Conseguences of soil crude oil pollution on some wood properties of olive trees Chemistry | 167 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Coordination Behavior of N2o Donor Ligand with Some Metalsions Ali M. A. Al-khazraji Dept. of Chemistry / College of Education for Pure Sciences ( Ibn -Al-Haitham)/ University of Baghdad Received in: 16/December/2015, Accepted in:5/April/2016 Abstract Tridentate Schiff base ligand L 2 and its complexes with nickel(II), cobalt (II), copper (II), manganese (II) and mercury (II) ions have been synthesized by the condensation of 4- Aminoantipyrine, Benzoin, then the ligand (L 1 ) and 3-amino benzoic acid. The ligand and its complexes were described by 1 H-& 13 C-NMR, UV-visible, FT-IR, (only ligand), molar conductance elemental, analysis and magnetic susceptibility, calculations. It has been set that the ligand acts as (N, N, O) neutral tridentate forming chelates with stoichimetry (metal: ligand) (1:1). all metal complexes is suggested Octahedral configuration. Most of the prepared compounds show antibacterial activity to (Staphylococcus aureus),(Escherichia coli), (Bacillussubtilis) and (Pseudomonas aeroginosa). Key words: Schiff base, tridentate, Metal complexesand3-amino benzoic acid. Chemistry | 168 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Introduction Imins derived from aromatic aldehydes and {substituted aliphatic amines} and {aromatic aldehydes} have a many applications in variety fields, e.g. inorganic, analytical and biological chemistry [1-4]. Schiff bases form an important class of organic compounds in chemistry due to their useful physical and chemical properties and large number of reactions they undergo [5,6]. They are also having many pharmacological activities and industrial enforcements. In enzymatic reactions, Schiff bases play a significantintermediate through of an enzyme with an amino group or carbonyl group of the substrate [7,8]. Biochemists worked earlier [9, 10], reported that metal complexes showed greater activity, when compared to the organic compounds [11]. The new ligands formed by the reaction of ketones, carbazides, aldehydes and thiocarbazides with 4-aminoantipyrine. have been to give the coordinating properties were modified [12-16], A continuation of our work on the synthesis of Schiff bases using benzoin, 4-aminoantipyrine and 3-aminobenzoic acid, we have synthesized the Cobalt (II), Nickel (II), Copper (II), Manganese (II) and Mercury (II) complexes with the Schiff base ligand prepared. We are reporting five complexes of metal (II) with Schiff base ligand, their characterization and antibacterial activity. Experimental 3-aminobenzoic acid,benzoinand 4-aminoantipyrine were purchased from sigma aldrichCo.(China). Allreagentand solvents were of high purity (sigma)and were used without further purification. The metal salts usedforcomplexation: Copper(II) chloridedihydrate, Cobalt(II) chloride hexahydrate, Nickel(II) chloride hexahydrate, Manganese (II) chloridetetrahydrate and Mercury (II) chloride were obtained from British Drug House (BDH) chemical limited company. Instrumentation Melting point was determined on "Gallenkamp Melting point Apparatus". Elementalmicroanalyses C.H.N. were carried out using Euro Vector EA 3000 A Elemental Analysis (Italy).FT-IR measurements were recorded on Shimadzu- spectrophotometer type CECIL, England, in range (200-1000) nm in ethanol . 