Conseguences of soil crude oil pollution on some wood properties of olive trees Chemistry | 146 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Formation of New Macrocyclic Complexes with Bis (Dithiocarbamate) Ligand;Preparation, Structural Characterisation and Bacterial Activity Hasan A. Hasan Enaam I. Yousif Dept. of Chemistry/ College of Education for Pure Science (Ibn Al-Haitham)/ University of Baghdad Received in:21/February/2016,Accepted in:4/April/2016 Abstract The synthesis and characterisation of new macrocyclic binuclear metal(II) complexes derived from dithiocarbamate (DTC) ligand are reported. The reaction of a bis-secondary amine, CS2 and KOH resulted in the formation of the free ligand. Two approaches were implemented to synthesis the macrocyclic bis(dithiocarbamate) complexes; (i) from the reaction of the free ligand with a metal ion, and (ii) via a one-pot reaction. In the free ligand approach, complexes were obtained by the reaction of dithiocarbamate salt with the metal ions; Co II , Zn II and Cd II . However, the one-pot reaction is based on the mixing of the bis- secondary amine, CS2, KOH and metal(II) chloride. Physico-chemical analyses were implemented to characterise the ligand and its complexes. These include; elemental analysis, thermal analysis, FTIR, UV-Vis, mass spectroscopy, magnetic susceptibility, conductance, melting points and 1 H, 13 C- NMR spectroscopy. These studies indicated the formation of binuclear macrocyclic complexes of the general formula [M(L)]2 (M= Co II , Zn II and Cd II ), in which thier geometries about metal centers are tetrahedral. Antibacterial activity of the metal complexes indicated that they have more activity against investigated bacterial strains, compared to the free ligand. Keywords: Dithiocarbamate complexes; Structural studies; Thermal properties; Bacterial activity. Chemistry | 147 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 1.Introduction Dithiocarbamates (DTCs) are organic species that played a key role in the development of chemistry, in particular coordination chemistry. This is based on their strongly chelating ability towards metal ions [1,2]. Dithiocarbamates (DTCs) are capable to interact with transition metals and representative elements, which allowed them to be useful ligands in both inorganic and bioinorganic chemistry. This is based on the influence of the anionic CS2¯ moiety that has a variety of binding modes; monodentate, bidentate or bridging, upon complexation [3-5]. Dithiocarbamates are very interesting ligands that have the capacity to allowing the metal ion to implement its most preferable geometry in different oxidation states [6]. The development of dithiocarbamates and their complexes are due to their role in numerous applications including; medicine [7], materials science [8], environmental applications [9] and in the industry [10]. Further, the influence of dithiocarbamates toward some tumours, fungi, bacteria, and other microorganisms are also investigated [11, 12]. In this work, we report the formation, structural characterisation and bacterial activity of new DTC ligand and its macrocyclic metal-based complexes. 2. Experimental 2.1. Materials The reagents used without further purification and were available commercially, solvents were distilled with appropriate drying agents, immediately before use. 2.2. Physical measurements Determination of (C, H, N and S) content for prepared compounds were carried out using Heraeus instrument (Vario EL) and Euro EA 3000. Melting points were measured on a Buchi SMP-20 capillary melting point apparatus and are uncorrected. Infrared spectra were obtained as KBr discs using a Shimadzu 8300s FT-IR spectrophotometer in the range 4000- 400 cm -1 and as CsI discs in the range 400-200 cm -1 . Electronic spectra between 200-1100 nm with solutions of dimethyl sulfoxide (10 -3 )M (DMSO) solvent at 25 °C were measured using a Perkin-Elmer spectrophotometer. Thermogravimetric analysis were carried out using an STA PT-1000 Linseis company / Germany. Mass spectra were obtained by positive electrospray mass spectroscopy technique (ESMS). NMR spectra ( 1 H, 13 C- NMR) were acquired in DMSO-d6 solutions using a Brucker-300 and a JEOL-400MHz for 1 H-NMR and 75 and 100.61 MHz for 13 C-NMR, respectively with tetramethylsilane (TMS) as an internal reference for 1 H NMR. Metal content were measured using a Shimadzu (A.A) 680 G atomic absorption spectrophotometer. DMSO solutions used to measure conductivity with a Jenway 4071 digital conductivity meter at room temperature. Magnetic susceptibility balance (Sherwood Scientific) was used to obtain magnetic moments. 