Microsoft Word - 102-115 102 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Synthesis and Characterization of Some Metal Complexes of [N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-ylcarbamothioyl) acetamide] Basima M. Sarhan Sajid M. Lateef Enass J. Waheed Dept. of Chemistry/ College of Education for Pure Sciences (Ibn-AL-Haitham)/ University of Baghdad. Received in: 20 January 2015, Accepted in: 15 March 2015 Abstract A new ligand [N- (1,5- dimethyl -3- oxo- 2 – phenyl - 2 ,3 – dihydro -1H- pyrazol -4- ylcarbamothioyl) acetamide] (AAD) was synthesized by reaction of acetyl isothiocyanate with 4-aminoantipyrine, The ligand was characterized by micro elemental analysis C.H.N.S., FT-IR ,UV-Vis and 1H-13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(AAD)2(H2O)2]Cl2 (M+2 = Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral. Key Word: 4-Aminoantipyrine, acetyl isothiocyanate, complexes. 103 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Introduction In recent years, there has been increasing interest in synthesis of heterocyclic compounds that have biological and commercial importance. Antipyrine compounds play an important role in modern organic synthesis, not only because they constitute a particularly useful class of heterocyclic compounds, but also because they are of great biological interest. They have been found to have biological clinical, and pharmacological activities. One of the most important derivatives of antipyrine is 4-aminoantipyrine, which is used as a synthetic intermediate to prepare poly functionally substituted heterocyclic moieties with anticipated biological activity, analgesic, antiinflammatory, antimicrobial, and anticancer activities[1,2]. Properties of 4-aminoantipyrine to coordinate with metal is varied by condensing it with aldehydes, ketones, thiosemicarbazides and carbazides etc. [3]. Ligand complexes of metals (Fe(III), Co(II), Ni(II), Cu(II) and Zn(II)) with L1 and L2 (L1: obtained through the condensation of 4-aminoantipyrine with furfuraldehyde); (L2: derived from 2-aminophenol and 3-nitrobenzaldehyde) were synthesized [4]. Noble metal complexes of Schiff bases derived from 2-thiophenecarboxaldehyde and 4-aminoantipyrine have been synthesized[5]. The aim of this work is to prepare and characterize a new ligand [N- (1,5- dimethyl -3- oxo- 2 – phenyl - 2 ,3 – dihydro -1H- pyrazol -4-ylcarbamothioyl) acetamide] (AAD),and it's metal complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) ions. Experimental Chemicals All reagents were analar or chemical pure grade by BDH, Merck and Fluka. All metal chloride salts and solvents were purchased from Merk and Fluka com., and used without purification. Instruments 1H and13C–NMR were recorded using Ultra Shield 300 MHz Switzerland at University of Al al-Bayt, Jordan. Melting point was recorded by using Stuart- melting point apparatus. FT- IR spectra were recorded as KBr disc using 3800 Shimadzu in the range of (4000-400) cm-1. Electronic spectra were obtained using UV-160 Shimadzu spectrophotometer at 25 ̊C for 10-3 M solution DMSO with 1.000 ± 0.001 cm matched quartz cell. Molar Conductivity was measured at 25 ̊C for 10-3M solution of DMSO by using Philips PW. Digital. micro elemental analysis (C.H.N.S) were performed using Acrlo Erba 1106 elemental analyzer. Magnetic susceptibility measurements were obtained by balance magnetic susceptibility model MSB- MKI. Metal contents of the complexes were determined by atomic absorption technique by using Shimadzu (AA680G ). Preparation of ligand (AAD) The ligand was prepared by two steps (scheme-1) (A)- Preparation of the (Acetyl isothiocyanate )[6] Mixture of acetyl chloride(1.86 ml,1mmol) and ammonium thiocyanate (2g, 1mmol) in (25 ml) of acetone was stirred under refluxed for 3 hrs and then filtered, the filtrate was used for further reaction. 