1 H and 13 C-NMR spectra were recorded by using a Bruker 300 MHZ (Switzerland), Chemical shift was recorded in δ(ppm) unit downfield internal reference (TMS),using DMSO-d6. Conductivity measurements were obtained from WTW conductivity meter by using 10 -3 M of ethanol. Magnetic susceptibility measurements were obtained at room temperature on using Bruker BM6 instrument. Metal analyses of complexes were determined by Atomic Absorption (A.A.) Technique. Preparation of Schiff base ligand Preparation of 4-(2-hydroxy-1, 2-diphenylethylideneamino)-1, 5-dimethyl- 2-phenyl-1H-pyrazol-3(2H)-one (L 1 )[20] 4-aminoantipyrine (0.005 mol, 1.01 g) and benzoin (0.005mol, 1.64 g) in ethanol solvent (25 mL) added few drops of glacial acetic acid to solution the mixture was refluxed for (6 hr), then by the filtration and recrystallized for the product precipitate . m.p (145 o C) (Yeild 76 %)(Scheme 1). Chemistry | 169 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 N N H3C H3C O C N OHN N H3C H3C O NH2 + C O HO ref lux 6 hrs. Ethanol/HCA + H2O Preparation of (L 2 ) The ligand (L 2 ) was prepared by condensation of ligand (L 1 ) (0.005 mole, 1.73 g) which was in 50 mL of ethanol solution and refluxed with (0.005 mole, 0.66 g) of 3-amino benzoic acid adding glacial acetic acid about 3 drops for (30 hr.), a solution was obtained. Then by evaporation , recrystallized and dried over CaCl2 (Scheme 2). Preparation of metal complexes Metal salt (CoCl2.6H2O, NiCl2.6H2O, CuCl2.2H2O, MnCl2.4H2O and HgCl2) dissolved and mixed with(0.001mol, 1.05 g)of the ligand (L 2 ) in(30 mL) the ethanol solution ,then refluxed on a water bath for (1 hr). The result was filtered, washed with ethanol and dried (Scheme 3). Chemistry | 170 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Results and Discussion 1 H NMR spectrum The 1 H-NMR spectrum of L2 solution shows the next signals: DMSO at δH 2.49,N-CH3 at δH 3.38,OH-CHat δH 4.68, C6H5 as multiplet at δH6.54~8.78Ph-NH- at δH 8.78. The peaks observed at δH 12.31 and at δH 2.07, are attributable to the acidic OH group present in the 3- aminobenzoic acid and alcoholic OH group present in benzoin moiety[5], respectively show in Table(6). The 13 C-NMR spectrum of L2 solution shows the signals at:(8.64 for =C-CH3 group);( 33.85 for N-CH3 group); (40.59 for DMSO); (75.14 attributed to -C-OH moiety);( 105.08 for=C-N); (123.56~134.17) to 4 benzene rings) and( 149.27 for C=C in antipyrine).The peak observed at 165.79is due to the acidicCOOH group present in the3- aminobenzoicacid[6].The peaksobserved at (161.17 and162.54) were attributable to the twoC=N imine groups. Infrared spectra of ligand and complexes The spectrum of free ligand showed band 3518 cm -1 which was due to υ (O-H) of benzoin[7].This band is absent in the spectra of complexes indicating the dissociation of the alcohol proton on complexation and involvement of alcohol anionic oxygen in coordination[8].The spectra of ligand showed band at(3388)cm -1 due toυ(O-H) of 3-amino benzoic acid [9].All the complexes displayed the bands at range (3426-3409)cm -1 and the weak bands at(871-852cm -1 )were due to ν(OH) and δ(OH) for refer to presence to coordinate aqua (H2O)[10]. All the complexes displayed this band at range (3388-3368)cm -1 and the weak bands at(871-852cm -1 )were due to ν(OH) and δ(OH) for refer to presence to coordinate aqua (H2O)[11].The absorptions at (1660)cm -1 and (1604)cm -1 in ligand showed two{stretching vibration} υ (C=N) of imine nitrogen. These bands shifted to lower wave numbers at range (3429-3382) cm -1 in the complexes suggesting theco-ordination of the two azomethine nitrogen to the metal centers.The spectra of the free ligand showed band at (1157) cm -1 due to υ(C-O) of benzoin. This band shifted to higher wave numbers at range (1173-1165) cm -1 in the complexes suggesting the co-ordination of the oxygen atom of benzoin. The appearance of a new non-ligand band around (547-516) and (466-434) cm-1 cm -1 in all complexes due to υ (M-O) and