 nm with excitation wavelengths at 257 nm the complexes (CoII, ZnII, CdII and HgII) exhibit maximum fluorescence emission wavelengths (λem,max) at 340,330,340 and 324 nm with excitation wavelengths at 339,300,310 and 302 nm respectively . The CoII and CdII show very good fluorescence emission behavior upon excitation of the intraligand charge transfer band [44]. The shifts in complexes data compared with ligand indicate that the ligand successfully chelated to metal ions. Fluorescence spectral data are shown in table (5). Molar conductivity measurement for the complexes in (DMSO) are summarized in table (6). Thermal Analysis Studies The TGA thermal analysis curves for [Co(L)(phen)(H2O)Cl]and [Cd(L) )(phen)(H2O)Cl] complexes is shown in figures (21) and (22),and data are listed in table(7). The CoII complex decomposes in three steps. The first stage is the loss (H2O +N2+NH3) with mass losses of 9.25897% (calc. = 8.918766978%) within a temperature range of 30-248.930C, the decomposition of the complex in the 30-248.930C range is indicated by endothermic processes at 84.5 0C the second step involves the loss of the organic fraction , (C10H8+NaCl) within the temperature range of 248.93-446.80 0C, the decomposition of the complex in the 248.93- 446.800C range is indicated by exothermic processes at 311.60C, with mass losses of 26.2889% (calc. =26.40114529%). The final weight of the compound observed at 57.1701% (calc. =64.68001614%) within a temperature range of 446.80-572.340C. The difference in the calculations in observed of the residue weight may be related to the sublimation upon thermal decomposition .The CdII complex decomposes in two steps. Stage one is the loss (1,10- phenanthroline+C10H8+H2O+N2+NH3+Cl+SO3Na) within the temperature range of 30- 402.120C, the decomposition of the complex in the 30-402.120C range is indicated by endothermic and exothermic respectively processes at 130.8C0 and 363.20C , within mass losses of 68.4125%(calc. =69.44892265%). The final stage is the loss (MO) within the temperature range of 402.12-593.610C within mass losses of 16.0405% (calc. =16.8993%), the difference in the calculations in observed of the residue weight may be related to the sublimation upon thermal decomposition[44]. 192 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Reference 1- Koh, J. and Greaves. A.J, (2001), Synthesis and application of an alkali-clearable azo disperse dye containing a fluorosulfonyl group and analysis of its alkali-hydrolysis kinetics ,Dyes Pigments 50, 117-126. 2- Sekar ,N. (1999),Colourage 46, 63-65. 3- Katz ,H.E, Singe K.D. r, Sohn .J.E, Dirk .C.W, King .L.A and Gordon .H.M,(1987), J. Am.Chem. Soc. 109 (21),6561-6563 . 4- Abe ,T.; Mano. S.; Yamada, Y. and Tomotake. A, (1999), J. Imag. Sci. Tech. 43, 339-344. 5- Chino.T and Yamada M, (2002), JP 2001220519. 6- Wang, S.; Shen ,S. and Xu .H,( 2000), Dyes Pigments 44, 195-198. 7- Hallas, G. and Choi, J.H.; Synthesis and properties of novel aziridinyl azo from 2- amino thiophenes-part 2, application of some disperse azo dyes to polyester fibres ,(1999), Dyes Pigments 40, 119-129. 