3. Synthesis 3.1. Synthesis of the bis-amine precursor The free bis-amine precursor was prepared using a standard method reported in [13, 14], by two steps, and as follows : 3.1.1. Preparation of N,N’-(biphenyl-4,4'-diyl)bis(2-chloroacetamide) Potassium hydroxide (0.78g, 13.24mmol) in H2O (20mL) was added with stirring to a mixture of benzidine (1.22g, 6.62mmol) dissolved in CHCl3 (50mL). To the above mixture, chloroacetyl chloride (1.49g, 13.24mmol) dissolved in CHCl3 (50mL) was added dropwise with stirring. A white precipitate formed after 15 minutes, filtered off and then washed with Et2O (20mL). The mixture was air-dried, white product was collected m.p=205-207 ºC. Yield: 2.1g, (94%). FTIR (cm -1 ), 3296 ν(-CON-H), 1685 ν(C=O), 1587 δ(N-H), 1493 νarom(C=C). Chemistry | 148 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 The electrospray (+) mass spectrum of the N,N'-(biphenyl-4,4'-diyl)bis(2-chloroacetamide) showed the parent ion peak at m/z = 337.6 (M) + (10%) for C16H14Cl2N2O2; requires =337.20 and the following fragments; 245.7 (11%) and 154.4 (80%) correspond to [M-(NH-CO- CH2Cl)] + and [M-(NH-CO-CH2Cl)+(NH-CO-CH2Cl)] + , respectively, Figure (1). NMR data in (ppm), δH(400 MHz, DMSO-d6): 10.351 (2H, s, N-H), 7.56-7.64 (8H, m, C4, 4`,6, 6`-H) (C5, 5`,7, 7`-H) Ar-H,4.24(4H, s, CH2Cl, (C1, 1`-H)), Figure (2). δC(100.63MHz, DMSO-d6): 41.57 (CH2Cl, 2C1), 119.09 and 126.60 (Ar-C4,5,6,7), 164.59 (2C2=O), Figure (3). 3.1.2. Preparation of bis-amine N,N'-(1,4-phenylene)bis(2-(benzylamino) acetamide) An excess of benzylamine (5.38g, 50.29mmol) was heated to 40 ºC, then it was added portion-wise with stirring (4.24g, 12.57mmol) of N,N’-(biphenyl-4,4'-diyl)bis(2- chloroacetamide). The mixture stirred for 12 h at 40 ºC, then H2O (200mL) added. The product extracted into CH2Cl2 (4 x 50 mL), washed with H2O (200mL) and dried over K2CO3. A light yellow precipitate was obtained by removing the solvent under reduced pressure, Yield: 3.89g, (64%). The IR spectrum showed similar bands to that in the first precursor at 3309 ν(-CON-H), 3157 ν(N-H), 1660 ν(C=O), 1603 δ(N-H) and 1556 νarom(C=C) cm -1 . The electrospray (+) mass spectrum showed the parent ion peak at m/z = 480.3 (M+2H) + (9%) for C22H30N4O2 as doubly charged species, requires =478.58, Figure (4). NMR data (ppm), δH(400 MHz, DMSO-d6): 2.92(2H, s, N-H), 3.29, 3.33 (4H, d, JHH=17.8Hz, (CA,A`-H)), 3.61(4H, d, JHH=16Hz, (C1,1`-H)), 7.33, 7.65 (CC, C`, D, D`, E, E`, F, F`, G, G`-H) (8H, d, JHH=2.1Hz), 9.81 (2H, s, amidic-H), Figure (5). δC (100.63 MHz, DMSO-d6): 51.63 (CA, A`), 52.18 (C1, 1`), 114.03 (C 4, 4`, 6, 6`), 119.35 (C 5, 5`, 7, 7`), 135.85; 137.37 (CC, C`, D, D`, E, E`, F, F`, G, G`), 169.35,169.61 (C=O)(C3,3`), Figure (6). 3.2. Synthesis of free ligand Standard method used in the synthesis of dithiocarbamte compounds [15] was used to prepare the free ligand potassium 2,2'-(biphenyl-4,4'-diylbis(azanediyl))bis(2-oxoethane-2,1- diyl) bis(benzylcarbamodithioate) (L) and as follow: An excess of KOH (0.140g, 2.50mmol, 4eq) dissolved in H2O (2mL) was added to a solution of bis-amine (N, N'-(1,4-phenylene) bis(2-(benzylamino) acetamide) (0.30g, 0.626mmol) in 10 mL of a mixture of MeCN: H2O (9:1). The mixture was stirred in an ice bath, and then a solution of carbon disulfide (0.142g, 1.88mmol, 3 eq) added dropwise and stirred. Then the mixture stirred for 2 h at 0 °C, the potassium dithiocarbamate salt was obtained as a yellow solid, m.p=170-172 ºC. Yield: 0.29g, (65.90 %). Bands at 1500 ν(N-CS2) and 1109, 999 attributed to asymmetric and symmetric stretching of (CS2) (see Table (2)), Figure (7).The electrospray (+) mass spectrum of the L showed the parent ion peak at m/z =707.3 (M) + (18%) for C32H28K2N4O2S4; requires =707.5, Figure (8).NMR data (ppm), δH(300 MHz, DMSO-d6): 3.32 (4H, s, (CA,A`-H)), 4.40 (4H, s, (C2,2`-H)), 7.42,7.44 (4H, d, JHH=5.7 Hz, (CC, C`, G, G`-H)), 7.46 (4H, t, JHH=12 Hz, (C E, E `-H)), 7.58 (4H, t, JHH=5.1 Hz, (C F, F`, G, G`-H)), 7.61, 7.64 (4H, d, JHH=6.3 Hz, (C 5, 5`, 7, 7`-H)), 7.71, 7.73 (4H, d, JHH=5.4 Hz, (C 6, 6`, 8, 8`-H)) (Ar-H), 10.74 (2H, s, amidic-H), Figure (9).