Microsoft Word - 223-234 223 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 On 2-Absorbing Submodules Inaam M.Ali Abdurehman A. Harfash Dept. of Mathematics/ College of Education for Pure Science (Ibn Al Haitham)/ University of Baghdad Received in: 26/May/205,Accepted in:1/August/2015 Abstract Let R be a commutative ring with 1 0 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by A.Y. Darani and F. Soheilina . Many new properties and characterizations are given . Key words: prime submodule , 2-absorbing submodule , quasi- prime submodule, multiplication module , P-primary submodule , pure submodule . This paper is a part of thesis submitted by 2nd author under supervision by 1st author 224 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Introduction The concept of 2-absorbing ideal which is a generalization of prime ideal was introduced by Ayman Badawi , where "a nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a , b , c ∈R , abc ∈ I then ab ∈ I or ac ∈I or bc ∈I" , [1] . This definition can obviously be made for any proper ideal . A. Y. Darani and F. Soheilnia in [2] introduced the concept of 2-absorbing submodule where "a proper submodule N of M is called 2-absorbing submodule of M if whenever a , b ∈ R , m∈ M and abm ∈N , then am ∈N or bm ∈N or ab ∈(N:M)" Our concern in this paper is to give a comprehensive study of 2-absorbing submodule , where we give many new properties and characterizations . 1. 2-Absorbing Submodules – Basic Properties "Definition 1.1: Let M be an R-module. N a proper submodule of M is called 2-absorbing submodule if whenever a,b ∈ R , m ∈ M and abm ∈ N, then ab ∈ (N : M) or am ∈ N or bm ∈ N."[2] Note that an 2-absorbing ideal of a ring R is a 2-absorbing submodule of the R-module R . Remarks and Examples.1.2 : (1) "The intersection of each pair of distinct prime submodules of R-module M is 2- absorbing" [2] (2) It is clear that every prime submodule is 2-absorbing. However the converse is not true in general, for example: Consider Z6 as Z-module , 0 not prime submodule of Z6 since 2 .3 0 ∈ 0 but 3 ∉ 0 and 2 ∉ ( 0 : Z Z6)=6Z but 0 = 2 ∩ 3 is 2-absorbing submodule of Z6 as Z- module by part (1) (3) It is clear that every quasi-prime submodule is 2-absorbing, where" a proper submodule N of M is called quasi-prime submodule if whenever a, b ∈ R, m∈ M and a b m∈ N , then a m∈ N or b m∈ N"[3] However a 2-absorbing submodule may not be quasi-prime , as the following example shown : Consider the Z-module Z . The submodule N =4Z is a 2-absorbing submodule of Z since , if a,b,c ∈Z with abc ∈4Z=N , then at least two of a,b,c are even . Hence either ab ∈ N or ac∈ N or bc ∈ N But 4Z is not quasi-prime , since 2.2.1 ∈4Z but 2.1∉4Z. (4) Let N ,W be two submodules of an R-module M and W < N .if N is 2-absorbing submodule of M then it is not necessary that W is 2- absorbing submodule of M , for example in Z24 as Z-module . Take N= 6 , W= 12 . Since N = 2 ∩ 3 and both of them are prime submodules then N is 2-absorbing submodule by part (1) . But 2.2.3 ∈ W , 2.3 ∉ W and 2.2=4 ∉ W : Z =12Z . Thus W is not 2-absorbing submodule in M . 