Conseguences of soil crude oil pollution on some wood properties of olive trees https://doi.org/10.30526/31.2.1962 Chemistry | 115 2018( عام 2العدد ) 13مجلة إبن الهيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Schiff Base Complexes: Synthesis, Characterization and Study of Bioactive Such As Antibacterial and Antifungal Kaleda kalaf gabar Ministry of Education Ahmad.alani5102@gmail.com Received in:16/October/2017, Accepted in:6/June/2018 Abstract The complexes of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol ) (L) with Mn(II), Fe(II), Co(II) and Ni(II) were prepared. The Schiff base and complexes have been characterized by FT-IR, 1H-NMR, UV-Vis, LC-mass spectra, magnetic moment, elemental microanalyses (C.H.N.), chloride containing, atomic absorption and molar conductance. The Schiff base, metal salts and complexes were also screened for their bioactivity such as antibacterial and antifungal. Keyword: Schiff base complexes, antibacterial and antifungal, bioactive studies. https://doi.org/10.30526/31.2.1962 mailto:Ahmad.alani5102@gmail.com https://doi.org/10.30526/31.2.1962 Chemistry | 116 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Introduction Schiff bases are organic compounds which contain the (C=N) azomethine group [1]. The azomethine group plays an essential role for showing excellent bio active and any groups another of Schiff base and Schiff base coordination with metal ions does the same including (antifungal, antibacterial, anticancer, anti diabetic and anti inflammatory [2-6]. The interaction of these metal ions and donor Schiff base ligands give different geometries complexes and these complexes are bio active [7], heterocyclic 4-amino-2,6- dihydroxypyrimidine compound containing these (O-H) and (NH2) groups is very bio active [8]. In this work, a new efficient route for the synthesis of Schiff base ligand and their metal complexes has been studied. The biological activity of these ligands, metal salts and their complexes is evaluated Experimental Materials and Methods The following chemicals were commercially available and were used without further purification: 4-Amino-2,6-dihydroxypyrimidin and 4-Di methyl amino benzaldehyde DMSO, pure ethanol, methanol from Fluka, acetic acid glacial from Riedel, FeCl2.H2O, Aldrich) (diethyl ether, CaCl2, NiCl2.6H2O, MnCl2.4H2O and CoCl2.6H2O, Reedel). Instrumentation FT-IR spectra were recorded in the range (4000-400) cm-1 on a Shimadzu 3800, spectrometer as KBr disc. Electronic absorption spectra were recorded in the range (200-900) nm for solution in DMSO (1×10 -3) on a Shimadzu 160 Spectrophotometer. Elemental (C.H.N) analyses were carried out on a Perkin-Elmer automatic equipment model 240.B. Mass spectra were obtained by using LC-Mass 100P Shimadzu. Melting points were obtained on a Buchi SMP-20 capillary melting point apparatus and are uncorrected. Metal ratios were identified using a Shimadzu (A.A) 680G atomic absorption Spectrometer. Conductivity measurements were measured for solution in DMSO (1×10 -3) using a Jenway 4071 digital conductivity meter at room temperature. Magnetic properties were measured using (Magnetic susceptibility balance model MSR-MKi). Synthesis of Schiff base Ligand: 6-[Hydroxy - benzylidene)-amino]- pyrimidine-2,4-diol (L): A solution of 4-amino-2,6-dihydroxypyrimidine (1 g, 7.867 mmol) in ethanol (30 ml) was mixed with a solution of 2-Hydroxy-benzaldehyde (0.960 g, 7.867 mmol). The reaction mixture was stirred and heated at (40-50)°C for 3hrs. A dark yellow precipitated was formed, which was washed with diethyl ether and recrystallized from methanol: water (1:1) mixture. The product was dried via anhydrous CaCl2 in vacuum as shown in Scheme (1), and shown the HOMO & LUMO for ligand theoretical Figure (1). The yield is 93.66%, mp.196°C. 1H-NMR (DMSO-d6, ppm):4.493, 3.426 and 3.024 (s, 3H, O-H phenol), 7.008- 8.084 (m, 5H, arom-CH), 9.197(s, 1H, N=C-H