δC(75 MHz, DMSO-d6): 49.47 (CA,A`), 49.84 (C2,2`), 118.83, 126.05, 127.37, 127.76, 128.42 (C 5, 5`,6, 6`, 7, 7`, 8, 8`), (CC, C`, D, D`, E, E`, F, F`, G, G`), 170.41 (C=O) (C3,3`), 191.72 (C=S) (C1,1`) , Figure (10). Chemistry | 149 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 3.3. General method for synthesis of macrocyclic complexes A standard methods reported in [16, 17] were used to synthesise the bimetallic macrocyclic dithiocarbamate-based complexes using two approaches; (i) reaction of the free ligand with the metal ion, and (ii) through a one-pot reaction. 3.3.1 .Synthesis of macrocyclic complexes from free ligand Macrocyclic complexes were synthesised by the reaction of 1equivalent of potassium dithiocarbamate salt, dissolved in 10mL of MeCN/H2O (9:1) with 1 equivalent of the metal salt; Co II , Zn II and Cd II . The solution was allowed to stir overnight, distilled water was added, if necessary, to precipitate the product. The solid resulted was filtered off then washed with methanol to give the macrocyclic complexes. Elemental analysis data, colors and yields for the complexes are given in Table (1). 3.3.2. Synthesis of macrocyclic complexes via a one-pot reaction An excess of KOH (3eq). Carbon disulfide (2.8 equivalents) was added to a solution of the secondary amine in MeCN/H2O mixture (9:1) with stirring, and the mixture was stirred for 10 minutes to obtain the potassium dithiocarbamate salt. The complexes were synthesised in situ (ligand salt was not isolated) by the adding one equivalent of the metal ion. After the mixture stirring overnight, water was added for precipitation, the precipitate filtered and dried to give the macrocyclic complex. Analytical data are similar to the complexes obtained from the free ligand approach. 4. Results and discussion 4.1. Synthesis The free ligand was obtained from the reaction of carbon disulfide and the secondary amine in the presence of KOH (see Scheme (1)). The formation of dithiocarbamate macrocyclic complexes was achieved either through a one-pot approach or from the mixing of the isolated ligand with metal ion, Scheme (2). The ligand and its complexes are isolated in a moderate yield and found to be air stable. The ligand is soluble in most organic solvents. However, its complexes found to be soluble only in DMSO and DMF. They are partially soluble in other common organic solvents. Ligand and its complexes were characterised as required by a range of techniques including; thermal analysis, elemental analysis, UV-Vis, FTIR, mass and 1 H, 13 C-NMR spectroscopy, magnetic susceptibility, conductance and melting point measurement. Chemistry | 150 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 RNH2 O NH O HN NH HN R R - - - - - -- - O Cl NH O Cl HN - - - - - - - - KOH, CS2 CHCl3 H2C A Benzyl DC B F O Cl Cl K 2 O NH O HN S S S S N N R R - -- - - - - - - H2N NH2 K G + stirring Where : R stirring at 0 °C for 2 h 1 2 3 4 6 5 7 8 8 7 5 4 6 3 2 1 1 2 3 4 6 5 7 8 8 5 7 4 6 3 2 1 E 1 2 3 4 5 7 6 8 9 9 6 8 5 7 4 3 2 1 Scheme (1) O NH O HN N H HN R R KOH, CS2 O H N S SN R O HN S SN R O NH S S N R O N H S S N R M M K O H , C S 2 , M C l 2 1 K O NH O HN SS S S N N R R 2 M C l2 K Where: R = stirring at 0 °C for 2 h Stirring for 18h M = Co II , Zn II and Cd II benzyl St ir ri ng fo r 18 h M eC N /H 2 O M eC N /H 2 O Scheme (2) Chemistry | 151 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 4.2. FTIR and NMR spectra The FTIR spectrum of L shows characteristic band around 3230cm -1 due to ν(N–H) stretching. Bands due to ν(C=O) amide, νas(CS2) and νs(CS2) functional groups are detected at 1658 , 1009 and 999 cm -1 , respectively (see Table (2) Figure (7). The FTIR spectra of the dinuclear-macrocyclic complexes indicated the formation of the dithiocarbamate functions and their coordination to the metal ions. Bands detected around 1441-1495 cm -1 are attribute to the stretching of the C-N-S bonds, C-N single bonds at 1240-1244 cm -1 , suggesting a incomplete delocalization of π-electron density within the dithiocarbamate functions [18]. For the CS2 groups, bands at 1115-1119 cm -1 and 970-980 cm -1 are assigned to νas(CS2) and νs(CS2), respectively, which is characteristic to aniso-bidentate coordination mode of the ligand to the metal atoms [19, 20]. Two sets of bands at lower frequency for the complexes around 379-391 cm -1 that assigned to the ν(M-S) vibration mode, insuring the anisobidentate coordination mode of the ligand [8], Figures (11-13). The 1 H NMR spectrum of L showed a peak at 4.40ppm, assigned to (CH2,C2, 2`-H). The downfield appearance of this signal may due to attachment to withdrawing groups, N-H and C=O. The ami(N-H) peak for the amide moiety is detected as a singlet at resonance δ= 10.74 ppm for L, Figure (9). The 13 C NMR spectrum of L shows a number of different carbon nucleuses in molecule indicating the formation of the ligand. The resonance of the carbonyl group detected downfield at δ= 170.41ppm. The formation of the free ligand can be revealed by the signals around δ=191.72ppm, which can be assigned to quaternary carbon in dithiocarbamate moiety C=S in the ligand, Figure (10). The 1 H-NMR spectra for [Zn(L)]2 and [Cd(L)]2 in DMSOd6 solution display the ami(N-H) signal for the amide segment at δ= 10.21 and 9.90 ppm for Zn- and Cd-complexes, respectively that confirming the non-involvement of the amide group upon complex formation [21] Figures (14, 16). The 13 C NMR spectra of [Zn(L)]2 and [Cd(L)]2 show a shift in the resonances of carbon nucleus in the complex molecule, compared with that in the free ligand, indicating the formation of the complexes. The chemical shift for C=S moiety is observed downfield at 199.24 and 204.88 ppm in [Zn(L)]2 and [Cd(L)]2, respectively in comparison with that at 191.72 in the isolated ligand confirming the involvement of this moiety in complexation, Figures (15, 17). The downfield shift for the Cd-complex may indicate more thiolate character for the C=S moiety, compared with the Zn-complex [22]. 4.3. UV-Vis Spectral data for the complexes, and magnetic susceptibility The UV-Vis spectrum of the ligand in DMSO solution revealed peaks at 264, 314 and 368 nm may attribute to π → π * and n → π * transitions, respectively [23-25] (Figure (18)). The electronic spectrum of the Co(II) complex exhibited bathochromic shift of the bands 266, 318 nm associated to the ligand field π → π * and n → π * transitions. Band at 381 nm may assigned to charge transfer transition (C.T) [26]. The Co(II) complex showed additional peak at 645 nm may assigned to 4 A2 (F) → 4 T1 (p) transition. This band is distinctive for Co(II)- complex with tetrahedral arrangment about Co ion [27-29], Figure (19). The Co-complex gaveeff value of 4.71 B.M, which it is typical for complexes of tetrahedral geometries, indicating a tetrahedral geometry around Co(II) ion [28, 30]. The electronic spectra of the [Zn(L)]2 and [Cd(L)]2 complexes exhibited peaks at 278, 270 and 329, 31 nm that assigned to the ligand field and charge transfer transitions in Zn- and Cd-complexes, respectively [ 31] (see Figures (20 and 21)). The molar conductance of the complexes in DMSO solutions is indicative of their non-electrolytic nature [32, 33]. (see Table (1)). The UV-Vis bands and magnetic measurements of complexes with their assignments are tabulated in Table (3). 4.4. Thermal analysis Thermal analysis data for the ligand and its d 10 metal complexes are summarised in Table (4). The TG-DSC curves of the ligand and its complexes were determined from ambient temperature up to 600 ° C in a nitrogen atmosphere. The analysis of thermal data showed Chemistry | 152 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 ligand is stable up to 118 ° C with weight loss 56.68% that attributed to (phenyl- CH2NCH2CONH+2CS2+ K+CH2N+NH) segment. This peak is indicated by an exothermic peak by the DSC at 126.5 ° C. The final residue of the compound confirmed the mass loss of 40.62% (see Figure (22)). Thermal properties of [Zn(L)]2 and [Cd(L)]2 complexes are listed in Table (4) and exhibit in Figures (23 and 24). Thermal data of [Zn(L)]2 complex consists of three steps. The first step accompanied by an exothermic behaviour as confirmed its DSC curve at 116 ° C. Further, [Cd(L)]2 thermal curves indicated two steps with an endothermic peak at 455 ° C. The weight loss and other thermal properties including lost fragments of the complexes are tabulated in Table (4), [34, 35]. 