225 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 (5) Let N ,W be two submodules of an R-module M and N < W . If N is 2-absorbing submodule of M , then N is a 2-absorbing submodule of W Proof: If W =M ,then nothing to prove Let a b x ∈N , where a ,b ∈R , x ∈W . Since x ∈W then x ∈ M . But N is 2-absorbing submodule of M , so either : a x ∈ N or b x ∈ N or a b ∈ (N:M) and since N < W implies (N:M) (N:W) , then either a x ∈ W or b x ∈ W or a b ∈ (N:W) Hence N is 2-absorbing in W ∎ (6) The sum of 2-absorbing submodules is not necessary 2-absorbing . for example: Let N1 2Z , N2 3Z , each of N1 and N2 is 2-absorbing submodule in the Z-module Z , but N1 + N2 =Z which is not 2-absorbing . (7) Let N and W be two submodules of an R-module M such that N ≅ W If N is 2-absorbing submodule , it is not necessary that W is 2-absorbing submodule as the following example explains this : Consider the Z-module Z , the submodule 2Z is 2-absorbing submodule but 2Z ≅ 30Z and 30Z is not 2-absorbing since 2.3.5 30 ∈ 30 but 2.5 ∉ 30Z and 3.5 ∉ 30Z and 2.3 6 ∉ 30Z (8) The intersection of two 2-absorbing submodule need not be 2-absorbing submodule for example : 6Z and 5Z are 2-absorbing submodule in the Z-module Z , but 6Z ∩ 5Z = 30Z which is not 2-absorbing (9) Let N be a 2-absorbing submodule of M , then for each A⊆M , either A⊆N or A∩N is a 2-absorbing submodule of A Proof : Suppose A⊈N . Then A∩N ≨ A . Let abx ∈ A∩N , and x∈A , a,b∈R . So abx ∈ N . Since N is 2-absorbing , either ax ∈ N or bx ∈ N or ab ∈ (N:M) , then ax ∈ A∩N or bx ∈ A∩N or ab ∈ (A∩N:A) . Proposition .1.3 : Let φ :M ⟶ M′ be an R-epimorphism . If W is 2-absorbing submodule of M′ , then φ (W) is 2-absorbing submodule of M. Proof : It is straight for word so it is omitted ∎ Proposition 1.4 : Let f : M ⟶ M′ be an epimorphism , N < M such that kerf ⊆ N , then N is 2-absorbing submodule of M if and only if f(N) is 2-absorbing submodule of M′ 226 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Proof: ⟹ Let abḿ ∈ f N , where ḿ ∈ M′ a,b ∈ R . ḿ f m for some m ∈ M , since f is onto . Then abf(m) ∈ f N , so abf(m)=f(n) for some n ∈ N and hence f(abm)- f(n) = 0 . Thus we get that abm – n ∈ kerf ⊆ N which implies that abm ∈ N . But N is 2-absorbing so either am ∈ N or bm ∈ N or ab ∈ (N : M) . If am ∈ N , then f( am) ∈ f N , that is a f(m) ∈ f N so a ḿ ∈ f N . Similarly, bm ∈ N implies that bḿ ∈ f N . If ab ∈ (N : M) , then abM ⊆ N and so f(abM) ⊆ f N which implies that abM′ ⊆ f N and we get that ab ∈ (f N : M′) . ⟸ Let abm ∈ N then f(abm) ∈ f N so abf(m) ∈ f N . Since f(N) is 2-absorbing either af(m) ∈ f N or bf(m) ∈ f N or ab ∈ (f N : M′). 