8- Gregory ,P.; Waring, D.R. and Hallos .G, (1990), ‘The Chemistry and Application of Dyes’, 18-20, Plenum Press, London. 9- Kandil ,S.S. (1998), Trans. Met. Chem. 23, 461-465. 10- Williams, A F.; Piguet,C. and Bernardinelli . G,(1991) ,Angew. Chem. Int. Edit. 30 1490. 11- Hurley, D J. and Tor ,Y ,(2002), J. Am. Chem. Soc. 124 3749. 12- Felder. D, Nierengarten. J F, Barigelletti. F, Ventura B and Armaroli N, (2001), Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties., J. Am. Chem. Soc.123 6291. 13- Baek. N, Kim H, Hwang . G and Kim. B ,(2001), Mol.Cryst. Liq. Cryst. 370 387. 14- Connors. P J, Tzalis. J D, Dunnick . A L and Tor. Y,(1998), Inorg. Chem. 37 1121. 15- Liu. Q D, Jia. W L and Wang. S N, (2005), Inorg. Chem.44 1332. 16- Wu. S, Qian. W, Xia. Z, Zou. Y., Wan. S. gan Shen . dS, (2000),Chem. Phys. Lett. 330,535-540. 17- Bazzicalupi. C, A. Bianchi, Giorgi .C and Valtancoli .B, (2012) , Inorg. Chim. Acta, 381 229. 18- Motlagh, M.K; Noroozifar, M.; Moodi, A.; Niroomand, S .(2013), J. Photochem. and Photobio. B: Biology, (2013), article in press. 19 – Devereux. M, McCann. M, Kellett.A., (2007), Synthesis, X-ray crystal structures and biomimetic and anticancer activities of novel copper(II)benzoate complexes incorporating 2-(4'- thiazolyl)benzimidazole (thiabendazole), 2-(2-pyridyl)benzimidazole and 1,10-phenanthroline as chelating nitrogen donor ligands. ,J. Inorg. Biochem. 101 881. 20- Singh, M and Anant. S, (2012), Synthesis and Spectral Characterization of Praseodymium(III) Complex with New Amino Acid-Based Azo Dye, International Journal of Inorganic Chemistry, 2012,ID 767080, 6 pages,doi:10.1155/2012/767080. 21- Kocaokutgen . H and Erdem. E, (2004),Synth. React. Inorg. Met-Org. Chem., 34-1843. 22- Law, KY.; Tarnawskyj, IW. and Lubberts, PT. (1993) ,Dyes Pigment, 23-243. 23- Erdem, E.; Sari, E.Y.; Kilinçarslan, R. and Kabay, N.(2009), Kılınçarslan, R. and Kabay, N. ‘Synthesis and characterization of azo-linked Schiff bases and their nickel(II) and zinc(II) complexes’, Transition Metal Chemistry,Trans. Met. Chem., 34, 167- 174. 24- Socrates, G.(1980), “Infrared Characteristic Group Frequencies”, Wiley, New York. 25- Karipcin, F. and Kabalcilar. E,(2007), Acta. Chim. Slov., 54, 242-247. 26- Parikh. V.M, (1985), “Absorption spectroscopy of Organic Molecules”, Translated By Abdul Hussain Khuthier, Jasim, M.A., Al-Rawi, and Mahammed A. Al-Iraqi. 27- Silverschtien, R.M.; Bassler, and Morril, (1981), “Spectrophotometers Indentification of Organic Compound”, Translated by Ali Hussain and Suphi Al-Azawi. 193 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 28- Souza, P.;Jose, A.; Vazguez , G.and Masaguer, JR. (1985), Trans. Met. Chem., 10-410. 29- Swati, P.; Singh, R.; Karnawat, I.K; Sharma, and Verma, P.S(2011), Synthesis, Electrochemical and Antimicrobial Studies of 2-Phenylazo-1-naphthol-4-sulphonic acid,Int. J. Chem. Tech.Res., 3, 3, 1164-1171. 