Microsoft Word - 69-85 69 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Synthesis and Characterization of Schiff Base Folic Acid Based Ligand and Its Complexes Ahmad T. Numan Khalid F. Ali Eman I. Al-salihi Dept.of Chemistry/College of Education for Pure Science/ (Ibn –Al Haitham) University of Baghdad Received in: 15 October 2014, Accepted in: 2 February 2015 Abstract D-mannose sugar was used to prepare [benzoic acid 6-formyl-2,2-dimethyl-tetrahydro- furo[3,4-d][1,3]dioxol-4-yl ester] (compound A). The condensation reaction of folic acid with (compound A) resulted in the formation of new ligand [L]. These compounds were characterized by elemental analysis CHN, atomic absorption A.A, (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for electrospray), molar conductance, and melting point. The new tetradentate ligand [L], reacted with two moles of some selected metal ions and two moles of (2-aminophenol), (metal : ligand : 2-aminophenol) at reflux in water medium to give a series of new complexes of the general formula K2[M2(L)(HA)2] where M= Co(II), Ni(II), Cu(II) and Cd(II). These complexes were characterized by elemental analyses [(C.H.N) and (A.A)], (FT- I.R), (U.V-Vis.), molar conductance, 1H,13C-NMR, TLC and magnetic moment measurements. From the above data the proposed geometry about Co(II), Ni(II), Cu(II) and Cd(II), is tetrahedral structure. Biological activity of the lignd and its complexes was carried out on staphylococcus aureu, bacillus subtilis escherichia coli and psedomonas aeruginosa. Key Words: vitamin B9, Cd(+2)complexes infrared spectra , Schiff base, 1H,13C-NMR, TLC measurements. 70 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Introduction Folic acid (pteroylglutamic acid) is heterocyclic compound which is composed of three amino benzoic acid and glutamic -paraThese are the pteridine ring, . [1]components-large sub acid. Glutamic acid is an amino acid that the body can actually synthesize by itself and is ligand -. Mixed[3]cvitamin B [2],9vitamin B vitamin M, found in proteins, also known as complexes, play an important role in numerous chemical systems like water softening, ion . The electrophilic carbon atoms of aldehydes 10]-[4dyingand exchange resin, electroplating, and ketones can be targets of nucleophilic attack by amines. The end result of this reaction is a compound in which the C=O double bond is replaced by a C=N double bond. This type of the synthesis we report In this work, . .[11]compound is known as imines, or Schiff base characterization and biological study of folic acid ligand and (compound A) with mixed ligand, and its complexes with selected transition elements, Scheme (1) Where M=(CoII, CuII, NiII, and CdI I) Scheme (1) Experimental Reagents were purchased from Fluka and Redial – Dehenge Chemical Co. and used without further putrefaction. FT-I.R spectra were recorded using THERMO SCIENTIFIC, ID5, ATR NICOLET, IS5 FT-IR spectrophotometer in the range (4000-400) cm-1. Electronic spectra of the prepared compounds were measured in the region (200-900) nm for 10-3 M solutions in (DMSO) for the ligand and in distilled water for the complexes at 25C using a Shimadzu160 spectrophotometer with 1.0000.001 cm matched quartz cell. Elemental microanalyses were performed on a (C.H.N) analyzer model THERMO SCIENTIFIC FLASH 2000 ORGANIC ELEMENTAL ANALYZER. Metal