1) If af(m) ∈ f N then f(am) f n for some n ∈ f N , henc am-n ∈ kerf ⊆ N so am∈ N 2)If bf(m) ∈ f N then Similarly that bm ∈ N 3) If ab ∈ (f N : M′) then abM′ ⊆ f N so abf(x) ∈ f N for each x ∈ M so that f(abx)=f(n) for some n ∈ N and hence abx ∈ N for each x ∈ M. Thus ab ∈ (N : M) . ∎ By using Proposition 1.4 we can get the following result which is given in [ 2] as a direct consequence "Corollary 1.5 : Let R be a ring , M an R- module and N , K submodules of M with K ⊆N . Then N is a 2-absorbing submodule of M if and only if is a 2-absorbing submodule of " A.Y. Darani and F. Soheilina in [2] introduced the following: "Proposition 1.6 : Let R be a commutative ring , M is a cyclic R-module and N is a submodule of M . Then N is a 2-absorbing submodule of M if and only if ( N : M) is a 2-absorbing ideal of R". Sh. Payrovi and S. Babaei in [4] and S. moradi and A. Azizi in [5] introduced the following: Theorem 1.7 : "If N is a 2-absorbing submodule of M , then ( N : M) is a 2-absorbing ideal of R" . Sh . Payrovi , Babaei in [4] proved the following " Let R be a Noetherian ring , M a finitely generated multiplication R-module and N a proper submodule of M such that AssR(M/N) is a totally ordered set . If (N :R M) is a 2-absorbing ideal of R, then N is a 2- absorbing submodule of M " , where R is a commutative ring with non zero identity . 227 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 However we get the same conclusion under the class of multiplication modules . Before giving our result , recall that "An R-module is called a multiplication module if for every submodule N of M, there exists an ideal I of R such that IM = N . Equivalently , M is a multiplication module if for every submodule N of M ,N=(N :RM)M" . [6] Theorem 1.8 : Let M be a multiplication R-module and N is a proper submodule of M , If N : M is a 2- absorbing ideal of R , then N is 2-absorbing submodule of M Proof: Let abm ∈ N where a,b ∈ R , m ∈ M then ab(m)⊆ N . But (m)= IM for some I R since M is a multiplication R-module , so abIM ⊆ N . Hence abI ⊆ N : M ,so we get that ( a)(b)I ⊆ N : M . Since N : M is a 2-absorbing ideal , therefore (a)I ⊆ N : M or (b)I ⊆ N : M or (a)(b) ⊆ N : M by [1] 1) If (a)I ⊆ N : M , then (a)IM ⊆ N so (a)(m)⊆ N thus am ∈ N 2) If (b)I ⊆ N : M , then similarly bm ∈ N. 3) If (a)(b) ⊆ N : M , then ab ∈ N : M ∎ Corollary 1.9 : Let M be a multiplication R-module and N is a proper submodule of M , then N is 2- absorbing submodule of M if and only if N : M is 2-absorbing ideal. Remark 1.10 : The condition M is a multiplication R-module can't be dropped from Theorem 1.8 . Consider the following example : Let M be the Z-module Z and N = 0 . N is not 2-absorbing since : p.p. Z = 0 but p. Z 0 and P ∉ Z ∶ Z 0 , Also notice that (N: Z )= 0 , and 0 is a prime ideal in Z , so 0 is 2-absorbing ideal in Z . Recall that " A proper submodule N of an R-module M is called a P-primary submodule of M if whenever a ∈ R and m ∈M and am ∈ N , then m ∈ N or a ∈ √N ∶ M=P " [7] Darani in [7 ] proved the following : " Let N be a P-primary submodule of a cyclic R-module. Then N is 2-absorbing if and only if (pM)2 ⊆ N " However we improve this Theorem as follows . Proposition 1.11 : Let N be a p-primary submodule of a multiplication R-module M . Then N is 2-absorbing if and only if (pM)2 ⊆ N (where (pM)2 = p2M) . 