30- Al-Rubaie, L.A.R.and Mhessn, R. J, (2012), Synthesis and Characterization of Azo Dye Para Red and New Derivatives,E-J. Chem., 9, 1, 465-470. 31- Masoud, M.S. and Muhamed, G.B, (2002), Spectral, Magnetic and Thermal Properties of Some Thiazolylazo Complexes, J. Korean. Chem. Soc. 2, 99-116 . 32- Maiti, D.; Paul, H.; Chanda, N. and Chakraborty, S., (2004), Polyhedron 23, 831-840. 33- Ertanan, N. d P. ,G¨urkan,(1997),D yes Pigments 33, 137-147. 34- Rentschler. E, von Malotki. C,( 2008), Inorg. Chimica. Acta, 361 ,3646. 35- Dilip, C.S, Kumar. V. S, Venison. S.J., potheher I.V, Subahashini. D. R, (2013), Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes, J. Mol. Str., 1040 ,192. 36- El-Ghamry, M.A..;Saleh, A.A.; Khalil. S.M.E.; Mohammed, A.A, (2013), Mono, bi- and trinuclear metal complexes derived from new benzene-1,4-bis(3-pyridin-2-ylurea) ligand. Spectral, magnetic, thermal and 3D molecular modeling studies., Spectrochim. Acta A, 110 205. 37- Addison, A.W.; Rao, T.N. and Sinn, E., (1984), Inorg. Chem., 23, 1957-1967. 38- Preti, C.. and Tosi, G., (1977) Can, J. Chem ,55, 1409. 39- Vukovic. N, Sukdolak. S, Solujic. S, Milosevic. T, (2008), Synthesis and antimicrobial evaluation of some novel 2-aminothiazole derivatives of 4-hydroxy-chromene-2-one ,Arch. Pharm., 341 ,491. 40- Rover, S.Cesura. M.A, Huguenin. P, Szente. A, (1997), Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3- hydroxylase,J. Med. Chem., 40, 4378 . 41- Panico. A.M, Geronikaki. A., Mgonzo. R, Cardile .V, Gentile. B and I. Doytchinova, (2003), Aminothiazole derivatives with antidegenerative activity on cartilage. ,Bioorg. Med. Chem., 11 ,2983. 42- Lever, A.B.P. (1968), Inorganic electronic spectroscopy. Amsterdam: Elsevier publishing. Co. Ltd . 43- Tunçel . Mand Serin. S, (2006), Synthesis and characterization of new azo-linked Schiff bases and their cobalt(II), copper(II) and nickel(II) complexes, Trans. Met. Chem., 31, 805-812. 44- yan. he, chaofan zhong*, zhou. yu and hailiang zhang, (2009), Synthesis and luminescent properties of novel Cu (II), Zn (II)polymeric complexes based on 1,10- phenanthroline and biphenyl groups, J. Chem. Sci., 121,4,407–412. 45- Walaa Mahmoud1. H, Gehad Mohamed1*. G, Maher El-Dessouky1]. M.I.(2014), Synthesis, Characterization and in vitro Biological Activity of Mixed Transition Metal Complexes of Lornoxicam with 1,10-phenanthroline, Int. J. Electrochem. Sci., 9 ,1415 – 1438. 194 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (1): Some physical properties of [HL], complexes and their reactant quantity Empirical formula M.wt Wt of metal salt (g) Wt of product (g) Yield % Color Dec.C0 Found,(Calc)% M M Cl [HL] 393.42 - - 72 Dark red 290 - - [Co(L)(phen) (H2O)Cl] 706.37 0.302 0.7 77 Dark prown >320 (8.34) 8.98 (5.01) 5.10 [Zn(L)(phen) (H2O)Cl] 712.83 0.104 0.5 68 Light green >320 (9.17) 9.22 (4.97) 4.98 [Cd(L)(phen)(H2O)Cl] 759.85 0.056 0.8 69 Light orange >320 (14.79) 14.85 (4.66) 4.75 [Hg(L)(phen)(H2O)Cl] 848.03 0.140 0.4 61 Light prown >320 (23.65) 23.71 (4.18) 4.25 Dec.