4.5. Bacterial activity The synthesised dithiocarbamate ligand and its complexes were tested against their bacterial activity against some bacterial strains (Escherichia coli and Pseudomonas aeruginosa (G−), Staphylococcus aureus and Bacillus stubtilis (G+)). The involvement of DMSO in the biological test was clarified by individual studies that conducted with the solutions of DMSO alone, which indicated no activity towards any bacterial species [36]. The measured inhibition zones against growth of different microorganisms are summarised in Table (5) that displays the effect of the synthesised compounds on bacterial strains. From obtained data, it is clear that, compared with the free ligand, complexes are actually more active against these bacterial species, which means complexation increases antimicrobial activity. Zinc and Cadmium complexes almost have the higher antimicrobial activity compared with the Co-complex. This may be related to their electronic configuration (d 10 system) and/or their higher molecular weight [37]. 5. Conclusion In this paper, we have investigate the synthesis and characterisation of ligand bis(dirhiocarbamate) ligand and its bimetallic macrocyclic complexes. The macrocyclic complexes were prepared either from the mixing of the isolated ligand with metal ion or through a template one-pot reaction. The overall structure and mode of bonding of the compounds were achieved by analytical and spectroscopic methods. The results indicated formation of four-coordinate complexes in the solid state and in solution. Biological activities indicated that the metal complexes are more active towards these bacterial species, in comparison with the isolated ligand. References 1. Nabipour, H.; Ghammamy S.; Ashuri, S. and Aghbolaghc, Z. S., (2010) .,“Synthesis of a new dithiocarbamate compound and Study of Its biological properties”, J. Org. Chem, 2. 75- 80. 2. Kanchi, S.; Singh, P. and Betty,. (2014). “Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of the 20th century”, Arabian Journal of Chemistry, 7. 11–25. 3. Marzano ,C.; Ronconi, L.; Chiara, F.; Giron, M. C., Faustinelli I., Cristofori P., Trevisan A.and Fregona D. (2011)., “Gold(III)-dithiocarbamato anticancer agents: activity, toxicology and histopathological studies in rodents”, Int. J. Cancer., 129. 2. 487-496. 4. Amin, E.; Saboury, A. A.; Mansuri-Torshizi, H. and Moosavi-Movahedi, A. A. J., (2010). “Potent inhibitory effects of benzyl and p-xylidine-bisdithiocarbamate sodium salts on activities of mushroom tyrosinase”, Enzyme Inhib. Med. Chem, 25.2. 272-281. 5. Hogarth, G., (2012) “Metal-dithiocarbamate complexes: chemistry and biological activity”, 12, 12.1202-1215. http://www.ncbi.nlm.nih.gov/pubmed/?term=Hogarth%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22931592 http://www.ncbi.nlm.nih.gov/pubmed/?term=Hogarth%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22931592 Chemistry | 153 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 6. Singh, S.; Bhattacharya, N. and Subrato.,(2012).“Synthesis and characterisation of some triorgano, diorgano, monoorganotin and a triorganolead heteroaromatic dithiocarbamate complexes”, J. Organomet. Chem, 700. 69-77. 7. Bolzati, C.;Benini, E.; Cavazza-Ceccato, M., Cazzola, E.; Malago, E.; Agostini, S.; Tisato F., Refosco F and Bandoli G.,(2006) .“From symmetrical to asymmetrical nitrido phosphino- thiol complexes: a new class of neutral mixed-ligand (99m) Tc compounds as potential brain imaging agents”, Bioconjug Chem, 17. 2. 419-428. 8. Hasan, H. A.; Yousif E. I.; Al-Jeboori M. J.,(2012). “Metal-assisted assembly of dinuclear metal(II) dithiocarbamate Schiff-base macrocyclic complexes: Synthesis and biological studies”, Global J. Inorg. Chem, 3. 10. 1-7. 9. Figueira, P.; Lopes C. B., Danieli-da-silva A. L., Pereira E., Duarte C and Trindad T.,(2011). “Removal of Mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters”, Water Res., 45. 17. 5773-5784. 10. Hitchcock, P. B.. A.; Hulkes, G. and Lappert, M. F., Z. Li.,( 2004).“Cerium(III) dialkyl dithiocarbamates from [Ce[N(SiMe3)2]3] and tetraalkylthiuram disulfides, and [Ce(kappa2- S2CNEt2)4] from the Ce(III) precursor; Tb(III) and Nd(III) analogues”, Dalton Trans., 1. 