azomethine). https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 117 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Scheme (1): Preparation of the ligand (L) Figure (1): HOMO & LUMO for ligand Synthesis of Schiff Base Complexes A solution of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol) (1 g, 4.326 mmole) in methanol was added gradually with stirring to 0.851g, 0.622g, 1.0249g and 1.024g respectively, of MnCl2.4H2O, FeCl2.H2O, CoCl2.6H2O, and NiCl2.6H2O, respectively. The reaction mixture was allowed to reflux and the solid was collected by filtration and recrystallized from ethanol and dried at room temperature, showed in Scheme (2), Figure (2) shows: 3D structure of Co(II) complex. Physical properties and elemental microanalysis for the complexes are given in Table (1). Scheme (2): Preparation of the complexes https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 118 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (2): 3D structure of Co(II) complex Study of Bioactivity Schiff base, metal salts and complexes were screened against staphylococcus aureus (gram positive) and Pseudomonas aeruginosa (gram negative) bacteria as well fungi like Penicillium expansum, Fusarium graminearum, Macrophomina phasealina, and Candida albicans, by using the wall agar diffusion method. Using solvent (DMSO), the concentration of the compounds in this exposure was (1×10-3 M) by using disc sensitivity test. This method involves the exposure of the zone inhibition toward the diffusion of micro-organism on agar plate. The plates were incubated for (24 and 48) hrs of bacteria and fungi respectively at 37 °C. Results and Discussion Complexes were obtained upon reaction between metal ions and bidentate Schiff base (6- [Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol) in mole ratio (1:2) (M:L). The synthesized Schiff base and its complexes are very stable at room temperature in the solid state. The compounds are generally soluble in hot DMF and DMSO. The yields, melting/decomposition points, elemental micro analyses of Schiff base and its metals complexes are presented in Table (1). It is found that the analytical data are in a good agreement with the proposed stoichiometry of the complexes. Schiff base was melting point at temperatures 196ºC, while all complexes were decomposed at temperatures higher than (265- 300) ºC. The ligand and its metal complexes have dye character due to the high molar extinction constant. Molar conductance values were found in the range (10-14) S. cm2 mol-1 for all complexes which indicate that they are non-electrolytes [9]. These were determined in (DMSO) solution (1 ×10-3M). Physical properties and elemental microanalysis are listed in Table (1). https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 119 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Table (1): Microanalysis results and some physical properties of the ligand and its complexes Element analysis % Calc. (Found) m.p. °C Molecular Formula =MWt Sam N H C M 18.17 )20.01( 3.92 )3.01( 57.14 )57.97( 196 C11H9N3O3 231.21 L 16.31 )15.18( 3.13 )4.11( 51.27 )51.09( 10.66 )9.99( 300 d C22H16N6O6Mn 515.34 LMn 16.28 )15.18( 3.12 )4.11( 51.18 )49.79( 10.82 )9.99( 281 d C22H16N6O6Fe 516.24 LFe 16.18 )15.18( 3.11 )4.11( 50.88 )49.89( 11.35 )10.99( 267 d C22H16N6O6Co 519.33 LCo 16.19 )15.28( 3.11 )4.09( 50.90 )49.09( 11.31 )10.99( 265 d C22H16N6O6Ni 519.09 LNi d = decompose Mass spectra for complexes The LC-Mass spectra of complexes [L, LMn and LFe] Figure (3), Figure (4) and Figure (5) showed the parent ion peaks at (M/Z=231.4), (M/Z = 515.2) and (M/Z=516.4) corresponding to (M= C11H9N3O3), (M= C22H16N6O6Mn) and (M= C22H16N6O6Fe) respectively. The fragmentation pattern is shown in Table (2). Table (2): The fragmentation pattern data for ligand and its metal complexes Compounds Peaks L = C11H9N3O3 = 231.21 231.4, 159 LMn= [Mn (L)2 ] C22H16N6O6Mn= 515.34 515.2, 282.2, 164.2 LFe = [Fe (L)2] C22H16N6O6Fe= 516.24 516.4, 283.2, 282.2, 164.2 https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 120 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (3): LC-mass spectrum of (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4- diol) Figure (4): LC-mass spectrum of [Mn (L)2] https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 121 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (5): LC-mass spectrum of [Fe (L)2] IR Spectra The IR spectrum of the ligand (6-[Hydroxy- benzylidene)-amino]-pyrimidine-2,4-diol) (L) and its complexes show characteristic bands at 3066 and 3047 cm-1 due to the ν(CH) aromatic, 2988, 2994 cm-1 ν(CH) aldehyde, 3500 cm-1ν(O-H) phenol,1655, 1608 cm-1 υ(C=C) and 1713 cm-1 υ(C=N) azomethine, functional groups, respectively, for the ligand[10]. The IR spectra of the complexes exhibited ligand bands with the appropriate shifts dueto complexes formation [10,11]. This indicates that the ligand was coordinated with the metal ions through the (N) azomethine group, and (O) phenol group. At lower frequency the complexes exhibited new bands around (532-470), and (448-420) cm-1 assigned to the υ(M-N) and υ(M-O), respectively [12,13]. https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 122 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Table (2): FT-IR spectral data (wave number υ-) cm-1 for the ligand and its complexes Compounds υ (O-H) phenol υ (C-H) aromatic υ (C-H) aldehyde C=C C=N M-N M-O L 3500 3066 3047 2988, 2994 1655 1608 1713 - - LMn 3516 3047 2824 1605 1643 470 497 424 LFe 3624 3045 2889 1621 1604 1667 479 520 448 420 LCo 3634 3040 3043 2824 1655, 1601 1676 470 532 428 LNi 3516 3048 2854 1643 1605 1647 498 563 424 470 Figure (6): FT-IR spectrum of (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol) https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 123 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (7): FT-IR spectrum of [Co (L)2] Figure (8): FT-IR spectrum of [Ni (L)2] https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 124 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Electronic Spectral The electronic spectrum of the ligand exhibits intense absorption at 465,336 and 268 nm attributed to n→ π* and π→π* respectively, Figure (9). The electronic spectrum of Co(II) complex showed three broad peaks at 663,341and 271 nm assigned to 4A2→ 4T1(p), n→π*and π →π* respectively, suggesting a tetrahedral geometry Figure (10). The electronic spectrum of Ni(II) complex showed five broad peaks at 615, 490 attributed to 4A2→ 4T1(p) and 407, 322 nm and 268 nm assigned to n→π* and π →π* respectively, suggesting a tetrahedral geometry [14,15]. Mn(II) Complex showed strong bands at 271nm and 341nm, whic attributed to (π→π*) and (n →π*), respectively, while the peak at 485nm attributed to charge transfer (C.T) The shoulder at 666 nm due to 6A1→ 4E(D), finally the band at 508 nm belong to 6A1→ 4T2(D), these values are accepted for tetrahedral complex. The dark-green complex of Fe(II) showed band at 275 and 351nm related to π→π* and charge transfer, respectively. The peak at 663 nm caused by the electronic transition 5E(D)→ 5T2(D)suggesting an tetrahedral geometry [14, 16]. Magnetic Moments In this case the magnetic moment for Mn(II), Fe(II), Co(II) and Ni (II) complexes are 4.656, 4.7, 3.88 and 2.93 B.M respectively which confirmed the tetrahedral geometry for complexes [16]. All the absorption bands were fully assigned in Table (3). https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 125 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Table (3): Electronic data magnetic moment and molar conductivity for ligand and its complexes compounds λmax nm ύ cm-1 Assignment μeff M.B. L 465 336 268 21505.37 29761.90 37313.43 n→π* n→π* π →π* - LMn 666 508 485 341 271 15015.01 19685.04 20618.55 29325.51 36900.36 6A1→ 4E(D) 6A1→ 4T2 (D) C.T n→π* π→π* 4.656 LFe 663 351 275 15082.95 28490.03 36363.6 5E(D)→ 5T2(D) C.T π→π* 4.7 LCo 663 341 271 15082.95 29325.51 36900.36 4A2→ 4T1(p) n→π* π →π* 3.88 LNi 615 490 407 322 268 16260.16 20408.16 24570.02 3105590 37313.43 3T1→ 3T1(p) n→π* n→π* π →π* 2.93 Figure (9): UV-Vis Spectrum of Ligand L https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 126 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (10): (UV-Vis) Spectrum of complex CoL Antimicrobial activity of ligand, metal salts and all complexes Schiff base, metal salts and their complexes of transition metals were screened for antibacterial and antifungal activity. The entire tested compound exhibited variable antibacterial and antifungal activity as shown in Figures (11) and (12). Ligand exhibited activity antibacterial against S. aureus and P.aeruginosa,It’s known that the activity is higher in complexes and metal salts than that in ligand. While the ligand and some salts metals exhibiting antifungal strong activity against P.expansum and C. albicans, by not exhibited antifungal activity against F.graminearum and M. phaseolina as compared with the antimicrobial activity with some metal complexes which exhibited antifungal activity top than ligand, exhibited some complexes. Prepared antifungal activity strong against F.graminearum and M.phaseolina as compared with the ligand which did not exhibite antimicrobial activity, from the data shown in Table (4) and Figures (13-18) a lot of compounds exhibited bio activity against 2 kinds of bacteria and 4 kinds of fungal. https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 127 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Table (4): Antibacterial and antifungal activities for ligand, metal salts and its metal complexes Comp. Staphylococcus aureus gram(+) Pseudomon as aeruginosa gram (-) Penicillium expansum Fusarium expansum Macropho- -mina phaseolino Candida albicans A B A B A B A B A B A B L 35 32 35 32 46 36 - - - - *** *** MnCl2.4H2O 40 18 20 14 - - - - - - - - FeCl2. H2O 30 12 15 - - - - - - - - - CoCl2.6H2O 40 25 23 18 30 18 26 15 - - 20 10- NiCl2.6H2O 15 12 16 15 38 28 38 33 - - - - [Mn (L)2] 24 - 20 15 12 - 12 - 24 20 12 8 [Fe (L)2] 24 - 14 10 - - - - 20 15 - - [Co (L)2] 20 12 14 12 - - - - 25 14 - - [Ni (L)2] 18 - 20 18 23 20 - - 25 15 - - Con 0 0 0 0 0 0 0 0 0 0 0 0 ***= highly active; A= Conc. ; B= dilu. https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 128 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Staphylococcus aureus gram(+), with A= Conc. ; B= dilu Pseudomonas aeruginosa gram (-), with A= Conc. ; B= dilu Figure (11): The antibacterial activity of compounds against S. aureus and P. aeruginosa 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 129 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Penicillium expansum, with A= Conc. ; B= dilu Fusarium expansum, with A= Conc. ; B= dilu Macropho--mina phaseolino, with A= Conc. ; B= dilu 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A B 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A B https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 130 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Candida albicans, with A= Conc. ; B= dilu Figure (12): The antibacterial activity of compounds against P.expansum, F.graminearum, Macropho--mina phaseolino and Candida albicans Figure (13): Staphylococcus aureus gram (+) for compounds 0 13 25 38 50 cont CoCl2.6H2O [Co (L)2] A B https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 131 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (14): Pseudomonas aeruginosa gram (-) for compounds https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 132 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (15): Penicillium expansum for compounds https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 133 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (16): Fusarium expansum for compounds https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 134 