content of the complexes were determined by atomic absorption (A.A) technique using a Shimadzu AA 680G atomic absorption spectrophotometer. Electrical conductivity measurements of the complexes were recorded at 25C for 10-3 M solutions of the samples in (DMSO) for the ligands and in distilled water for the complexes using a PW 9526 digital conductivity meter. Magnetic measurements were recorded on a Bruker BM6 instrument at 298K following the Farady's method. Most of the measurements were made in Department of Chemistry, Manchester University, U.K Synthesis of [benzoic acid 6-formyl-2,2-dimethyl-tetrahydro-furo[3,4- d][1,3]dioxol-4-yl ester](A) Compound A Fig.(1) , was prepared according to the following steps as in scheme (2). 1) To a 1L of anhydrous acetone acidified with (14 mL) conc. H2SO4 was added (20 g, 184.9 mmol) of D-mannose. The mixture was allowed to stir for 4-5 hrs., and a light yellow 71 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ solution was formed. This was neutralized with anhydrous Na2CO3, and then filtered off. Solution was removed under reduced pressure and a solid was formed. This was re- crystallized from toluene to yield white crystals (20 g, 90% yield), m.p.(120-122 0C). 2) (6 g, 20.5 mmol) of compound (1) dissolved in (40 mL) of pyridine, then (5 mL) of benzoyl chloride was add to the stirred mixture that chilled in an ice bath. After (1 h.) of stirring, the solution was kept away from light for (24 h.) at room temperature and poured into vigorously stirred mixture of ice-water (25 mL). The mixture was stirred for (2 h.). Extracted with chloroform at room temperature (25 0C) by using separating funnel to separate the chloroform layer (its density is higher than the water).Washing the layer with a solution of hydrochloric acid twice, and water separating layer, then washed with distilled water (25 ml), dried by anhydrous magnesium sulfate, stir for a quarter of an hour, filtered and evaporated white precipitate will be formed to give two crops of needles (2.8 g, 46.66 % yield), m.p (108 0C). 3) A solution of (2 g ), (5.2 mmol) from compound 2 and 80% acetic acid (50 mL) was kept at room temperature with stirring for (48 h.). after which time the solution was concentrated, and white precipitate was formed. This was filtered off and then redissolved in butanol, dried and evaporated. A pale yellow product of diol (1.5 g, 75% yield), m.p. (100 0C) was formed. 4) A solution of diol (2 g ), (6.1mmol) dissolved in a small amount of ethanol was added over (30 min) to the solution of sodium periodate (0.24 g ),(1.1 mmol) in H2O (10 mL). The oxidation was allowed to proceed for (1 h.) at (0 0C) and then white product was formed immediately which was allowed to cool for (1 h.) the solid was removed by filteration , and then dried by adding (20 mL) of ethyl acetate to give (0.9 g, 45% yield), m.p. (290 dec. 0C) Scheme (2) Synthesis of the ligand [L] To a solution of folic acid (2 g , 3.61 mmol) in methanol (20 ml)] was added to a mixture of KOH (0.25 g, 4.55 mmole), in (1 ml) of water and (compound A) (1.04 g , 3.56 mmole) dissolved in methanol (5 ml). The reaction mixture was allowed to reflux for (48 hr.), and then stirred at RT for (1 hr.). A mustard solid was formed which collected, by filtration, dried under vacuum for (24 hr.). Yield: (1g), (50 %) of the total compound. m.p (dec.250 C), according to the scheme (٣) . 