129- 136. 11. Normah, A.; Farahana, N.; Ester, B.;Asmah, H., Rajab, N. and Halim A., (2011). “Cytotoxic and genotoxic effect of triphenyltin(IV) benzylisopropyl dithiocarbamate in thymomamurine cell line (WEHI 7.2)”, Res. J. Chem. Environ, 15. 544-549. 12. Tlahuext, H.; Reyes-Martinez, R.; Vargas-Pineda G., Lopez-Cardoso M.and Hopfl H., (2011). “Molecular structures and supramolecular association of chlorodiorganotin(IV) complexes with bis- and tris-dithiocarbamate ligand”, J. Organomet. Chem., 696.693-701. 13. Beer, P. D.; Berry N. G., Cowley A. R., Hayes E. J., Oatesm E. C and Wong H., (2003). “Metal-directed self-assembly of bimetallic dithiocarbamate transition metal cryptands and their binding capabilities”, Chem. Commun, 19. 2408-2409. 14. Uppadine, L. H.; Weeks J. M., Beer P. D.,(2001). “Metal-directed self-assembly of terphenyl based dithiocarbamate ligands”, J. Chem. Soc., Dalton Trans., 22. 3367-3372. 15. Tlahuext-Aca1 A., Hopfl H., Medrano-Valenzuela F., Guerrero-Alvarez J., Tlahuext H., Lara K. O., Reyes-Márquez V.,Tlahuext M.,(2012).“Synthesis,spectroscopic characterisation, DFT calculations, and dynamic behavior of mononuclear macrocyclic diorganotin(IV) bis- dithiocarbamate complexes”, Inorg. Chem., 638.11. 1731–1738. 16. Pratt, M. D and Beer, P. D.,(2004).“Heterodinuclear ruthenium(II) bipyridyl- transition metal dithiocarbamate macrocycles for anion recognition and sensing”, Tetrahedron, 60. 49. 11227–11238. 17. Cookson J., Evans E. A. L., Maher J. P., Serpell C., R. Paul P., A. Cowley R., Drew M and Beer P.D.,(2010).“Metal-directed assembly of large dinuclear copper(II) dithiocarbamate macrocyclic complexes”, Inorg. Chimica Acta, 363. 6. 1195-1203. 18. Faraglia, G.; Sitran, S, and Montagner, D.,(2005). “Pyrrolidine dithiocarbamates of Pd(II)”, Inorg. Chim. Acta, 358. 971-980. 19. Al-Jeboori, M. J., Al-Jeboori F. A and Al-Azzawi M. A. R., (2011). “Metal complexes of a new class of polydentate Mannich bases: Synthesis and spectroscopic characterisation”, Inorg. Chim. Acta, 379.1. 163-170. 20. Johnson B. F., K. Al-Obalidi, H. and Mecleverty, J. A., (1969). “Transition-metal nitrosyl compounds, Part III. (N-N-dialkyldithiocarbamato)nitrosyl compounds of molybdenum and tungsten”, J. Chem. Soc. A, 19. 1668-1670. 21. Fulmer, G. R., Miller, A. J. M., Sherden, N. H.; Gottlieb, H. E.; Nudelman, A., Stoltz B. M., Bercaw J. E and Goldberg K. I., (2010). “NMR Chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist”, Organomet, 29. 9. 2176-2179. Chemistry | 154 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 22. Srinivasan, S.; Ramalingam, K. and Rizzoli, Synthesis C., (2012). “NMR and single crystal X-ray structural studies on planar NiS4 and NiS2PN chromophores: Steric and electronic effects”, Polyhedron, 33.1. 60-66. 23. Orescanin, V., Mikelic L., Roje V., Lulic S., (2006). “Determination of lanthanides by source excited energy dispersive X-ray fluorescence (EDXRF) method after preconcentration with ammonium pyrrolidine dithiocarbamate(APDC)”, Analytical Chimica Acta, 570.2. 277- 282. 24. Jowitt, R. N and Mitchell, P. C. H.,(1970). “Complexes of Molybdenum(VI) and Molybdenum(V) with dithiocarbamate, dithiocarbonate, and phosphorothiolothionate”, J. Chem. Soc. part A. 1702-1708. 25. RonconiL., Giovagnini ,L., Marzona, C., Bettio, F., Graziani, R., Pilloni, G and Fregona D., (2005). “Gold dithiocarbamate derivatives as potential antineoplastic agents:Design, spectroscopic properties, and in vitro antitumor activity”, Inorg. Chem., 44.6. 1867-1881. 26. Pandey, P. K., Pandey, A. K., Mishra, A. N., Ojha, K. K., Kumar, S. R., (2012). “Physico-chemical studies of manganese(II), cobalt(II), zinc(II), and copper(II) complexes derived from 2-substituted benzaldehyde thiosemicarbazones”, Indian J. Sci. Res., 3 .1.119- 122. 27. Siddiqi, K.S., Nami, S. A. A and Lutfullaha,Y. Chebudeb, (2006). “Template synthesis of symmetrical transition metal dithiocarbamates”, J. Braz. Chem. Soc., 17.1.107- 112. 28. Du, M., Bu X. H.; Guo, Y. M and Ribas, J., (2004).“Ligand Design for Alkali-Metal- Templated Self-Assembly of Unique High-Nuclearity CuII Aggregates with Diverse Coordination Cage Units: Crystal Structures and Properties”, J. Chem., 10. 1345. 