υ (M-N)substantiates it[11]. given in Fig. 2. N N H3C H3C N C N OH C HO O MCl2 N N H3C H3C N C N O C OH O M OH2 OH2 Cl M=Co,Ni, Cu, Mn and Hg Chemistry | 171 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Magnetic measurement and electronic spectra The UV-Vis spectrum of the ligand is characterized mainly by two bands at 385 nm (25839cm -1 ), and 275 nm (36363cm -1 ), which may be assigned to {n → π*and π → π* transitions}. These transitions were also found in the spectra of the complexes[13], but they were shifted towards lower frequencies/ (Fig. 3). i) Co (II) complex shows exhibits absorption at(657 nm (15220cm -1 ) and (486) nm (20576cm -1 ). These bands may be assigned to the transitions:{ 4 T1g (F) → 4 T1g (p)and 4 T1g (F) → 4 A2g (F)(d-d)} transitions respectively. [14]. (ii) The electronic spectrum exhibits two bands at (543) nm (18416cm -1 ) and (668) nm (15197cm -1 ) which may assigned to { 3 A2g → 3 T1g (P)and 3 A2g → 3 T1g (F)}, respectively in octahedral [15]. (iii) Cu (II) spectrum shows band centered at 530 nm (18867cm -1 ) which may assigned to 2 Eg → 2 T2g transition in octahedral. (iv) Mn (II) spectrum, show absorption at (553nm)(18083 cm -1 ) due to{ 6 A1g(S) → 4 T2g (G) } in octahedral. (v) Mercury (II) complex is diamagnetic moment for d 10 ions andthe electronic spectra there complex do not show any d-d band in Fig. 4. [18]. magnetic moment values of the Co(II), Cu (II), Ni(II) ,Mn(II) complexes (4.32,1.78, 5.32 , 3.33 B.M) Conductivity measurement The conductivity values showed the complexes in range (19.56-12.18) ohm -1 .cm 2 . Mole - 1 [19].These values suggested that the complexes are non-electrolytes .According to these results the structural formula of the complexes shown in (Scheme 3). Biological Activities The biological activities of the prepared ligand and its complexes were studied by using inhibition method [21,22] for four types of pathogenic bacteria. Two types of bacteria were gram positive which are Staphylococcus aureus and Bacillus; the second two were grams negative which are Escherichia coli and Pseudomonas. The data reveal that all compounds have good biological activity and some complexes have higher activities than the free ligand. This may be due to that the chelation considerably reduces the polarity of the metal ion mainly because of partial sharing of its positive charge with the donor groups and possible electron delocalization over the whole cheated ring such, chelation could also enhance the lipophilic character of the central metal atom, which subsequently favors its permeation through the lipid layer of the cell membrane [26, 32]. Diameter of zone of inhibition Table. 4 and (Fig.7) Conclusion The ligand L 2 and its complexes have been prepared. The geometry is proposed for all complexes show {octahedral stereochemistry}. Chemistry | 172 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 References 1. Dhar, D. N. and Taploo C.L., (1982);Schiff bases and their applications. J Sci.Ind Res, 41(8):501-506. 2. Maria D.M.C., Ribeiro da silva, Jorge M.G., Ana L.R.S., Paula C.F.C. and Bernd Schroder et al., (2004); Molecular Thermochemical Study of Ni(II), Cu(II) and Zn(II) Complexes with N,N ’- bis(salicylaldehydo) ethylene diamine, J.Mol. Catal. A: Chem. 224, 207-212. 3. Cotton, A.F. and Wilkenson, G., Advanced inorganic chemistry(1988), 5th edition; John Wiley and Sons USA, 37-50. 4. Keypour, Salehzadeh, H.S. and Parish, R.V.,(2002); Synthesis of two Potentially Heptadentate (N4O3)Schiff base Ligand Derived from Condensation of Tris-(3- aminopropyl) amine and Salicylaldehyde or 4-hydroxysalicyl aldehyde Ni(II) and Cu(II) complexes of the former ligand, J. Molecules, 7,140-144. 