72 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Scheme (٣) Synthesis of the Complex Synthesis of K2[Co2(L)(HA)2]complex. A solution from [L] (0.172 g , 0.723 mmole) in a hot distilled water (20 ml), mixed with another solution of 2-aminophenol was (0.097 g , 9.7 mmole) in a hot distilled water (5 ml), was added slowly to a stirred solution of manganese(II) chloride tetrahydrate (0.176 g, 0.89 mmole) in (10 ml) distilled water. The resulting mixture was heated at refluxed for (2 hr.), during which, the solution became brown- yellow in color. The solution was concentrated by evaporating ethanol at room temperature and a deep-brown solid was formed. This was collected by filtration, dried under vacuum to give (0.23 g, 76.6 % yield), of the title compound, m.p (dec. 240 ٠C). Synthesis of K2[Ni2(L)(HA)2], K2[Cu2(L)(HA)2] and K2[Cd2(L)(HA)2]Complexes A similar method to that mentioned above was used to prepare the complexes of [L] with (CdII, NiII, and CuII). Fig.(1), and the same quantities of both of the ligand [L] and (2- aminophenole) were used. Table (1) stated the quantities, reaction conditions and physical properties of the prepared compounds. Results and Discussion Synthesis of the ligand[L] The FT-I.R spectra of Fig.(2) show the five steps of forming (compound A). In the spectrum of folic acid Fig.(3) there are two sharp absorption bands at (3414 and 3547 cm-1) due to the stretching vibration of υsy(N-H) and υasy(N-H) of the primary amine (R-NH2) group [12]. In the spectrum of (Compound A) Fig(4) there is a double bonds due to the carbonyl group υ(C=O) stretching vibration at (1728 and 1631.7 cm-1)[13,14] . These bands were disappeared in the spectrum of the ligand [L]. Fig(5). Accompanied by the appearance of a new band at (1689.6 cm-1) range assigned to the υ(C=N) stretching indicates Schiff base reaction [15,16] Table (2). The (U.V-Vis) spectrum for the ligand [L], Fig.(11) exhibits a high intense absorption peak at (215 nm) (46511 cm-1) (max= 700 molar-1.cm-1), (281 nm) (35587 cm-1) (max= 688 molar-1.cm-1) assigned for (*) and a shoulder peak at (346 nm) (28901 cm-1) (max= 182 molar-1.cm-1) assigned to (n*) transition,[17,18] Table (3). Synthesis of the Complexes The reaction of the ligand [L] with (2-aminophenol) and (CoII, NiII, CuII and CdII ) was carried out in methanol under reflux. All complexes are stable in the solid state. The analytical and physical data, Table (1) and spectral data Table (2) are compatible with the suggested structures. In The FT-I.R spectra:- Band at (1689.6 cm-1) that assigned to the υ(C=N) stretching [15,16] of the spectrum of the ligand [L], Fig.(5) is shifted to lower frequency about (123 cm-1) range compared with the spectra of the Co+2, Ni+2, Cu+2, and Cd+2 complexes due 73 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ to the forming ring system with the metal ions and delocalization of electron π density. The spectrum of [L] Fig.(5), shows sharp band at (1724 cm-1) due to the υ(C=O) stretching [13,14] this band is shifted to lower frequency because of the coordination with the metal ions. Metal oxygen and metal nitrogen band further confirmed by the presence of peaks at (582-584 cm-1) and (425-480 cm-1) range were assigned to υ(M-O), and υ(M-N) , stretches for the Ni+2, Co+2, Cu+2 and Cd+2 complexes, respectively. Table (2). The (U.V-Vis.) Spectra:- Figs.(12), (13), (14) and (15) display the (U.V- Vis) spectra of the Co+2, Ni+2, Cu+2, and Cd+2 complexes, respectively. Table (3) summarized the absorption peaks of the complexes In each case the spectrum showed two intense peaks in the (U.V) region at (283-247 nm) assigned to the ligand field [19]. The spectra of (Co+2), (Ni+2) and (Cu+2) complexes Figs.(12,13 and 14) exhibited strong peaks at visible region at: (500 nm) (20000 cm-1) (max = 30 molar-1. cm-1), (490 nm) (20408 cm-1), (max= 550 molar-1. cm-1) and (530 nm) (18867 cm-1), (max =100 molar-1. cm-1) assigned to (4A2→4T1(f)), (T1→1T2(P)), (2T2→T٧) (d-d) transitions respectively suggesting tetrahedral structures [20] around (Co+2), (Ni+2) and (Cu+2). The strong peak at visible region (410 nm) (24390 cm-1) (max = 600 molar-1. cm-1) in the Cd- complex is assigned to charge transfer transition confirming tetrahedral structure around CdII ion[21] Fig.(15). The molar conductance: - The observed molar conductance value measured in (DMSO) (10-3 M solution) at room temperature lies in the (70-80 S. cm2. mole-1) range, indicating their electrolytic nature with (1:2) ratio of the complexes [22,23]. Table (3). The magnetic moment The magnetic moments values of the K2[Ni2(L)(HA)2] complexes are shown in Table (3-30). The value of µ eff lies in (2.83 B. M.) of the complexes indicating paramagnetic properties and tetrahedral geometry around (Ni+2) ion. [24]. 1H-NMR Spectrum of K2[Cd2(L)(HA)2] Complex The 1H-NMR spectrum for K2[Cd2(L)(HA)2] complex in DMSO-d6 Fig.(1٦) showed peak at (δ 1.45 ppm-CH)(6H) attributed to two methyl groups. The quartarete signal obtained at (δ 2.10 ppm-CH)(4H) due to methylene CH2 group. The doublet signal obtained at (δ 2.30 ppm- CH)(3H) due to methylene CH2 group is shifted to low field as a result of the effect of C=O group. Another doublet signal obtained at (δ 4.40 ppm-CH)(1H) is due to methylene CH2 group is shifted to low field because of the cycle effect from one side and N-H group effect of the other side. A signal at (δ 4.0 ppm)(1H) assigned to (NH) aromatic. The triplet signal at (δ 4.5 ppm-CH)(3H) assigned to methane (CH) group. This group has shifted to low field as a result of the effect of (NH sec.) amide group. Two triplet signals assigned to CH group of tetrahydrofuran, the first at (δ 4.2 ppm-CH)(3H), and the second at (δ 6.7 ppm-CH)(3H) is shifted to low field-high frequency as a consequence of the effect of C-O group. Another two triplet signals observed, due to the 1,3-dioxoan. The first at (δ 4.3 ppm-CH)(4H). The second signal at (δ 4.9 ppm-CH)(4H) is shifted to low field–high frequency because of the effect of C-O group. The doublet signal at (7.6 ppm-CH)(2H) due to aldimine group. A single signal at (δ 8.2 ppm-CH)(1H) due to (-CH=N) pyrazine group. A single signal at (δ 8.3 ppm- NH)(1H) due to (NH) amide group. And multiple group of resonance signals at (δ 7.2-8.8 ppm-CH) range due to benzene ring. The NMR spectral data of K2[Cd2(L)HA2] complex was compared with the spectral data for the ligand according to chemoffes program..Table (4) summarized the details of the chemical shifts. 13C-NMR Spectrum of K2[Cd2(L)(HA)2] Complex The 13C-NMR spectrum of the K2[Cd2(L)(HA)2] complex in DMSO-d6 solvent is shown in Fig.(١٧). The characterized resonances are listed in Table (5). 74 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ E.S-mass Spectrum of (Compound A) The E.S-mass (+) spectrum of compound (A), Fig.(١٨) shows the parent ion peak at (M/Z=292.09), which corresponds to (M)+, other fragments are summarized in Table (6). Peak detected at [M/Z=315.1 is assigned for (M+Na)+ E.S-mass Spectrum of ligand [L] The E.S-mass (+) spectrum of derivative ligand [L]. Fig.(١٩), shows the parent ion peak at (M/Z=791.14), which corresponds to (M) +, other fragments are summarized in Table (7). Peak detected at [M/Z=814.5 is assigned for (M+Na)+ Biological Activity for the ligand (L] and its Complexes The biological activity for the ligand (L] and its complexes were studied using inhibition method .[25-28] Four types of pathogenic bacteria two were gram positive which are Staphylococcus aureuand Bacillus subtilis, the second two were gram negative which are Escherichiacoli and Psedomonasaeruginosa. The ligand (L], did not show any inhibition diameter against any type of the four bacterial, neither after 24 hrs. nor after 48 hrs., Table (8). However complexes show more activity than the ligand under similar experimental conditions with the same kinds of bacteria. Thin-Layer Chromatography (TLC) Measurement The T.L.C technique measurement for the derivative ligand (L] was performed with Co+2, Ni+2, Cu+2, and Cd+2 complexes and resulted the appearance of a new spots in different positions belong to Co+2, Ni+2, Cu+2, and Cd+2 ion complexes this spots position are differs from the position of the starting materials spots about (4.8 mm) range indicating the forming of new compounds. The Proposed Molecular Structure The proposed molecular structure of K2[Ni2(L)(HA)2] complex according to chemoffice program displays the band angles and band length Table (9) and the proposed geometrical shape of the complex is tetrahedral Fig.(٢٠). Acknowledgment I am very grateful to Professor Richard E. P. Winpenny and Professor Mohamed Jaber AL- Jeboori for helping me with respect to the required measurements for the compounds. References 1- Bailey, LB.; Gregory, JFr.; Bowman , DC B. and Russell, R. (2006) . International Life Sciences Institute. , Washington,folate present knowledge in Natrition. 1:278-301. 2- Allen, L. H. (2004)."Folate and vitamin B12 status in the Americas." Nutrition Reviews 62, no. 6, Pt. 229–33. 3- Bailey, L. B. , (2004)"Folate and vitamin B12 recommended intakes and status in the United States,Nurition62, 6, Pt. 2 S14–20. 4- Mrinalinil, L. and Manihar, K.A.S., (2012). Res, J. Chem. Sci., 2(1), 45. 5- Girgaonkar, V.M. and Shirodkar, G.S., (2011).Res, J. Recent Sci., , 1(ISC), 110. 75 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ 6- Agarwal, K.R.; Sharma, D. and Himanshu, A.(2006), Bioinorganic Chemistry and Applications, 1-9. 7- Gupta, K.Y.; Agarwal, C.S.; Madnawat P.S. and Narain R.., (2012), Res, J. Chem. Sci., 2(4), 68. 8- Sankhala, K. and Chaturvedi, A., (2012). Res . J. Chem. Sci., 2(5), 57. 9- Mohamed, H.G. and Hander, B., (2012),Res ,J. Chem. Sci.,. 2(3), 12. 10- ., Rajasekar, K.; Ramch, T. Ramoorthy and Paulraj A., (2012)., Res. J. of Pharmaceutical Sci, and 1(4), 22. 11- The Gold Book "Schiff base", (2006). IUPAC, Compendium of Chemical Te rminology, 2nd ed. (1997). Online corrected version: 12- Rostkowska, H.; Nowak, M.J.; Lapinski, L.; Bertner. M.; Kulikowski, T.; Les A., and Adamowicz, L., (1993). Spectro chim. Acta, 49A, 551. 