29. Mamba, S. M., Mishara, A. K., Mamba, B. B., Njobeh P. B., Dutton M. F., Fosso-Kankeu E.,(2010).“Spectral thermal and in vitro antimicrobial studies of cyclohexylamine-N- dithiocarbamate transition metal complexes”,Spectrochimica Acta part A, 77.3. 579-587. 30. Slddappa, K.; Mallikarjun, K.; Reddy, T.; Mallikarjun, M.; Vreddy, C. and Tambe M., (2009).“Synthesis, characterization and antimicrobial studies of N 1 -[(1E)-1-(2- Hydroxyphenyl)ethylidene]-2-oxo-2H-chromene-3-carbohydrazide and its metal complexes”, E-Journal of Chemistry, 6.3. 615-624. 31. Canpolat, E., Kaya ,M.,(2005). “Spectroscopic characterization of N,N-bis(2-{[(2,2- Dimethyl-1,3-Dioxolan-4-yl)Methyl]Amino}Ethyl)N',N'Dihydroxyethane diimidamide and its complexes”, J. Coord. Chem., 31.7. 511-515. 32. Geary, W. J., (1971). “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds”, J. Coord. Chem. Rev., 7. p. 81-122. 33. Qing, C., Ming-Hua, Z. and Lian-Qiang, W. and Mohamedally K., (2010). “A Multifaceted Cage Cluster, [Co II 6O12 ⊃ X] − (X = Cl − or F − ): Halide Template Effect and Frustrated Magnetism”, Chem. Mater., 22: p. 4328-4334. 34. Rahman, A., Choudhary, M. and Thomsen, W., (2001). “Bioassay Techniques For Drug Development”, Harwood Academic. Amsterdam. 35. Himanshu A., Francesc L and Rabindranath M.,(2009).“One-Dimensional Coordination Polymers of Mn II , Cu II , and Zn II Supported by Carboxylate-Appended (2-Pyridyl)alkylamine Ligands – Structure and Magnetism”, Euro. J . Inorg. Chem., 22. 3317-3325. 36. Singh, R. V., Dwivedi ,R and Joshi, S. C., (2004). “Synthetic, magnetic, spectral, antimicrobial and antifertility studies of dioxomolybdenum(VI) unsymmetrical imine complexes having an N∩ N donor system”, Trans.Met .Chemi., 29. 1. 70–74 37. Tweedy, B. G., (1964). “Plant extracts with metal ions as potential antimicrobial agents”, Phytopathology, 55. 910–914. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-0682c Chemistry | 155 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (1): Colours, yields, melting points, (C, H, N, S) analysis and molar conductance values for ligand and its bis-dithiocarbamate-based complexes. Comp. Empirical formula m.p Yield % colour M(Ω - 1 cm 2 mol -1 ) Microanalysis found (calc) % M% C H N S L C32H25 K2N4O2S4 170 -172 65.90 Yellow - - 52.87 (54.36) 3.98 (3.99) 7.98 (7.92) 19.86 (18.14) [Co (L)]2 C66H62N8O4S8Co2 269 46.25 Deep green 6.01 8.21 (8. 29) 56.12 (56.60) 3.96 (4.68) 7.94 (7.88) 17.67 (18. 04) [Zn (L)]2 C66H62N8O4S8Zn2 288 41.97 White 4.77 8.75 (9. 22) 55.35 (55.88) 3.88 (4.41) 7.98 (7.90) 17.85 (18. 08) [Cd(L)]2 C66H62N8O4S8Cd2 245 43.02 Yellow 7.07 14.18 (14.71) 53.97 (52.64) 4.23 (4.35) 7.61 (7.33) 26.96 (16,78) (calc) = Calculated Table (2): FT-IR data (wave-number) cm -1 of ligand and its metal complexes. νar(C-N) νas(CS2) ν,s(CS2) ν(N- CS2) νar(C=C) δ(N-H) ν (C=O) νali(C-H) νar(C-H) ν (N-H) Comp. 1275 1009,999 1433 1535 1610 1658 2998-2875 3041 3230 L 1240 1115 ,970 1495 1541 1606 1654 2974, 2860 3091 3324 [Co(L)]2 1244 1119 ,972 1441 1520 1579 1658 2912, 2844 3041 3309 [Zn(L)]2 1240 1115 ,980 1446 1520 1599 1646 2912, 2844 3037 3294 [Cd(L)]2 * ν (Co-S) observed at 379.95 and 366.45 cm -1 . * ν (Zn-S) observed at 391.52 and 374.16 cm -1 . Chemistry | 156 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (3): UV-Vis spectral data of ligand and bisdithiocarbamate-based complexes in DMSO solutions and magnetic moment. µeff (B.M) Assignment Extinction coefficient ɛmax (dm 3 mol -1 cm -1 ) Wave number (cm -1 ) Band Position λnm Comp. - π → π * π → π * n → π * 562 2391 510 37878 31847 27173 264 314 368 L 4.71 Intra-ligand π → π * , n → π * C.T 4 A2 (F) → 4 T1 (p) 2033 1743 1441 256 37593 31446 26246 15503 266 318 381 645 [Co(L)]2 Diamagnetic Intra-ligand π → π * , n→π* C.T 2323 923 35971 30395 278 329 [Zn(L)]2 Diamagnetic Intra-ligand π → π * , n→π* C.T 892 2015 37037 30211 270 331 [Cd(L)]2 Table (4): TGA/DTG/DSC data for ligand and its complexes. Nature of DSC peak and temp. ° C Nature of transformation/i ntermediate formed% mass found (calc.) fragments Decomp. temperatu re initial- final ° C Stage Stable up to ° C Compound 126.5 Exo 179.9 Exo 2.8343 (2.8115) (phenyl-CH2NCH2CONH+2CS2+ K+CH2N+NH) 118-268 1 118 L 116 Exo - 549.9 Endo 1.4087 (1.4336) 1.6863 (1.7390) 1.0931 (1.1092) (3CS2 + CH3 