104 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 (B)- Preparation of N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-ylcarbamothioyl) acetamide (AAD) (5.33g, 1mmol) of 4-aminoantipyrine in (20ml) acetone was rapidly added to Acetyl isothiocyanate and maintaining reflux. After refluxing for 6 hrs, the resulting solid was collected, washed with acetone and recrystallization from ethanol, yield (68%), (m.p = 218- 220) ˚C, C% found (55.58) calc.(55.26), H% found (5.47) calc.(5.26), N% found (18.35) calc.(18.42 ), S% found (10.69) calc.(10.53). S H N O O N N H N + O O N N H2N 4-amino antipyrine CH3 acetone ref lux 3hrs. acetone ref lux 6hrs. NH4SCN + O O + NH4ClCH3-C-Cl CH3-C-N=C=S CH3-C-N=C=S Acetyl isothiocyanate N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-ylcarbamothioyl)acetamide Acetyl isothiocyanate 1) 2) (AAD) Synthesis ligand complexes Synthesis of the [Cu(AAD)2(H2O)2]Cl2 complex A solution of (0.17g, 1mmol) CuCl2.2H2O in (10ml) ethanol was added to solution of (0.61g, 2mmol) (AAD) in (10ml) ethanol. The mixture was stirred for 6 hours at room temperature, the brown solid was collected by filtration, washed with (1:1) mixture of water: ethanol, recrystallized from ethanol and dried in an oven (50˚C). Synthesis of [Mn(AAD)2(H2O)2]Cl2, [Co(AAD)2(H2O)2]Cl2, [Ni(AAD)2(H2O)2]Cl2, [Zn(AAD)2(H2O)2]Cl2, [Cd(AAD)2(H2O)2]Cl2, [Hg(AAD)2(H2O)2]Cl2complexes. A similar method to that mentioned for preparation of [Cu(AAD)2(H2O)2]Cl2 complex was used to prepare the complexes of [Mn+2,Co+2,Ni+2,Zn+2,Cd+2and Hg+2] ions with (AAD), Table (1) showed some physical properties of the prepared complexes. Results and Discussion Ligand (AAD) The FT-IR spectrum of the free ligand (AAD) ,Fig.(3) showed bands at(1635) cm-1,(1600) cm-1 and (1367) cm-1 due to υ C=O(in ring) , υ C=O(amidic) and υ C=S respectively. While another absorption band at (3138) cm-1 could be explained as υ N-H [7-9]. The FT-IR spectral data of the free ligand were listed in table(2). The UV-Vis spectrum of the free ligand (AAD). Fig.(5) exhibits a high intense absorption peak at (33444) cm-1 which may be attributed to electronic transition type π π*[10].The data of electronic spectrum of the free ligand (AAD) were listed in table (3). 105 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 The 1H-NMR spectrum of free ligand (AAD),Fig.(1) which was recorded in DMSO-d6 solvent showed the following signals: singlet at δ(1.93-1.95) ppm refers to (3H, CH3), singlet at δ(2.36-2.38) ppm refers to (3H, CH3CO), singlet at δ(3.10) ppm refers to (3H,CH3N), singlet at δ(3.34) ppm refers to (1H, NH sec. amine), the multiplet signals δ(7.31-7.53) ppm were attributed to aromatic protons, singlet at δ(11.37) ppm refers to (1H,NHsec. amide). 13CNMR spectrum of the free ligand (AAD),Fig.