= Decomposition Table (2):FT-IR spectra data (wave number v-1)cm-1 of the ligand and its metal complexes Compound V(NH2) V(C-H)aro. V(OH) broad V(C=C)aro. V(N=N) V(C=N)phen. V(C-O) V(M-N)azo. V(M- N)pheen. V(M-O) Additional peaks HL 3234.62 3095.75 2912.51 1598.99-1527.62 1467.83 1352.10 - - - V(N-H)bending 1656.85 V(C-N)1282.66- 1215.15 V(SO3H)asy 1166.93 V( SO3H)sym 1043.49 1,10- phenanthroline - 3062.96 3363.86 1585.94-1552.70 - 1645.28 - - - - V(C-N) 1344.38-1217.08 [Co(L)(phen)(H2O )Cl] 3215.34 3061.03 3379.29 1581.63-1517.98 1425.04 1620.21 1280.73 653.87 601.79 551.64 V(C-N) 1317.38-1367.53 [Zn(L)(phen)(H2O )Cl] 3307.92 3016.67 - 1564.27-1516.05 1423.47 1624.06 1296.83 657.73 634.58 611.43 V(C-N) 1388.75-1352.10 [Cd(L)(phen)(H2O )Cl] 3431 3053 3431 1581-1520 1421 1618 1230 675 621 523 V(C-N) 1350-1387 [Hg(L)(phen)(H2O )Cl] 3273.20 3134.33 - 1541.12-1510.26 1450.47 1614.42 1257.59 665.44 663.51 561.29 V(C-N) 1396.46-1369.46 195 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (3): Electronic spectral data of ligand and metal complexes Compound Wave number max molar–1 cm–1 Assignment Suggested structure Nm Cm–1 HL 253 39525 3843 –* Octahedral 333 30030 2750 n–* 437 22883 1063 N=N 1,10-phenanthroline 257 38910 1352 –*, n–* [Co(L)(phen)(H2O)Cl] 260 38461 3933 –* 278 35971 3866 n–* 339 29498 4000 C.T 403 24813 3032 N=N 620 16129 1788 4T1g(F)4A2g(F) [Zn(L)(phen)(H2O)Cl] 298 33557 3887 –* Octahedral 300 33333 3966 n–* 345 28985 3730 C.T 421 23752 2037 N=N [Cd(L)(phen)(H2O)Cl] 244 40983 1756 –* 293 34129 3952 n–* 310 32258 1833 C.T 411 24330 951 N=N [Hg(L)(phen)(H2O)Cl] 228 43859 735 –* Octahedral 302 33112 3605 n–* 425 23529 755 C.T 441 22675 755 N=N Table (4): 1HNMR data for ligand and [Cd(L)(phen)(H2O)Cl] in DMSO-d6 and chemical shift in ppm() Compound Funct. Group (ppm) HL C-C aromatic 7.3-7.8 NH2 8.8 O-H phenolic 11.1 [Cd(L)(phen)(H2O)Cl] C-C aromatic 7.2-8.2 NH2 8.8 O-H phenolic 9.2 196 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (5): Fluorescence spectra for ligand and complexes Compound λmax (em) λmax (ex) HL 455 437 1,10-phenanthroline 348 257 [Co(L)(phen)(H2O)Cl] 340 339 [Zn(L)(phen)(H2O)Cl] 330 300 [[Cd(L)(phen)(H2O)Cl] 340 310 [Hg(L)(phen)(H2O)Cl] 324 302 Table (6): The molarconductivity of the complexes Compound m S.cm2 molar–1 [Co(L)(phen)(H2O)Cl] 15.2 [Zn(L)(phen)(H2O)Cl] 10.32 [Cd(L)(phen)(H2O)Cl] 4.14 [Hg(L)(phen)(H2O)Cl] 14.57 Table (7): Thermoanalytical results (TG and DSC) of [Co(L)(phen)(H2O)Cl] and [Cd(L)(phen)(H2O)Cl] Compounds Mass loss temp./ºC Mass loss Theoretically Mass loss Practically DSC [Co(L)(phen)(H2O)Cl] 30-248.93 8.918766978 9.25897 84.5(endo) 248.93-446.80 26.40114529 26.2889 311.6 446.80-572.34 64.68001614 57.1701 - [Cd(L)(phen)(H2O)Cl] 30-402.12 69.44892265 68.4125 130.8(endo) and 363.2 (exo) 402.12-593.61 168993 16.0405 - 197 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Scheme (1): Synthesis of the ligand (HL) N N NH2 SO3H + HO N N N N N N NH2 O SO3Na M CH3COOH, glacial MeOH,NaoH Ref lux Where:M= CoII,ZnII,CdII,HgII ClH2O Scheme (2): Synthesis of the complexe Fig (1): IR spectrum of the ligand(HL) Fig (2): IR spectrum of the 1,10-phenanthrolin [W] NaNO2 ice bath (0 Co) HCl con. N NNH2 1-naphthyl amine Sodium nitrite diazonium salt N N HO SO3H NH2 diazonium salt 1-amino-2-naphtol-4-sulfonic acid [dissolved in 10 ml aqueous NaOH (10 mmol)] HO SO3H NH2 N N ice bath (0 Co) 2-(2-(naphthalen-5-yl)diazenyl) -4-amino-3-hydroxynaphthalene-1-sulfonic acid Cl Cl 198 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig (3):IR spectrum of the [Co(L)(phen)(H2O)Cl] Fig (4): IR spectrum of the[Zn(L)(phen)(H2O)Cl] Fig (5): IR spectrum of the[Cd(L)(phen)(H2O)Cl] Fig (6): IR spectrum of the[Hg(L)(phen)(H2O)Cl] Fig (7): UV spectrum of the ligand 199 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig (8): UV spectrum of the 1,10-phenanthrolin Fig (9): UV spectrum of the complex [Co(L)(phen)(H2O)Cl] Fig (10):UV spectrum of the complex [Zn(L)(phen)(H2O)Cl] Fig (11): UV spectrum of the complex [Cd(L)(phen)(H2O)Cl] Fig (12): UV spectrum of the complex [Hg(L)(phen)(H2O)Cl] 200 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig (13):1HNMR spectra for the ligand Fig (14):1HNMR spectra for the complex [Cd(L)(phen)(H2O)Cl] Fig (15):Emission spectra of the ligand Fig (16):Emission spectra of the 1,10-phenanthroline 201 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig (17):Emission spectra of the [Co(L)(phen)(H2O)Cl] Fig (18): Emission spectra of the [Zn (L)(phen)(H2O)Cl] Fig (19): Emission spectra of the [Cd(L)(phen)(H2O)Cl] Fig (20): Emission spectra of the [Hg(L)(phen)(H2O)Cl] 202 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig (21): Thermograph of [Co(L)(phen)(H2O)Cl] Fig (22): Thermograph of [Cd(L)(phen)(H2O)Cl] 203 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 -1,10معقدات حاوية على ليكندات مختلطة من صبغة االزو و تحضير وتشخيص الثنائية التكافؤ الكوبلت، الكادميوم، الخارصين، الزئبقفينانثرولين مع ايونات حسن احمد حسن وسن محمد علوان رياض محمود احمد انعام اسماعيل يوسف جامعة بغداد/الھيثم) قسم الكيمياء /كلية التربية للعلوم الصرفة (ابن 2015//تشرين االول19البحث في: ، قبل2015/حزيران/10استلم البحث في: الخالصة - 4-نفثول-2- امينو- تفاعل اتضمن العمل تحضيرمعقدات حاوية على ليكاندات مختلطة من صبغة االزو المحضرة من كليكاند ثانوي مع امالح فينانثرولين-10,1السن و نفثايل امين كليكاند اولي ثنائي -1سلفونيك اسيد مع ملح الدايزونيوم وباستعمال ھايدروكسيد الصوديوم كوسط قاعدي. 1:1:1) للحصول على المعقدات بنسبة 1:1:1الفلزات وبنسبة ( الفيزيائية في تشخيص المركبات المحضرة بوساطة اطياف االشعة تحت الحمراء وفوق –واستعملت التقنيات الكيميائية والفلورة وطيف الرنين النووي المغناطيسي واالمتصاص الذري ومحتوى الكلور وقياسات التوصيلية المرئية-يةالبنفسج الكھربائية مع درجات االنصھار.كما استعملت تقنية التحليل الحراري في اثبات وجود جزيئات الماء المتناسقة في تركيب الخارصين الثنائيالثنائي و معقدات الكوبلت الثنائي والكادميومالمعقدات وبناًء على ما سبق اقترحت الصيغة االتية ل O)Cl]2[M(L)(phen)(Hالثنائي.والزئبق فينانثرولين -10، 1االزو ، ليكاند ، معقد ، –صبغة :المفتاحيةالكلمات