5. Kirshener,Wei S.Y.K.; Francis, D. and Bergman, J.H., (1966); Anticancer and potential antiviral activity of complex inorganic compounds, J. Med. Chem. 9: 369- 372. 6. Lever, A.B.P., (1984); Inorganic Electronic spectroscopy, Elsevier, New York. 7. Kojima, M.; Taguchi, H.; Tsuchimoto, M. and Nakajima, K., (2003); Coordination Chemistry Reviews, 237, 183-196. 8. Long, N.J., (1995); Organometallic compounds for nonlinearoptics: the search for en- lightenmentAngewandte Chemie International Edittion 34, 21. 9. Cusumano, M.; Messina, M.A.; Nicolo, F.; Pietro, M.L.D.; Rotondo, A., and RotondoE.;(2004) NMR Study of L-ShapedQuinoxalinePlatinum(II) Complexes - Crystal Structure of[Pt(DMeDPQ)(bipy)](PF6)2; Eur. J. Inorg. Chem., 4710-4717. 10. Di Bella, S.; Fragala, I.; Marks, TJ and Ratner, MA (1996); Journal of American Chemical Society, 118, 12747-12751. 11. Eichhorn, G.L. and Marzilli, L.G., (1994); Advances in Inorganic Biochemistry Models in Inorganic Chemistry; PTR prentice-Hall, Inc. 12. Avaji, P.G.; Kumar, C.H.V.; Patil, S. A.; Shivananda, K. N. and Nagaraju, C.,(2009); European Journal of Medicinal chemistry doi: 10.1016 /j.ejmech.03.032. 13. Burger, K.,(1973);Coordination Chemistry Experimental Methods London Bult/ Worths and Co publishers Ltd. 14. Cotton, A.; Fand Wilkenson, G., (1988); Advanced inorganicchemistry,5th edition John Wiley and Sons USA, 37-50. 15. Canpolat, E. and Kaya, M., (2004);Studies on mono nuclearchelates derived from substituted Schiff-base ligands (part2) synthesis and characterization of a new 5- bromo salicylidenpaminoacetophenoneoxime and its complexes with Co(II), Ni(II), Cu(II) and Zn(II) J. Coord.Chem. 123. 16. Chakravarty, A.R.; Nreddy, A. P.; Santra, B.K. and Thomas, A.M., (2002); Copper Complexes as Chemical Nucleases, J. Indian. Chem. Sci., 114, 319-401. 17. Chandra, S. and Sangeetika, J., (2004); EPR and electronic spectrum studies on copper (II) complexesof some N-O donor ligands, J. Indian Chem. Soc, 81, 203-206. 18. Ferreira ,E.I. and Tavares, L.C.,(2002); “Potential tuber culost atic agents. Topliss application on benzoic acid [(5-Nitro-thiophen-2-yl)-methylene]-hydrazide series” Bioorg. Med. Chem., 10, 557-560. 19. Anand Kumar, S. Gupta and Barhate VD, (2012) Synthesis, Characterization and Study of Microbiological Activity of Some Transition Metal Ion Complexes with [N-(o- Chemistry | 173 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 hydroxybenzylidene)Pyridine-2-Amine] (NOHBPA), Res. J. of Pharma., Bio. and Chem. Sci., 3,3,10103 -10126. 20. Raman, N.; Sobha, S.and Mitu, L.,(2013); Design, synthesis, DNA binding ability, chemical nuclease activity and antimicrobial evaluation of Cu(II), Co(II), Ni(II) and Zn(II) metal complexes containing tridentate Schiff base, Journal of Saudi Chemical Society,17, 151–159. 21. Patole, Shingnapurkar, D.; Padhye, S. and Ratledge, C.,(2006); “Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents”, Bioorg. Med. Chem.Lett., 16, 1514-1517. Table (1): Physical characterization, analytical data of the ligand and its complexes Table (2): IR values (wave number υʹ) cm –1 for the ligand(L 2 ) and its complexes Compounds Molecular Weight Colour Yeild% M.P. %Elemental Analysis Found % (Calculated) C H N Cl M L 2 516.59 Light brown 80 202 59.98 (74.40) 5.66 (5.46) 10.43 (10.85) - - [Co(L 2 )(H2O)2Cl] 646.0 Brown 74 230 59.98 (59.50) 4.79 (4.84) 8.44 (8.67) 5.12 (5.49) 9.89 (9.12) [Ni(L 2 )(H2O)2Cl ] 645.76 Brown 76 221 59.43 (59.52) 4.67 (4.84) 8.09 (8.68) 5.46 (5.49) 9.78 (9.09) [Cu(L 2 )(H2O)2Cl ] 650.61 Deep brown 82 236 58.57 (59.07) 4.58 (4.80) 8.34 (8.61) 5.32 (5.45) 9.45 (9.77) [Mn(L 2 )(H2O)2Cl ] 642.0 Brown 72 227 59.08 (59.87) 4.26 (4.87) 8.33 (8.73) 5.00 (5.52) 7.89 (8.56) [Hg(L 2 )(H2O)2Cl ] 788.17 Off- White 71 223 48.00 (48.80) 3.64 (3.97) 6.89 (7.11) 4.87 (5.50) 25.45 (25.47) Compound υ(OH) υ(CH)aroma. υ(CH)alipha υ(C=O)carboxyl υ(C=N) υ(C=C) υ(C-O) υ(OH) υ(M–N) υ(M–O) L 2 3518 3388 3059 2918 1708 1660 1604 1546 1157 - - [Co(L2)(H2O)2Cl ] 3417 3373 3062 2923 1706 1639 1585 1585 1171 864 523 443 [Ni(L2)(H2O)2Cl ] 3429 3368 3096 2835 1705 1620 1590 1590 1165 852 516 466 [Cu(L2)(H2O)2Cl ] 3409 3388 3088 2967 1707 1624 1587 1587 1168 875 535 457 [Mn(L2)(H2O)2Cl ] 3405 3378 3103 2988 1704 1630 1582 1582 1170 863 547 434 [Hg(L2)(H2O)2Cl ] 3412 3382 3075 2974 1707 1623 1584 1584 1173 871 520 448 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763143/table/T1/ Chemistry | 174 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table ( 3): UV.- Visible data of the compounds Compound µeff ᴧm S.Cm 2 molar -1 λnm υ–wave number cm –1 Assignments L 2 - - 275 36363 π→π* 385 25839 n→π* [Co(L 2 )(H2O)2Cl] 3.98 17.8 289 34602 L.F 486 20576 4 T1g(F)→ 4 T1g(P) 657 15220 4 T1g(F)→ 4 A2g(F) [Ni(L 2 )(H2O)2Cl] 3.57 14.5 298 33557 L.F 543 18416 3 A2g(F)→ 3 T1g(P) 668 15197 3 A2g(F)→ 3 T1g(F) [Cu(L 2 )(H2O)2Cl] 1.83 12.6 295 33898 L.F 530 18867 2 Eg → 2 T2g [Mn(L 2 )(H2O)2Cl] 5.76 12.7 297 33670 L.F 376 26595 L.F 553 18083 6 A1g(s)→ 4 T2g(G) [Hg(L 2 )(H2O)2Cl] - 16.9 290 34482 L.F 407 24570 C.T Table (4):Diameter of zone of inhibition (mm)of L 2 [Hg(L2)(H2O)2Cl] [Mn(L 2 )(H2O)2Cl] [Cu(L 2 )(H2O)2Cl] [Ni(L 2 )(H2O)2Cl] [Co(L 2 )(H2O)2Cl] L 2 Comp. 12 13 6 7 8 4 Escherichia. Coli 9 6 9 9 6 6 Staphylococcus aureus 15 11 12 10 11 10 Bacllus 7 9 14 14 10 8 pseudmonas Table (5) 1 H-NMR for ligand (L 2 ) (ppm in DMSO) Table (6): 13 C-NMR forligandS (L 2 ) (ppm in DMSO) 3HC-C 3HC-N DMSO HC-HO =C-N 5H6C C=C C=N OOHC 8.64 33.85 40.59 75.14 105.08 123.56~134.17 149.27 161.17 162.54 165.79 HO-HC DMSO 3HC-N HC-HO 5H6C HCOO 2.07 2.49 3.38 4.68 6.54 ~8.78 12.31 Chemistry | 175 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (1):IR spectrum of ligand (L 2 ) Figure (2):IR spectrum of [Co(L2)(H2O)2Cl ] complex Figure (3): UV-Visible spectrum of the ligand(L 2 ) Chemistry | 176 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (4):Electronic spectrum of Ni(L 2 )(H2O)2Cl]complex Figure (5): The 1 H-NMR spectrum of the ligand (L 2 ) Figure (6): The 13 C-NMR of the ligand (L 2 ) Chemistry | 177 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure(7):Difference between the antimicrobial activity of ligand(L2)& metal complexes 0 2 4 6 8 10 12 14 16 D im e te r o f in h ib it io n z o n Concetration of ligand and its complexes Escherichia. Coli Staphylococcus aureus Bacllus Pseudmonas Chemistry | 178 2016( عبم 3العذد ) 29هجلت إبي الهيثن للعلىم الصزفت و الخطبيميت الوجلذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 مع بعض ايونات انفهزات N2Oسهوك انتناسق نهيكاند مانح انخزرجي عهي مضر لظن الىيويبء/الهيثن( )أبيجبهعت بغذاد /وليت الخزبيت للعلىم الصزفت 5161/نيسان/2قبم في: ،5162/كانون األول/61استهم في: انخالصة -4( لوعمذاث الىىبلج والٌيىل والٌحبص والوٌغٌيش والشئبك الذي حضز هي حىبثف(L2ليىبًذ لبعذة شف ثالثي الظي Aminoantipyrine هع Benzoin ثن الليىبًذ (L1) 3هع-amino benzoic acid ولذ شخص الليىبًذ والوعمذاث ببطخخذام )فمظ 13االشعت الوزئيت وفىق البٌفظجيت و االشعت ححج الحوزاء و الزًيي الٌىوي الوغٌبطيظي للبزوحىى والىبربىى (N, N, O)للليىبًذ(وححليل العٌبصز وليبطبث الحظبطيت الوغٌبطيظيت سحيث وجذ اى الليىبًذ شف بيض يظله وطبيعت ثالثي الظي (الىيويبء الزيبضيت . والخزحج البيئت الثوبًيت الظطىح لىل الوعمذاث . هعظن الوزوببث الوحضزةوجذ 1:1حشىل بخٌبطمه هع الفلش ) and (Bacillussubtilis) ,(Escherichia coli) ,(Staphylococcus aureus)اًهب حوخله فعبليت حثبيظ البىخزيب (Pseudomonas aeroginosa).. .اهيٌى حبهض البٌشون-3شف وثالثي الظي وهعمذاث فلشيت و لبعذة :انمفتاحية انكهمات