(2)showed chemical shift at δ(11.96) ppm refers (CH3) for (CH3CO) group, signal at δ(24.21) ppm refers to (CH3CO), signal at δ(36.13) ppm for (CH3N ), signals at δ(39.22-41.48) ppm for DMSO, signal at δ( 108.53 ) ppm refers to (C=C-CH3), The chemical shifts at range δ(123.85-129.95) ppm due to aromatic carbons, signal at δ(135.47) ppm for (=C-N ), signal at δ(153.47) ppm for (=C-N, aromatic carbons), while the signals at Fig. (2) showed the following signals at δ(161.55) ppm , δ(173.05) ppm and δ(182.32) ppm were attributed to ((C=O), antipyrine ring), (CONH) and (C=S) [11,12]. Complexes of the ligand (AAD) The solid complexes soluble in some common solvent such as dimethylformamide, dimethylsulphoxide and relatively thermally stable. The molar conductivity values of all complexes in DMSO solvent in 10-3 M at 25˚C (table-1) indicated electrolyte nature with 1:2 ratio [13].The atomic absorption measurements for all complexes gave approximated values when its comparison with theoretical values, Table (1) includes the physical properties for the ligand and its complexes. FT-IR Spectra These spectra exhibited marked difference between bands Fig. (4) belonging to the stretching vibration of υ(C=O amido) in the range between (1635-1620) cm-1 shifted higher frequencies by (27-20) cm-1 suggesting of the possibility of the coordination of ligand through the oxygen atom at the carbonyl group[14] while the band caused by υ(C=S) appeared between (1434-1411) cm-1 shifted to higher frequencies by (67-44) cm-1 which indicates to the coordination of ligand through the sulfur atom at the thiol group to the central ion[15]. The stretching vibration band υ(C=O in ring), υ(N-H) either show no change or very little in their frequencies (1635-1650) cm-1, (3147-3186) cm-1 respectively there for indicating do not coordinate to the metal ion. Metal-oxygen and metal-sulfur bonds were confirmed by the presence of the stretching tremor of υ(M-O) and υ(M-S) around (501-455) cm-1 and (447- 423) cm-1 respectively the spectra of complexes showed the appearance of bands in the range (918-805) cm-1 attributed to υ(OH), these bands confirm the coordination of the water with metal[14], Table (2) describes the important bands and assignment for all prepared complexes. Magnetic Moment The values of measured magnetic susceptibility and effective magnetic moment (µeff) for the Mn(II), Co(II), Ni(II), Cu(II)complexes are shown in table(1). Mn(II), Co(II), Ni(II) and Cu(II) complexes exhibit µeff (5.94, 4.83, 3.05, 1.76) B.M respectively ,which can be a normal values for high spin octahedral complexes.[16] 106 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Electronic Spectra for Complexes 5d 2]Cl2O)2(H2[Mn(AAD)- The Brown complex of Mn(II) shows band at (33557) cm-1 due to ligand field and other bands at (14084) cm-1 and (10729) cm-1 which are caused by the electronic transfer 6A1g 4T2g(G) and 6A1g 4T1g(G) respectively, suggesting octahedral geometry around Mn(II) ion [17]. -[Co(AAD)2(H2O)2]Cl2 d7 The spectrum of the Violet complex gave four bands at (33783) cm-1, (27624) cm-1, (14662) cm-1 and (12048) cm-1 attributed to (L.F),C.T mixed with 4T1g(F) 4T1g(P), 4T1g(F) 4A2g and 4T1g(F) 4T2g(F) respectively and the rach interelectronic repulsion parameter (B-) was found to be (409.46) cm-1, from the relation β=B- / B0, was found to be equal (0.42), these parameter are accepted to Co(II) octahedral complex[18]. -[Ni(AAD)2(H2O)2]Cl2 