228 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Proof : ⟹ Since M is a multiplication R-module , M-radN=√N:M M by[7,Th 2.10] But N is P-primary , so P =√N:M is a prime ideal . ; that is M-radN=PM . It follows that P2 ⊆ (N:M) by [1] Th. 2.4 . Thus P2M ⊆N . Hence ( PM)2 ⊆N ⟸ Let abm∈N where a , b ∈R , m∈M Assume that am∉N and bm∉N . As N is primary with abm∈N and bm∉N , we get a ∈ √N:M=P Also abm∈N and am∉N , we get b ∈ √N:M=P Thus ab ∈ P ⊆ (N:M) and consequently N is 2-absorbing submodule of M ∎ Recall that " A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a ; b ∈ R and m ∈M and abm ∈ N , then am ∈ M-rad(N ) or bm ∈ M-rad(N ) or ab ∈ (N :R M)" [8] It is clear that 2-absorbing submodule implies 2-absorbing primary , but the converse may be not hold , as the example shows Let M be the Z-module Z , let N=8Z , so N is 2-absorbing primary ,but it is not 2-absorbing submodule . Babaei in [4] proved the following : "Let R be a Noetherian ring , I a 2-absorbing ideal of R , and M a faithful multiplication R- module such that AssR(M /IM) is a non-empty totally ordered set . Then abm ∈ IM implies that am ∈IM or bm ∈ IM or ab ∈I whenever a; b ∈ R and m ∈ M " [4] , that IM is 2-absorbing . where R is a commutative ring with nonzero identity . However we get the same conclusion of this theorem but with less conditions and also we give a simple proof . Proposition 1.12 : Suppose M is a finitely generated multiplication R-module . If I is 2-absorbing ideal of R such that annM ⊆I , then IM is 2-absorbing submodule of M. Proof: Let abm ∈ IM where a , b ∈ R , m ∈ M , hence ab(m) ∈ IM . Since M is multiplication , then (m)=JM for some ideal J of R . Thus abJM ⊆ IM and so abJ ⊆ I+annM = I . But I is a 2- absorbing ideal of R , so either ab ∈ I or aJ ⊆ I or bJ ⊆ I , it follows that ab ∈ IM : M or aJM ⊆ IM or bJM ⊆ IM ; that is either ab ∈ IM : M or a(m) ⊆ IM or b(m) ⊆ IM Thus ab ∈ IM : M or am ∈ IM or bm ∈ IM and so IM is a 2-absorbing submodule of M ∎ 229 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Corollary 1.13 : Suppose M is a faithful finitely generated multiplication R-module . If I is a 2-absorbing ideal of R, then IM is a 2-absorbing submodule of M. Proof: It follows directly by Proposition 1.12 ∎ Corollary 1.14 : Let M be a faithful finitely generated multiplication R-module . Then every proper submodule of M is 2-absorbing if and only if every proper ideal of R is 2-absorbing . Proof : ⟸ It follows directly by Corollary (1.13) . ⟹ Let I be a proper ideal of R . Then N= IM is a proper submodule of M So it is 2-absorbing and hence by Theorem (1.7) , (N:M) is 2-absorbing ideal . But M is faithful finitely generated multiplication R-module , so (N:M)=I by ([6],Th.3.1) ∎ " Proposition 1.15 : [4,Th 2.4] Let M be an R-module , N a proper submodule of M , if N is 2-absorbing then N : m is 2-absorbing ideal for each m ∈M-N " Proof: First N : m R for any m ∉ N Let abc ∈ N : m then ab(cm) ∈ N , but N is 2-absorbing submodule then a(cm) ∈ N or b(cm) ∈ N or ab ∈ N : M , so that acm ∈ N or bcm ∈ N or abM ⊆ N that is ac ∈ N : m or bc ∈ N : m or ab ∈ N : m hence N : m is 2-absorbing ideal ∎ Recall that "a submodule N of M is called a pure submodule of an R-module M if IM ∩ N = IN for any ideal I of R" [9] Proposition 1.16 : Let N be a proper pure submodule of an R-module M , If 0 is a 2-absorbing submodule of M , then N is 2-absorbing . Proof: Let abm ∈ N where a ,b ∈ R , m ∈ M Put I =(ab) then abm ∈ IM ∩ N , but IM ∩ N = IN , so abm = abn for some n ∈ N , then ab( m – n ) = 0 , but (o) is 2-absorbing then a ( m – n ) = 0 or b( m – n ) = 0 or ab ∈ annM ⊆ (N : M) . So we get am=an ∈ N or bm=bn ∈N or ab ∈ ( N : M) , Thus N is a 2-absorbing submodule ∎ 2. 2-absorbing Submodules Characterizations . In this section we give some characterizations of 2-absorbing submodules . We start with the following proposition: 230 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Proposition 2.1 : Let N a proper submodule of an R-module M . Then N is 2-absorbing submodule of M if and only if abK ⊆N for some a , b ∈R , K M . implies ab∈(N:M) , or aK ⊆N or bK ⊆N Proof : Suppose that ab ∉(N:M) and aK ⊈ N and bK ⊈ N . Then there exist m1 , m2 in K such that am1 ∉ N and bm2 ∉ N . Since abm1 ∈ N and ab ∉(N:M) , am1 ∉ N , we get bm1 ∈ N. Also since abm2 ∈N and ab ∉(N:M) , bm2 ∉ N , we get am2 ∈ N Now , since ab(m1 + m2) ∈ N and ab ∉(N:M) we have a(m1 + m2) ∈ N or b(m1 + m2) ∈ N If a(m1 + m2) ∈ N ; i.e. am1 +am2 ∈ N and since am2 ∈ N we get am1 ∈ N which is contradiction ! If b(m1 + m2) ∈ N ; i.e. bm1 +bm2 ∈ N and since bm2 ∈ N we get bm1 ∈ N which is contradiction ! Then either ab ∈(N:M) or aK ⊆ N and bK ⊆ N the converse is clear ∎ The following theorem give a useful characterization of 2-absorbing submodule . Theorem 2.2 : Let N a proper submodule of an R-module M , then the following statement are equivalent : (1) N is a 2-absorbing submodule of M (2) If I J K ⊆ N , for some ideal I and J of R and some submodule K of M then either I K ⊆ N or J K⊆ N or I J ⊆( N:M) . Proof : (1) ⟹ (2) Suppose N is a 2-absorbing submodule of M and I J K ⊆ N for some ideals I and J of R and some submodule K of M and I J ⊈ ( N:M) . To show that I K ⊆ N or J K ⊆ N. Suppose I K ⊈ N and J K ⊈ N . then there exist a1 ∈ I and a2 ∈ J such that a1 K ⊈ N and a2 K ⊈ N . But a1 a2 K ⊆ N and neither a1 K ⊈ N nor a2 K ⊈ N and N is 2-absorbing , so we have a1 a2 ∈( N:M) by Proposition (2.1) Since I J ⊈ ( N:M) , then there exist b1 ∈ I and b2 ∈ J such that b1 b2 ∉(N:M). But b1 b2K ⊆ N , so we have b1K ⊆ N or b2K ⊆ N by Proposition (2.1) Now we have the following cases : Case (1) b1K ⊆ N and b2K ⊈ N 231 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Since a1b2K ⊆ N and b2K ⊈ N and a1 K ⊈ N so that a1 b2 ∈( N:M) by Proposition (2.1) Since b1K ⊆ N and a1K ⊈ N , we conclude ( a1+b1) K ⊈ N . On the other hand , ( a1+b1) b2 K ⊆ N and neither ( a1+b1) K ⊆ N nor b2K ⊆ N , we get that ( a1+b1) b2 ∈(N:M) by Proposition (2.1) But (( a1+b1) b2 = a1b2+b1b2 ∈(N:M) and a1b2 ∈(N:M) , we get b1b2 ∈(N:M) which is a contradiction! Case(2) If b2K ⊆ N and b1K ⊈ N . By a similar argument of case (1), we reach to a contradiction! Case(3) b1K ⊆ N and b2K ⊆ N Since b2K ⊆ N and a2K ⊈ N , we conclude ( a2+b2) K ⊈ N . But