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (17): Macrophomina phaseolino for compounds https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 135 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 Figure (18): Candida albicans for compounds https://doi.org/10.30526/31.2.1962 https://doi.org/10.30526/31.2.1962 Chemistry | 136 2018( عام 2العدد ) 13لمجلد ا مجلة إبن الهيثم للعلوم الصرفة والتطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 31 (2) 2018 References 1. Al-Zoubi, W.; Al-Hamdani, A. A. S. and Gun Ko, Y. (2017). Schiff bases and their complexes: Recent progress in thermal analysis. Separation science and technology. 52(6): 1052-1069. 2. Suman, M.; Suparn, G. and Bharti, J.(2010). Synthesis, Spectral and Biological Studies of Some Metal Chelates of Bidentate Schiff Base Derived from Acetazolamide J. Ind. Council Chem. 27( 2): 173-176. 3. Al-Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D. and Gun Ko, Y. (2018). Synthesis, characterization, and biological activity of Schiff bases metal complexes, Journal of Physical Organic Chemistry. 31(2): 1-13. 4. Palaska, E.; Sahin, G;Kelicen, P.; Durlu , N.T. and Altinok,G.(2002).Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides 1,3,4-oxadiazoles-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones.Farmaco,57(2):101-107. 5. Yan, Z.; Ren-Zhong, Q.; Peng-Fei, X.; Zi-Yi, Z. and Qin ,W. (2002). Li-Min Mao and Kai-Bei YuSynthesis and Antibacterial Activities of 2-(1-Aryl-5-Methyl-1,2,3-triazol-4-yl)- 1,3,4-Oxadiazole Derivatives. J Chin Cheml Soc., 49(1) 369-373. 6. Al-Hassani, R. A.; Sinan, M. M. and Abdullah, S. M. (2013). Synthesis, characterization, photo degradation and biological study of Schiff base of Isatin derivative with Zr(IV), Rh(III) and Pd(II) Ions. Peak J. Phys. Environ. Sci. Res.; 1(6):95-105. 7. Sarika, R. Y. Amit, R. Y. Gaurav, B. P. and Anand, S. A. (2003). “Synthesis and characterization of transition metal complexes with N, O-chelating Hydrazone Schiff base ligand”, American-Eurasian Complexes Containing Heterocyclic Nitrogen Donor Ligands”, Chem Pap ., 57 (2): 91-96, 8. Muna, A. (20130.Coordination Behavior of N/O donor ligand with some transition metals. Acta Chim. Pharm. Indica.; 3(2):127-134. 9. Geary, W. J. The used conductivity measurements inorganic solvents for the characterization of coordination compounds. Coord. Chem. Rev.1971:7-81. 10. Sliverstien R.; Bassler G.; Morrill T. (2005). Spectrometric Identification of Organic Compounds. 7th addition, John Wiley, New York, 11. Al-Hamdani, A. A. S. and Shaker Sh. A. (2011). Synthesis, characterization, Stuctural Studies and Biological Activity of a New Schiff Base–Azo Ligand and its Complexation with Selected Metal Ions. Oriental J. Chem.; 27 (3):825-845. 12. Al-Hamdani, A.A. S.; Balkhi, A. M. and falah, A. and Shaker, Sh. A. (2015). New Azo-Schiff base Derived with Ni(II), Co(II), Cu(II), Pd(II) and Pt(IV) Complexes: Preparation, Spectroscopic Investigation, Structural Studies and Biological Activity. J. Chil. Chem. Soc.; 60(1): 2774-2785. 13. Nakamaoto, N. (2009).Infarared and Raman Spectra of Inorganic and Coordination Compounds, 6thEd, part 2 John Wiley and Sons, Inc., New Jersy. 14. Lever A. B. P., (2003). From Coelho to Inorganic Chemistry: A Lifetime of Reactions - By Fred Basolo, Profiles in Inorganic Chemistry, John P. Fackler Jr. (Series Ed.), Kluwer Academic Publishers/Plenum Press, New York, NY,Hardbound., Coordination Chemistry Reviews., 247 (1): 197-197 (1) 15. Al-Hamdani,A.A.S and Al-Zoubi, W. (2015). New metal complexes N3 tridentate ligand: Synthesis, spectral studies and biological activity. Spectrochimica Acta Part A : Mole.and Biomol., 137 : 75-89. 16. Al-Hamdani, A.A. S.; Balkhi, A. M. and Falah, A. (2013). Synthesis, Spectroscopic and biological activity Studies of Azo-Schiff base and Metal Complexes derived from 5- Methyl tryptamine. Damascus Uni. J. for Basic Sci.; 29(2):21-41. https://doi.org/10.30526/31.2.1962