d8 The spectrum of green complex of Ni(II) has revealed the following electronic transfer (L.F),C.T mixed with 3A2g 3T1g(P), 3A2g 3T1g(F), and 3A2g 3T2g(F), transition at (38610) cm-1, (27322) cm-1, (22123) cm-1 and (12515) cm-1respectively, the (B-) value is found to be (793) cm-1, while β was equal to (0.76) these are the characteristics for octahedral complexes of Ni(II)[19]. -[ Cu (AAD)2(H2O)2]Cl2 d9 The spectrum of Brown complex of Cu(II) Fig. (6) shows two bands at (33898) cm-1, (11750) cm-1 caused to (C.T), 2Eg 2T2g transition respectively , which was a good agreement for distorted octahedral complex for Cu(II) ion [20,21]. -The Complexes of [Zn(AAD)2(H2O)2]Cl2,[Cd(AAD)2(H2O)2]Cl2 and [Hg(AAD)2(H2O)2]Cl2 show only charge transfer of (M→L) in range (38610-27322) cm-1[22,23]. All transition with their assignments are summarized in Table (3). Suggested structures for complexes on the basis of molar conductivity, magnetic moment, spectroscopic studies(FT-IR,UV-Vis and atomic absorption) and (1H-13C NMR for ligand(AAD)only)for the ligand and all prepared complexes, we suggested that the ligand (AAD) behaves as bidentate on coordination with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) ions via oxygen atom of (C=O) amido group and sulfer atom of (C=S) group, suggesting octahedral geometry around metal ions for all prepared complexes. 107 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 References 1. Ahmed, A.F. and Khalid, M.E., (2012) “Synthesis of novel azo disperse dyes derived from 4- amino antipyrine and their applications to polyester fabrics”, American Journal of Organic Chemistry, 2( 3): 52-57. 2. Rajasekar, K.; Balasubramaniya, S. and Durairaj, P. (2014) “Microwave assisted synthesis, spectral, antibacterial and antifungal activities of Cu(II) complex with 4-aminoantipyrine and oxalate ion”, World Journal of Pharmaceutical Research; 3(7): 844-849. 3. Al-Shareefi, A.N.; Salih, H.K. and Waleed A.S.; (2013) “Synthesis and study of Fe(III), Co(II), Ni(II) and Cu(II) complexes of new Schiff’s base ligand derived from 4-amino antipyrine”, Journal of Applicable Chemistry; 2(3): 438-446 . 4. Josepha, J.;  Ayisha, G. and Bibin, R. (2014) “Metal-based molecular design tuning biochemical behavior: Synthesis, characterization and biochemical studies of mixed ligand complexes derived from 4-aminoantipyrine derivatives”, Spectroscopy Letters: An International Journal for Rapid Communication., 47(2): 86-100. 5. Al-Saif, F.A.; (2014) “Spectroscopic elucidation, conductivity and activation Thermodynamic parameters studies on Pt(IV), Au(III) and Pd(II) 1,5-dimethyl-2-phenyl-4- [(thiophen-2-ylmethylene)-amino]-1,2-dihydro-pyrazol-3-one Schiff base complexes”, Int. J. Electro chem. Sci., 9: 398-417. 6. Kabbani, A.T; Ramadan, H.; Hammuud, H.H. and Hanuom, A.M.G.; (2005) “Synthesis of some metal complexes of N-[(benzoyl amino)-thioxomethyl] amino acid (HL)”; Journal of the University of Chemical Technology and Metallurgy,40(4): 339-344. 7. Cary, F.A. (2005) “Organic Chemistry”, 6th Ed. the M.C Graw-Hill companies, Inc., New York. 8. Silverstein, R.M.; Bassler, G.C. and Morrill, T.C; (1981) “Spectroscopic identification of organic compounds”, 4th Ed., John Wiley and Sons, New York. 9. Marah, J.;(1991) “Advanced Organic Chemistry”; 4th Ed., J. Wiley and Sons, New York . 