a1( a2+b2) K ⊆ N and neither a1K⊆N nor ( a2+b2)K ⊆ N , hence a1( a2+b2)∈(N:M) by Proposition (2.1) Since a1 a2∈(N:M) and a1 a2 + a1 b2 ∈(N:M) , we have a1 b2 ∈(N:M) . Since (a1+b1) a2 K ⊆ N and neither a2 K ⊆ N nor (a1+b1)K ⊆ N , we conclude (a1+b1) a2∈(N:M) by Proposition (2.1) But (a1+b1) a2 = a1a2+b1 a2 , so a1a2+b1 a2 ∈(N:M) and since a1 a2∈(N:M) , we get b1a2 ∈(N:M) . Now , since (a1+b1) (a2+b2)K ⊆N and neither (a1+b1)K ⊆N nor (a2+b2)K ⊆N, We have (a1+b1) (a2+b2) =a1a2+ a1b2+b1a2+b1b2 ∈(N:M) by Proposition (2.1) But a1a2 , a1b2 , b1a2 ∈(N:M) , so b1b2 ∈(N:M) which is a contradiction! . Consequently I1K ⊆N or I2K ⊆N (2) ⟹ (1) It is clear ∎ Recall that ". for any two submodules N , K of a multiplication R-module M with N = I1M and K = I2M for some ideals I1 and I2 of R. The product N and K denoted by NK is defined by NK = I1I2M."[2] By using this definition of product of submodules , we give the following characterization of 2-absorbing submodules . Theorem 2.3 : Let N be a proper submodule of a multiplication R-module M , then N is a 2-asorbing submodule of M if and only if N1 N2 N3 ⊆N implies that N1 N2 ⊆N or N1 N3 ⊆N or N2 N3 ⊆N , where N1 , N2 , N3 are submodules of M. Proof : ⟹ Since M is multiplication , then N1= I1M , N2= I2M , N3= I3M for some ideals I1 , I2 , I3 of R . It follows that : N1 N2 N3 = I1 I2 I3M ⊆ N . Hence I1 I2 I3 ⊆ (N:M) . But N is 2-absorbing submodule of M implies that (N:M) is 2-absorbing ideal by [Theorem 1.7]. So by [1 ,Th 2.13] either I1 I2 ⊆ (N:M) or I1 I3 ⊆ (N:M) or I2 I3 ⊆ (N:M) . Then I1 I2 M ⊆ N or I1 I3M ⊆ N or I2 I3M ⊆ N . Thus N1 N2 ⊆N or N1 N3 ⊆N or N2 N3 ⊆N 232 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 ⟸ Let I1 I2 K ⊆ N where I1 , I2 are ideals of R and K M . Since M is multiplication module , K = JM for some J of R . Thus I1 I2J M ⊆ N . Put N1= I1M N2= I2M . It follows that N1 N2K= I1 I2J M ⊆ N . So by hypotheses either N1 K ⊆ N or N2 K ⊆ N or N1 N2 ⊆ N then I1J M ⊆ N or I2J M ⊆ N or I1 I2 ⊆ (N:M); that is I1 K ⊆ N or I2K ⊆ N or I1I2 ⊆ (N:M) Thus N is 2-absorbing submodule of M ∎ Proposition 2.4 : Let N be a proper submodule of an R-module M . The following statements are equivalent : (1) N is a 2-absorrbing submodule of M (2) (N : I) is 2-absorbing , for each ideal I of R with IM ⊈N (3) (N : (r)) is 2-absorbing submodule for each r ∈R with rM ⊈N Proof: (1) ⟹(2) Let I be an ideal of R with IM ⊈M , then (N : I) is a proper submodule of M Let a b m ∈ (N : I) , where a , b ∈ R , m ∈ M . Then ab(Im) ⊆ N . But N is 2-absorbing submodule of M , so by Proposition(2.1) , either a(Im) ⊆ N or b(Im) ⊆ N or ab ∈ (N : M) ⊆ ( (N : I): M) . Hence either am ∈ (N : I) or bm ∈(N : I) or ab ∈( (N : I): M . Thus (N : I) is a 2-absorbing submodule . (2) ⟹(3) It is clear . (3) ⟹(1) Take r =1 then (N : 1 )= N , so N is 2-absorbing. ∎ Now we have the following : Theorem 2.5 : Let N be a proper submodule of an R-module M . Consider the following statements: 1) N is a 2-absorbing submodule of M 2) For each a,b ∈ R , m ∈ M . If abm ∉ N , then ( N :abm) = (N:am)∪(N:bm) 3) For each a,b ∈ R , m∈M if abm∉N then (N:abm)=(N :am) or (N:abm) =(N:bm) Then (1) ⟹(2) ⟹(3) and if M is cyclic , then (3) ⟹(1) . Proof : (1) ⟹(2) Let c ∈ ( N : abm) then abcm ∈ N . Since abm ∉ N and N is 2-absorbing , so by (1.2 ) , either acm ∈ N or bcm ∈ N . Then c ∈ ( N : am) or c ∈ ( N : bm) Thus ( N : abm) ⊆ ( N : am) ∪ ( N : bm) . To prove reverse inclusion: Let c ∈( N : am) ∪ ( N : bm) , then c ∈( N : am) or c ∈ ( N : bm) so that acm ∈ N or bcm ∈ N It follows that abcm ∈ bN ⊆ N or abcm ∈ aN ⊆ N Thus abcm ∈ N and hence c ∈ N:abm . 233 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 Then ( N:am) ∪( N:bm) ⊆ ( N:abm) . So we get (N:abm)=(N:am)∪(N:bm). (2) ⟹(3) Since (N : abm) is an ideal of R , and (N:abm)=(N:am)∪(N:bm). So either ( N : bm) ⊆ ( N : am) or ( N : am) ⊆ ( N : bm) . Then ( N : abm) = ( N : am) or ( N : abm) ( N : bm) (3) ⟹(1) Now suppose that M= m for some m1 ∈M Let abm ∈ N . But m=rm1 for some r ∈ R then abrm1 ∈ N and suppose that a b ∉ N :M)= (N: m ) , abm1 ∉ N and r∈( N : abm1 ) . By (3) ( N : abm1) = ( N : a m1) or ( N : ab m1) = ( N : b m1) . Since r ∈( N : abm1 ) , so either r ∈( N : a m1) or r ∈( N : b m1) . Then a rm1 ∈ N or b rm1 ∈ N , we get a m ∈ N or b m ∈ N . Hence N is 2-absorbing ∎ References 1. Badawi ,A(2007), On 2-Absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc. 75 , 417–429. 2. Yousefian Darani,A. and Soheilnia,F.(2011), On 2-Absorbing and Weakly 2-Absorbing Submodules , Thai J. Math., 9, 577-584 3. Abdul-Razak,H.M (1999), "Quasi-Prime Modules and Quasi-Prime Submodules", M.Sc.Thesis, College of Education Ibn Al-Haitham, University of Baghdad, 4. Payrovi,Sh and Babaei,S.(2012), On 2-Absorbing Submodules, Algebra Colloq., 19, 913- 920. 5. Moradi,S. and Azizi,A.(2012) , 2-Absorbing and n-Weakly Prime Submodule , Miskolc Mathematical Notes , 13 , 1,pp. 75-86 . 6.El- Bast, Z.A. and Smith, P.F.(1988), Multiplication Modules , Comm. in Algebra, 16(4), 755-779. 7. Moore,M.E. and Smith,S.J.(2002), Prime and Radical Submodules of Modules over Commutative Rings, Comm. Algebra, 30 , 5073-5064. 8. Hojjat Mostafanasab , Ece Yetkin , Unsal Tekir and A. Y. Darani(2015) , On 2-Absorbing Primary Submodules of Modules over Commutative Rings ,arXiv : 1503 . 00308V1 [Math.AC] Mar 2015 . 9. Anderson,E.W. and Fuller,K.R.(1992), "Rings and Categories of Modules", Springer- Verlage, New York . 234 | Mathematics 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 28 (3) 2015 2حول المقاسات الجزئية من النمط المستحوذه على انعام محمد علي ھادي عبدالرحمن عبدهللا حرفش بغداد/جامعة (ابن الھيثم) للعلوم الصرفة كلية التربية /قسم الرياضيات 2015/اب/1،قبل البحث في:2015/أيار/26استلم البحث في: خالصة ال 0 حلقة ابدالية ذات محايد Rلتكن . Rمقاس احادي على الحلقة Mو 1 والتي قدمت من قبل الباحثين 2ھدفنا في ھذا البحث االستمرار في دراسة المقاسات الجزئية من النمط المستحوذة على دارياني وسھيليني . العديد من الخواص والتمييزات لھذا المفھوم قد اعطيت ، المقاسات الجزئية شبه االولية ، 2المقاسات الجزئية االولية ، المقاسات الجزئية المستحوذة على : الكلمات المفتاحية المقاسات الجدائية ، المقاسات الجزئية االبتدائية ، المقاسات الجزئية النقية .