CON2) (phenyl-CH2NCH2 CON + NCO +diphenyl) (phenyl-CH2NCH3+ CS2) 100-195 198-263 265-595 1 2 3 100 [Zn(L)]2 141.9 Exo 455 Endo 3.2882 (3.2817) 6.5973 (6.4848) (2CS2 + CdN) (phenyl-CH2NCH2 CONH+ diphenyl + NHCOCH2NCH2 + CH2 +CS) 105-195 200-598 1 2 105 [Cd(L)]2 Chemistry | 157 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table (5): Bacterial activity of ligand and bis-dithiocarbamate-based complexes No. Sample Inhibition zone (mm) E. coli P. aeruginosa B. sabtuius S. aureus 1 L 7 5 2 5 2 [Co(L)]2 9 12 _ _ 3 [Zn(L)]2 12 14 45 15 4 [Cd(L)]2 10 12 16 14 Figure (1): ES (+) mass spectrum of N,N’-(biphenyl-4,4'-diyl)bis(2-chloroacetamid)e Figure (2): 1 H-NMR spectrum of N,N’-(biphenyl-4,4'-diyl)bis(2-chloroacetamide) in DMSO-d6 Chemistry | 158 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (3): 13 C-NMR spectrum of N,N’-(biphenyl-4,4'-diyl)bis(2-chloroacetamide) in DMSO-d6 Figure (4): ES (+) mass spectrum of benzylamine precursor Figure (5): 1 H-NMR spectrum of the benzylamine precursor in DMSO-d6 Chemistry | 159 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (6): 13 C NMR-spectrum of benzylamine precursor in DMSO-d6 Figure (7): FTIR spectrum of ligand Figure (8): ES (+) mass-spectrum of ligand Chemistry | 160 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (9): 1 H NMR-spectrum of ligand in DMSO-d6 Figure (10): 13 C NMR-spectrum of ligand in DMSO-d6 Figure (11): FTIR-spectrum of [Co(L)]2 complex Chemistry | 161 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (12): FTIR-spectrum of [Zn(L)]2 complex Figure (13): FTIR-spectrum of [Cd(L)]2 complex Figure (14): 1 H NMR-spectrum for [Zn(L)]2 in DMSO-d6 Chemistry | 162 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (15): 13 C NMR-spectrum for [Zn(L)]2 in DMSO-d6 Figure (16): 1 H NMR-spectrum for [Cd(L)]2 in DMSO-d6 Figure (17): 13C NMR-spectrum for [Cd(L)]2 in DMSO-d6 Chemistry | 163 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (18): Electronic-spectrum of L in DMSO solution Figure (19): Electronic-spectrum of [Co (L)]2 in DMSO solution Figure (20): Electronic-spectrum of [Zn(L)]2 in DMSO solution Chemistry | 164 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (21): Electronic-spectrum of [Cd(L)]2 in DMSO solution Figure (22): (TG/ DTG and DSC) thermogram of ligand in nitrogen atmosphere Figure (23): (TG/DTG and DSC) thermogram of [Zn(L)]2 complex in nitrogen atmosphere Chemistry | 165 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (24): (TG/DTG and DSC) thermogram of [Cd(L)]2 complex in nitrogen atmosphere Chemistry | 166 2016( عاو 3انعذد ) 29انًدهذ يدهت إبٍ انهٍثى نهعهىو انظرفت و انخطبٍمٍت Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 وحشخيص ححضير ,ليكاًد ثٌائي الثايوكارباهيج حكويي هعقداث حلقيت جديدة هع و الٌشاط البكخيري حسي احود حسي اًعام اسواعيل يوسف لسى انكًٍٍاء/كهٍت انخربٍت نهعهىو انظرفت ) ابٍ انهٍثى( /خايعت بغذاد 3122/ًيساى/4, قبل في:3122/شباط/32في:اسخلن الخالصت انهٍكاَذ بًفاعهت رثحض انفهز تانحهمٍت ثُائٍ هيٍج ويعمذاحاحضًٍ انبحث ححضٍر وحشخٍض نٍكاَذ ثُائً انثاٌىكارب وسطا سٍخىَاٌخرٌمواالااليٍٍ انثاَىي يع انكاربىٌ ثُائً انكبرٌج وبىخىد هٍذروكسٍذ انبىحاسٍىو باسخخذاو يزٌح يٍ انًاء انحر . انهكاَذعهى نُحظمنهخفاعم تنهًىاد انًخفاعه ةانحر و انثاٍَت طرٌمت االضافت انىاحذ انهٍكاَذاالونى طرٌمت خٍٍانًعمذاث باسخخذاو طرٌم حضرث يع يكافئ يٍ يهح نهٍكاَذانحر يٍ حفاعم يكافئ يٍ يهح انبىحاسٍىو انهٍكاَذفً دورق انخفاعم. حضر انًعمذ فً طرٌمت حٍث ٌخى ححضٍر انًعمذ يٍ خالل يزج ثُائً االيٍٍ انثاَىي يع ةانثاٍَت فهً طرٌمت االضافت انىاحذ انطرٌمت ايا, انفهز وسطا سٍخىَاٌخرٌميٍ انًاء واال انكاربىٌ ثُائً انكبرٌج و يهح انفهز و بىخىد هٍذروكسٍذ انبىحاسٍىو باسخخذاو يزٌح انخحهٍم انذلٍك نهعُاطر وحمٍُت اطٍاف االشعت ححج تشخض انهٍكاَذ وانًعمذاث بىساط .انًعمذاث عهى نُحظمنهخفاعم ولٍاس درخت االَظهار انًىالرٌت انخىطهٍتو تانًغُاطٍسٍ توانحساسٍ توانًرئٍ تفىق انبُفسدٍ تانحًراء واطٍاف االشع واطٍاف انرٍٍَ انًغُاطٍسً: تكخهوحمٍُت طٍف ان 1 H, 13 C - NMR spectroscopy. .وكاَج انًعمذاث اكثر فعانٍت يٍ انٍكاَذ هٍكاَذ وانًعمذاثحى دراست انفعانٍه انبكخٍرٌت ن انًحضرة هى رباعً تفً انًعمذاث انحهمٍ ت( اٌ انخُاسك حىل االٌىَاث انفهزٌتكًٍٍائٍ-كشفج انمٍاساث ) انفٍزو انخُاسك. : تانعاي تراث انظٍغ تيعمذاث حهمٍ اعطىخفاعم فً انطرٌمخٍٍ انَاحح [M(L)]2 (where M = (Co II , Zn II and Cd II ) . , انفعانٍت انبكخٍري.انخىاص انحرارٌت ,انخراكٍب , دراستانثاٌىكاربايٍج ثُائً يعمذاث :الوفخاحيت الكلواث