10. Dyes, .R.J; (1996) “Application of absorption spectroscopy of organic compounds”, Prentice –Hall, Inc., Englewood cliffs, N, J. London. 11. Seenaiah D., Venkatesh B.C., Padmaja A. and Padmavathi V. (2013) “Synthesis of some new oxazolinyl/ thiazolinyl/ imidazolinyl- benzoxazoles, benzothiazoles and benzimidazoles” ;Indian Journal of Chemistry , 52B : 942-948. 12. Kumar, K.; Satyanarayana, P. and Reddy, B.; (2013) “NaHSO4-SiO2-Promoted Solvent- Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives” ;Journal of Chemistry , 1 : 1-10. 13.  Diebbar-Sid, S., Benali-Baitich, O. and Deloume, J.P.; (2001) “Synthetic and Structural Studies of Some Bivalent Transition Metal Complexes with Oxygen and Nitrogen Containing Schiff Base” ;J. mol. Struct., 569: 121. 14. Nakamoto, K; (1996) “Infrared spectra of inorganic and coordination compounds”, 4th Ed., John Wily and Sons, New York. 15. Nawar, N.; El-swwah, I.I., Hosny, N.M. and Mostafa, M.M., (2011) “Novel mono-and binuclear complexes derived from N-benzoyl-N-glycylthiourea (BGH) with some transition metal ions”, Arabian Journal of chemistry,17(1):434–438. 16. Mulay, L., (1977) “ Magnetic Susceptibility”, John wiley and sons; New York; part1,vol(4). 17. Sarhan, B .M.; Abed, A.H. and Rumez, R.M. (2013) “Synthesis and characterization of some mixed ligand complexes of quinaldic acid and α -picoline with some metal salts”; AL- Mustansiriyah Journal of science,24(4): 65-74. 18. Lever, A.B.P.; (1968) “Inorganic electronic spectroscopy”, Elsevier publishing company Amsterdam, London, New York. 19. Drugo, R.S.; (1965) “Physical methods in inorganic chemistry”, Vann strand-Reinhold, New York. 108 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 20. Dichakjian, S. and Farrago, M.E. (1985) “Metal complexes of 2-amino-5-nitrothiazole”; Inorg. Chem. Acta,108: 247-259. 21. Walton, R.A.; (1966) “Some donor properties of 1,4-thioxane:complexes with transition metal halides”; Inorg.Chem.,5(4): 643-649. 22. Arjmamd, F.; Parveen, S. and Mohapatra, D.K. (2012) “Synthesis, characterization of Cu(II) and Zn(II) complexes of proline-glycine and proline-leucine tetrapeptides: in vitro DNA binding and cleavage studies”, Inorg. Chem. Acta, 388(15): 1-10. 23. Naik, A.D.; Beck, J.; Dirtu, M.N. and Bebrone, C. (2011) “Zinc complexes with 1,2,4- triazole functionalized amino acid derivatives, synthesis, structure and β–lactam as essay”, Inorg.Chem.Acta,368: 21-28. 109 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Table No. (1): Some physical properties of the ligand(AAD) and its complexes dec =decomp Compound M.wt (gm/mole) Color M.P( ̊C) or dec. M% Calculation (Found) Molar Cond. Ohm-1cm2mol-1 in DMSO µeff (B.M) S 4O2N16H14C AAD 304 White 218-220 ̊C ─ 1.67 ─ 2]Cl2O)2(H2[Mn(AAD) 768.94 Brown 175-177 ̊C 7.14 (7.26) 78 5.94 2]Cl2O)2(H2[Co(AAD) 772.93 Violet 139-141 ̊C 7.62 (7.46) 79.11 4.83 2]Cl2O)2(H2[Ni(AAD) 772.71 Green 164-166 ̊C 7.59 (8.12) 76 3.05 2]Cl2O)2(H2[Cu(AAD) 777.54 Brown 136 dec. 8.17 (8.62) 71.2 1.76 2]Cl2O)2(H2[Zn(AAD) 779.38 Brown 164-166 ̊C 8.39 (8.19) 83 0 2]Cl2O)2(H2[Cd(AAD) 826.41 Brown 230 dec. 13.60 (13.77) 82 0 2]Cl2O)2(H2[Hg(AAD) 914.59 Brown 158-160 ̊C 21.93 (22.13) 72 0 110 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Table No. (2): The characteristic infrared band for free ligand (AAD) and its metal complexes       Com. υ(N-H) υ(C=O) in Ring υ(C=O) Amide (C=S) (O-H) (M-O) (M-S) Ligand