13- Silverschtien, R.M., Bassler and Morril (1981). "Spectrophotometers Indentification of Organic Compounds", Translated by Ali Hussain And Suphi Al-Azawi, 14- Ivanov , I. and Nikolova, S., (2008),Molbank,. M 565. 15- Nakamoto, K., (1997). "Infrared and Raman Spectra of Inorganic and Coordination Compounds", , Parts A and B, 5th ed. John Wiley Sons, New York, 16- Panda, S.; Mishra, R. J.; Panda, K.A. and Satpathyl ,C.K., (1989). Ind. Chem. Soc., , 66, 472. 17- Anuradha, K. and Rajarel, R., (2011). Internatiol Journal of Pharmacy & Technology, 2, 2217. 18- Colchoubian ,H.; Waltz, WL. and Quail, JW., (1999) Can .J. Chem., 37-77. 19- Jakels, S.C.; Ciavola, J.; Carter, R.C.; Cheek, P.L. and Pascarlli T.D. , (1983), Inorg. Chem.,..22, 3956. 20- Lever, A.B.P., (1984). "Inorganic Electronic Spectroscopy" New York, 21- Rao, P.V. and Rao, N.R., (1988). Ind.J. of Chem., 27A, 73. 2nd. Ed., 22- Kettle, S. F. A.,. (1975). ‘’coordination compounds Thomas Nelson and son, lndon, P 165. 23- Quaylian, J. V.; Fjita, J.; Franz, G., (1965)J. Am chem. Soc.., 81, P.3770. 24- Huheey, J. E., (1994). “Inorganic Chemistry: Principles of Structure and Reactivity”, Harper International Edition, Harper and Row Publishers, New York 25- Anacona, J.R., (2006). J. Coord. Chem., 54, 355– 365. 76 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ 26- Petra, D.; Tatjano, Z. and Boriset P.. (2005) J. inorg. Bio. chemistry, 2, 432. 27- Tauber, S. C. and R. Nau, (2008) “Immunomodulatory properties of antibiotics”, Current molecular pharmacology , 1, 68. 28- Sultana, N. and Arayne M. S., (2007). Pakistan, J. pharma. Sci., 4, 305 Table No. (1): The physical properties of [L]and its complexes. Compound M.W Yield % w.t of metal Ion= mmole m.pC Color Found, (Cal.) % C H N K metal (Compound A) 292.28 45 - 290 Dec. Yellow And white (61.64) 60.41 (5.52) 5.00 (32.84) 32.11 - - [L] 791.85 50 - 250 Deep Mustered (51.47) 50.70 (3.82) 3.11 (12.40) 11.20 (9.89) 9.00 - K2 [Co2(L) (HA)2] 1083.83 60 0.756 270 Dec. Pale Brown (50.98) 50.33 (3.72) 3.21 (11.63) 11.03 (3.61) 3.11 (10.88) 9.01 K2 [Cu2(L) (HA)2] 1093.05 70 0.757 240 Dec. Pale-Brown (50.55) 43.88 (3.69) 3.01 (11.53) 9.78 (3.58) 3.00 (11.36) 9.55 K2 [Ni2(L) (HA)2] 1083.35 63 0.753 230 Dec. Green (51.00) 48.17 (3.72) 2.52 (11.64) 9.01 (3.61) 2.01 (10.48) 9.00 K2 [Cd2(L)(HA)2] 1190.78 76 0.755 260 Dec. Brown (46.40) 44.90 (3.39) 2.42 (10.59) 8.00 (3.28) 2.60 (18.88) 16.65 (Calcu.): calculated (dec.): decomposed Table No. (2): The FT-I.R spectral data(wave number)cm-1 of [L]and its complexes Compound ( N-H) primary R-NH2 (N-H) Secondary R2-NH (O- H) (COO-)as (COO-) s (C=N)imine (CH3) (C-N)aroma (C-N)aliph. M- O M- N [compound A] [L] - 3344(br) - 1724(sh) 1558(sh) 1444.6(sh) 1689.6(sh) 1350(sh) 1396(sh) 1288(sh) - 2-aminophenole 3475(sh) 3305(sh) - 3051(br) - - - - - 1217(sh) - K2 [Co2(L)(HA)2] - 3332.9(sh) - 1602.8(sh) 1514(sh) 1404(sh) 1573.9(sh) 1320(sh) 1317(sh) 1273(sh) 584(sh) 425(sh) K2 [Ni2(L)(HA)2] - 3٤10(sh) - 1602.8(sh) 1514(sh) 1404(br) 1573.9(sh) 1300(sh) 1317(sh) 1273(sh) 584(sh) 430(sh) K2 [Cu2(L)(HA)2] - 3319(sh) - 1593(sh) 1539(br) 1396(s) 1577.7(sh) 1325(sh) 1350(w) 1276.8(br) 582.5(sh) 480(sh) K2 [Cd2(L)(HA)2] - 3332.9(br) - 1604.7(sh) 1541(br) 1409.9(br) 1573.9(s) 1330(sh) 1349(w) 1273(sh) 584(sh) 460(sh) S: strong vs: very strong m: medium w: weak s,sh: strong sharp br: broad o.o.p: out of plane aliph: ali phatic arom: aromatic : stretching : bending 77 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Table No. (3): Electronic spectral data and conductance measurements of the ligand and complexes. Compound  nm  cm-1 max molar-1. cm-1 Assignment M.C*(ohm1.c m2.mole-1) Geometrical shape Solvent Ratio [L] 215 46511 700 * - - - - 281 35587 688 n * 346 28901 182 n * K2[Co2(L)(HA)2] ٣٥٠ ٣٥٣٣٥ ٢٨٣ Ligand field 77 Tetrahedral DMSO 1:2 418 23923 401 4A2→ 4T1(P) 436 22935 416 4A2→ 4T1(P) 500 20000 30 4A2→ 4T1(F) K2[Ni2(L)(HA)2] 247 40485 2421 Ligand field 76 Tetrahedral DMSO 1:2 418 23923 457 3T1→ 1T2 436 22935 474 3T1→ 1T2(P) 490 20408 550 3T1→ 1T2(P) K2[Cu2(L)(HA)2] 254 39370 2452 Ligand field 80 Tetrahedral DMSO 1:2 420 238092 400 2T2→ 2T6 437 22883 433 2T2→ 2T6 530 18867 100 2T2→ 2T7 K2[Cd2(L)(HA)2] ٥٥ ٣٧٠٣٧ ٢٧٠ Ligand field 70 Tetrahedral DMSO 1:2 410 24390 600 Ch.T Table No. (4):1H-NMR Spectral data of K2[Cd2(L)(HA)2] Group H δ ppm Methane C(37)-H 4.5 1,3-dioxolan C(9,10)-H 4.3-4.9 Tetrahydrofuran C(11,8)-H 4.2,6.7 1-benzene C(1,2,3,4…….)-H 7.2-8.8 Aldimine C(7)-H 7.6 2-pyrazine C(26)-H 8.2 Methylene C(38,39,28)-H2 2.10, 2.30, 4.40 Methyl C(13,14)-H3 1.45 Aromatic C-NH C(23)-NH 4.0 Amide C(39)-NH 8.3 DMSO solvent 2.5 78 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Table No. (5):13C-NMR Spectral data of K2[Cd2(L)(HA)2] Table No. (6):E.S-mass spectral data of (compound A). Fragment Ions Mass/charge (m/z) Relative abundance [M]+ 292.09 30 [M-{COH }]+ 264.2 15 [M-{ COH-CH2 }] + 250.2 55 [M-{ COH-CH2-CH2}] + 236.0 32 [M-{ COH-CH2-CH2- C5H7O3}] + 121.0 62 Group C13 δ ppm Aliphatic C (١٢) 1٢٥ Pyrimidine C (25,22) 17٥,١٧٧ Benzen C (1,6,19,29……) 148,120,147,132,131 Pyrazine C (23,27,24) 145, 149,150, 146 Amide C(35) 169 Carboxyl C(36,40) 177,167 DMSO solvent 29 Imine CH (7) 164 Benzen CH (2,5,15,17…..) 123,113,127,109,116,126,129,132,104 Tetrahydrofuran CH (11,10,9,8) 78,92,73,95 Aliphatic CH (37) 57 Pyrazine CH (26) 144 Aliphatic CH2 (28,38,39) 24,26 Aliphatic CH3 (13,14) 23 79 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Table No. (7):E.S-mass spectral data of [L]. Fragmentations Mass/chr-ge (m/z) Relative abundance [M]+ 791.14 22 [M-{C7H4O2 }] + 671.11 20 [M-{C7H4O2-C2HKO2 }] + 575.2 18 [M-{C7H4O2-C2HKO2 –C6H8O3}] + 447.0 25 [M-{C7H4O2-C2HKO2 –C6H8O3-C2H3N}] + 406.08 21 [M-{C7H4O2-C2HKO2 –C6H8O3-C2H3N -C5N4O}] + 274.0 8 [M-{C7H4O2-C2HKO2 –C6H8O3-C2H3N -C5N4O –C2H5N}] + 231.0 32 [M-{C7H4O2-C2HKO2 –C6H8O3-C2H3N -C5N4O –C2H5N-C5H2 }] + 169.0 40 M-{C7H4O2-C2HKO2 –C6H8O3-C2H3N -C5N4O –C2H5N-C5H2-C2H3NO }] + 111.9 19 Table No. (8):Inhibition circle diameter in millimeter for(compoundA),ligand[L] and complexes after 24 hrs.,and after 48 hrs. Compounds Staphylococcus aureu Pseudomonas aeruginosa Bacillus subtilis Escherichia coli 24 hrs. 48 hrs. 24 hrs. 48 hrs. 24 hrs. 48 hrs. 24 hrs. 48 hrs. (Compound A) and [L] 0 0 0 0 0 0 0 0 K2[Co2(L(3))(HA)2] 20 22 ٠ ٠ 18 17 18 18 K2[Ni2(L(3))(HA)2] 20 19 12 12 17 18 10 10 K2[Cu2(L(3))(HA)2] 15 17 ٠ 10 15 15 17 16 K2[Cd2(L(3))(HA)2] 20 24 15 16 18 19 14 13 Table No.(9):The propsed bond lengths and bond angles of K2[Cd2(L)(H A)2]complex. Type of bond Bond length (A˚) Type of angles Bond length (A˚) Ni-O 1.790 O-Ni-O 180.000 Ni-N 4.434 O-Ni-N 77.183 N-H 1.050 Ni-O-C 109.500 C-H 1.100 H-N-Ni 126.702 C-N 1.260 N-Ni-N 158.914 C-C 1.395 Ni-N-C 52.614 C-O 1.208 (A˚)= Angstrom,, (˚)= degree 80 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Where M=(CoII, CuII, NiII, and CdI I) Figure No. (1): formation of complexes Figure No.(2) : The I.R. spectra of the four steps of forming (compound A) 81 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ 82 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ 83 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Figure No. (١٦): 1H-NMR Spectral data of K2[Cd2(L)(HA)2]complex Figure No. (١٧): 13C-NMR of K2[Cd2(L)(HA)2]complex. 84 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ Figure No. (١٨): E.S-mass spectrum of the starting material (compound A) Figure No. (١٩): E.S-mass spectrum of derivative ligand [L]. Figure No. (2٠) :The proposed molecular structure of K2[Ni2(L)(HA)2] complex 85 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 ٢( ) 201٥ قاعدة شف لحامض الفوليك كليكاند ومعقداته تحضير وتشخيص احمد ثابت نعمان علي خالد فھد الكريمايمان ابراھيم عبد /جامعة بغداد )ابن الھيثم (قسم الكيمياء/ كلية التربية للعلوم الصرفة ٢٠١٥شباط ٢قبل البحث في ,٢٠١٤تشرين االول ١٥استلم البحث في: الخالصة سلسلة مع ف من حامض الفوليك بطريقة قاعدة ش امشتق انداوليككمادة اولية يعتبر مركبتضمن البحث تحضير فاعل باشكال جديدة من المعقدات (المتشكلة من مزيج من الليكاندات) بوجود ھيدروكسيد البوتاسيوم والميثانول وسطا للت ز ثم يذاب حيث تم اضافة سكر الدي مانوس الى لتر واحد من االسيتون المحمض بحامض الكبريتيك المركرباعية السن للحصول على الدايول الذي %٨٠البنزوايل كلورايد وحامض الخليك المخفف الراسب المتكون منه بالبريدين ويضاف له ى ليكند مشتق جديد وھذا بدوره يفاعل مع مشتق الفوليك للحصول عل بالشكل االلديھايدييقطع بالصوديوم ايودايد للحصول عليه طيف الكتلة ودرجة واالشعة فوق البنفسجية و تم تشخيص الليكاندات بوساطة التحليل الدقيق للعناصر واطياف االشعة تحت الحمراءو ة الليكاندات كما تضمن البحث تحضير سلسلة جديدة من المعقدات من خالل مفاعل قياس كروماتوكرافيا الطبقة الرقيقةاالنصھار و طة اسقدات اعاله بو) وشخصت المعІІ( ) والكادميومІІ( ) والكوبلتІІ( ) والنيكلІІ( النحاس -: اعاله مع بعض امالح العناصر مثل واالمتصاص الذري واطياف االشعة تحت الحمراء واالشعة ١٣والرنين النووي المغناطيسي والكاربون التحليل الدقيق للعناصر ف الكتلة ودرجة فوق البنفسجية والمرئية وقياس التوصيلية الكھربائية اضافة الى دراسة الحساسية المغناطيسية للمركبات وطي للمجموعة االمينية ابينت اطياف االشعة تحت الحمراء فقدانمع الفعالية البايولوجية وقياس كروماتوكرافيا الطبقة الرقيقة واالنصھار لفوليك مع واالستعاضة عنھا باالصرة المزدوجة بين النتروجين والكاربون دليال على حدوث تفاعل قاعدة شف عند تناسق مشتق ا شعة تحت الحمراء كما بينت اطياف االاربونيلية قابلة للتفاعل مع المجموعة االمينية لمشتق الفوليك. ليكاندات محتوية على مجموعة ك ضة بمجاميع فعالة سلوك الليكاند عند تناسقه مع بعض العناصر الفلزية وھذا السلوك يعود تفسيره الى التناسق مع الليكاندات المعو بشحنتين كل من الكوبلت والنيكل والنحاس والكادميوم فانه يعطي مركبات مشحونةعند تناسق الليكند مع - :اتي متنوعة وكما ي ع الفضائي لليكاندات مع اطياف االشعة فوق البنفسجية وقياسات الحساسية المغناطيسية للمعقدات لدراسة التوزي عملتاستسالبتين ولقد ) ІІ( ) والنيكلІІت (دم فان الشكل الفضائي المتوقع لمعقدات الكوبلايونات الفلزات واالستدالل على الشكل الفضائي لھا من خالل ما تق (ھرم رباعي السطوح) السطوح ة) ھي رباعيІІ( ) والنحاسІІ( والكادميوم لنووي المغناطيس المنطقة الحمراء لمعقدات الكادميوم ، قواعد شف ، تقنية الطبقة الرقيقة ، النين ا فيتامين بي، :الكلمات المفتاحية ١٣للبروتون واحد والكاربون