AAD 3138 (s) 1635 (s) 1600(S) 1367(S) ─ ─ ─ 2]Cl2O)2(H2[Mn(AAD) 3147(s) 1635(s) 1620(m) 1434(w) 856(s) 470(m) 425(w) 2]Cl2O)2(H2[Co(AAD) 3178(m) 1635(w) 1620(s) 1419(m) 825(m) 455(m) 425(w) 2]Cl2O)2(H2[Ni(AAD) 3147(m) 1635(s) 1623(m) 1411(m) 856(s) 501(m) 439(m) 2]Cl2O)2(H2[Cu(AAD) 3170(m) 1635(w) 1620(w) 1411(s) 918(s) 501(m) 447(w) 2]Cl2O)2(H2[Zn(AAD) 3155(m) 1650(s) 1635(w) 1419(s) 833(s) 473(s) 425(m) 2]Cl2O)2(H2[Cd(AAD) 3186(s) 1635(s) 1620(m) 1419(s) 805(s) 475(m) 423 (m) 2]Cl2O)2(H2[Hg(AAD) 3155(s) 1635(w) 1623(s) 1434(s) 870(s) 470(m) 425(w) 111 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Table No. (3): The peaks electronic transitions and structure geometries of the ligand (AAD) and its complexes Compounds λmax nm Wave number cm-1 ABS εmax molar- 1cm-1 Transitions Ligand AAD 299 33444 2.392 2392 π π* 2]Cl2O)2(H2[Mn(AAD) 298 710 932 33557 14084 10729 2.301 0.010 0.015 2301 10 15 L.F 6A1g 4T2g(G) 6A1g 4T1g(G) 2]Cl2O)2(H2[Co(AAD) 296 362 682 830 33783 27624 14662 12048 2.119 0.432 0.033 0.010 2119 432 33 10 L.F C.T mixed with 4T1g(F) 4T1g(P) 4T1g(F) 4A2g 4T1g(F) 4T2g(F) 2]Cl2O)2(H2[Ni(AAD) 259 366 452 799 38610 27322 22123 12515 1.484 1.623 0.391 0.091 1484 1623 391 91 L.F C.T mixed with 3A2g 3T1g(P) 3A2g 3T1g(F)7 3A2g 3T2g(F) 2]Cl2O)2(H2[Cu(AAD) 295 851 33898 11750 2.051 0.017 2051 17 C.T 2Eg 2T2g 2]Cl2O)2(H2[Zn(AAD) 295 33898 2.015 2015 C.T 2]Cl2O)2(H2[Cd(AAD) 298 33557 2.211 2211 C.T 2]Cl2O)2(H2[Hg(AAD) 259 366 38610 27322 1.483 1.730 1483 1730 C.T C.T C.T = Charge transfer 112 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Figure No. (1): 1H-NMR spectrum of ligand (AAD) NMR spectrum of ligand (AAD)-C13Figure No. (2): 113 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Figure No. (3): Infrared spectrum of ligand (AAD) 2]Cl2O)2(H2Figure No. (4): Infrared spectrum of complex [Mn (AAD) 114 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 Figure No. (5): U.V. spectrum of ligand (AAD) 2]Cl2O)2(H2Figure No. (6): U.V. spectrum of complex [Cu(AAD) H2O H2O Cl2 S HN O O N N HN ph S NH O O NN NH ph CH3 CH 3 M M+2 =[Mn, Co, Ni, Cu, Zn, Cd and Hg] Figure No. (7): The proposed chemical structure formula of the complexes 115 | Chemistry ٢٠١٥) عام 2العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (2) 2015 تحضير وتشخيص بعض المعقدات الفلزية مع N- )٤-بايرازول -١-ثنائي ھايدرو -٢،٣-فنيل-٢-اوكسو -٣-ثنائي مثيل -١،٥- يل كارباموثايويل) استمايد باسمة محسن سرحان ساجد محمود لطيف  إيناس جاسم وحيد قسم الكيمياء/ كلية التربية للعلوم الصرفة (ابن الھيثم ) / جامعة بغداد ٢٠١٥اذار ١٥،قبل البحث: ٢٠١٥كانون الثاني ٢٠استلم البحث في: الخالصة يل -٤- بايرازول -١- ثنائي ھايدرو -٢،٣- فنيل -٢- اوكسو - ٣-ثنائي مثيل - ١،٥( - Nحضر الليكاند الجديد ) ١:١وبنسبة ( أنتي بايرينامينو - ٤يزوثايوسيانات) مع استيل ا( مفاعلهوذلك من (AAD) ] كارباموثايويل) استمايد المرئية وطيف الرنين -فوق البنفسجية واألشعةتحت الحمراء واألشعة) CHNSوشخص بوساطة التحليل الدقيق للعناصر( النتقالية الثنائية التكافؤبعض ايونات العناصر ا أمالح، كما حضرت وشخصت معقدات المغناطيسيالنووي (Hg, Cd, Zn, Cu, Ni, Co, Mn) ) مع الليكاندAADتحت األشعة عمال) وشخصت المعقدات المحضرة باست المرئية والتوصيلية الموالرية والحساسية المغناطيسية واالمتصاص الذري واستنتج من - فوق البنفسجية واألشعةالحمراء ) ثنائي السن. AADقدات لھا شكل ثماني السطوح حول االيون الفلزي مع اللكياند (المع إنالدراسات والتشخيصات ايزوثايوسيانات، معقدات.تيل امينو انتيبايرين، اس- ٤الكلمات المفتاحية: