139 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS https://doi.org/10.30526/32.1.1997 Vol. 32 (1) 2019 ๐…๐ข๐ฑ๐ž๐ ๐๐จ๐ข๐ง๐ญ๐ฌ ๐‘๐ž๐ฌ๐ฎ๐ฅ๐ญ๐ฌ ๐ข๐ง ๐‘ฎ โˆ’ ๐Œ๐ž๐ญ๐ซ๐ข๐œ ๐’๐ฉ๐š๐œ๐ž๐ฌ Anaam Neamah Faraj anaamnema1@gmail.com Salwa Salman Abed salwaalbundi@yahoo.com Departmen of Mathmatics, College of Education for pure sciences, Ibn Al Haitham, University of Baghdad, Baghdad, Iraq. Article history: Received 11 October 2018,Accepted 26 November 2018,Publish February 2019 Abstract In this paper, the concept of ๐น โˆ’contraction mapping on a ๐บ-metric space is extended with a consideration on local ๐น โˆ’ contraction. As a result, two fixed point theorems were proved for ๐น โˆ’ contraction on a closed ball in a complete ๐บ-metric space. Keywords: ๐บ โˆ’ metric spaces, Local fixed points, ๐น โˆ’ contractions. 1.Introduction and Preliminaries Bapure Dhage in his PhD thesis [1992] introduced a new class of generalized metric spaces, named D - metric spaces. Mustafa and Sims proved that most of the claims concerning the fundamental structures on D - metric spaces are incorrect and introduced an appropriate notion of D - metric space, named G-metric spaces. In fact, Mustafa, Sims and other authors introduced many fixed point results for self mappings in G - metric spaces under certain conditions. Actually, the method is used in the study of fixed points in metric spaces,and symmetric spaces. In this paper, a general fixed point theorem for pairs of non weakly compatible mappings in G - metric space is proved. In the case of a single mapping some results. In 2012, Wardowski introduced a new concept for contraction mappings as called F-contraction by considering a class of real valued functions. Let โ„ณ be a nonempty set and ฮฅ : โ„ณร— โ„ณ ร— โ„ณ โ†’ โ„+ be a function satisfying the following condition: 1- ๐›ถ ( ๐‘ž, ๐‘ข, ๐‘ฃ) = 0 if and only if ๐‘ž = ๐‘ข = ๐‘ฃ, 2- 0 < ๐›ถ ( ๐‘ž, ๐‘ž, ๐‘ข ), โˆ€ ๐‘ž, ๐‘ข โˆˆ โ„ณ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ž โ‰  ๐‘ข, 3- ๐›ถ ( ๐‘ž, ๐‘ž, ๐‘ข) โ‰ค ๐›ถ (๐‘ž, ๐‘ข, ๐‘ฃ) , โˆ€ ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ข โ‰  ๐‘ฃ, 4- ๐›ถ (๐‘ž, ๐‘ข, ๐‘ฃ) = ๐›ถ(๐‘ž, ๐‘ฃ, ๐‘ข) = โ€ฆ , (symmetry in all three vairables), 5- ๐›ถ (๐‘ž, ๐‘ข, ๐‘ฃ) โ‰ค ๐›ถ (๐‘ž, ๐‘Ž, ๐‘Ž ) + ๐›ถ (๐‘Ž, ๐‘ข, ๐‘ฃ) , โˆ€ ๐‘ž, ๐‘ข, ๐‘ฃ, ๐‘Ž โˆˆ โ„ณ. Then the function ๐›ถ is called generalized metric on โ„ณ [1] and the pair (โ„ณ,๐›ถ) is called a ๐บ- metric space. A ๐บ -metric space โ„ณ is called a symmetric [2] if โˆ€ ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ ๐›ถ ( ๐‘ž, ๐‘ข, ๐‘ข ) = ๐›ถ (๐‘ž, ๐‘ž, ๐‘ข ) Many results and examples about ๐›ถ-metric space and its generalization one can found in [2-10]. Proposition 1 [5]: Let (โ„ณ, ๐›ถ ) be a ๐บ-metric space, then the following statements are equivalent: 1-(โ„ณ, ๐›ถ ) is symmetric. 2-๐›ถ (๐‘ž, ๐‘ข, ๐‘ข) โ‰ค ๐›ถ ( ๐‘ž, ๐‘ข, ๐‘Ž ) for all ๐‘ž, ๐‘ข, ๐‘Ž โˆˆ โ„ณ, 3-๐›ถ ( ๐‘ž, ๐‘ข, ๐‘ฃ) โ‰ค ๐›ถ (๐‘ž, ๐‘ข, ๐‘Ž ) + ๐›ถ(๐‘ฃ, ๐‘ข, ๐‘ ) for all ๐‘ž, ๐‘ข , ๐‘ฃ, ๐‘Ž, ๐‘ โˆˆ โ„ณ. https://doi.org/10.30526/32.1.1997 mailto:anaamnema1@gmail.com mailto:salwaalbundi@yahoo.com ย  ย  140 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 The ฮฅ-ball with center ๐‘Ÿ and radius ๐œ– 0 is ๐ต (๐‘Ÿ , ๐œ– ) [10] is: ๐ต (๐‘Ÿ ,๐œ–)ย =ย {s โˆˆ โ„ณ โˆถย ฮฅ (๐‘Ÿ ,ย s,ย andย s) ๐œ– .ย  The sequence ๐‘Ÿ in a ๐บ metric space โ„ณ, ๐›ถ is said to beย ย  1- ๐›ถ convergent to ๐‘Ÿ if โˆƒ๐‘˜ โˆˆ ๐‘ , ๐œ– 0 for ๐‘Ž๐‘™๐‘™ ๐‘š, ๐‘› ๐‘˜ such that ๐›ถ ๐‘Ÿ, ๐‘Ÿ , ๐‘Ÿ ๐œ–. 2- ๐›ถ โ€“ Cauchy if โˆƒ ๐‘˜ โˆˆ ๐‘ , ๐œ– 0 for ๐‘Ž๐‘™๐‘™ ๐‘š, ๐‘› , ๐‘™ ๐‘˜ such that ฮฅ ๐‘Ÿ ,๐‘Ÿ ,๐‘Ÿ ) ๐œ– . A ๐บโ€“metric space โ„ณ, ๐›ถ is complete if every ๐›ถ -Cauchy sequence (โ„ณ, ฮฅ) is ฮฅ- convergent in (โ„ณ, ฮฅ 1 . Proposition 2 [11]: Let โ„ณ, ๐›ถ be a ๐บ-metric space the following statements are equivalent 1- ๐‘Ÿ is ๐›ถ-convergent to ๐‘Ÿ , if and only if ๐›ถ ๐‘Ÿ ,๐‘Ÿ ,๐‘Ÿ โ†’ 0 ๐‘Ž๐‘  ๐‘› โ†’ โˆž , 2- Is ฮฅ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ)โ†’ 0 ๐‘Ž๐‘  ๐‘› โ†’ โˆž if and only if ฮฅ ๐‘Ÿ ,๐‘Ÿ ,๐‘Ÿ)โ†’ 0 ๐‘Ž๐‘  ๐‘š, ๐‘› โ†’ โˆž. Proposition 3 [6]: Let ๐‘ž and ๐‘ข be a sequence in a ๐บ metric space (โ„ณ, ฮฅ) if ๐‘Ÿ converges to ๐‘ž and ๐‘ข converge to ๐‘ข. Then ฮฅ ๐‘ž , ๐‘ž , ๐‘ข converges to ฮฅ ๐‘ž, ๐‘ž, ๐‘ข . The self- mapping ๐‘“ on a G-metric space โ„ณ, ๐›ถ is ฮฅ - continuous at ๐‘Ÿ โˆˆ โ„ณ [9] iff every sequence ๐‘Ÿ โŠ‚ โ„ณ, with ๐‘Ÿ โ†’ ๐‘Ÿ , we have ๐‘“ ๐‘Ÿ โ†’ ๐‘“ ๐‘Ÿ. A mapping ๐‘“ โˆถ โ„ณ โ†’ โ„ณ is said to be ๐น-contraction if there exists ๐œ > 0 such that for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ 0, ๐œ ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐น ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ . for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ (1) Let ๐ท be the class of all functions ๐น: ๐‘… โ†’ ๐‘… is a mapping satisfying the following conditions: (D1) ๐น is strictly increasing, i.e., for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ ๐‘… such that ๐‘ž ๐‘ข ๐‘ฃ , ๐น ๐‘ž ๐น ๐‘ข ๐น ๐‘ฃ , D2 For each sequence ฮฑ โŠ‚ 0, โˆž , lim โ†’ ฮฑ = 0 iff lim โ†’ ๐น ฮฑ = -โˆž. (D3) โˆƒ๐‘˜ โˆˆ 0, 1 such that lim โ†’ ๐›ผ ๐น ฮฑ = 0. Every ๐น-contraction is contractive (byD1) and then every ๐น contraction is ๐›ถ-continuous. Clearly, (1) and (D1) implies that every ๐น-contraction mapping is ๐›ถ-continuous, since for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, with๐‘“ ๐‘ž ๐‘“๐‘ข ๐‘“๐‘ฃ, ๐น ๐‘“ ๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐น ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ . For illustration, we give the following example. Example 4 a- Consider ๐น : 0, โˆž โ†’ ๐‘… as ๐น (๐›ผ ๐‘™๐‘›๐›ผ. It is clear that๐น โˆˆ ๐ท. Then each self mappings ๐‘“ on a ๐บ-metric space (โ„ณ,๐›ถ) is an ๐น -contraction โˆ‹ for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, ๐‘“๐‘ž ๐‘“๐‘ข ๐‘“๐‘ฃ ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐‘’ ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ Then for ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ such that ๐‘“๐‘ž ๐‘“ ๐‘ข ๐‘“๐‘ฃ the inequality ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐‘’ ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ holds. Therefore, ๐‘“ is a contraction with โ„Ž ๐‘’ . b- Let ๐น : 0, โˆž โ†’ ๐‘… be ๐น ๐›ผ ๐›ผ ๐‘™๐‘›๐›ผ. It is clear that ๐น โˆˆ ๐ท. Then each self mappings ๐‘“ on a ๐บ-metric space (โ„ณ, ๐›ถ) satisfying (1.1) is an ๐น -contraction such that ย  ย  141 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 , , , , e , , , , ๐‘’ , for all๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, ๐‘“๐‘ž ๐‘“ ๐‘ข ๐‘“๐‘ฃ 2. Main Results Throughout the following โ„ณ is a complete ๐บ metric space ๐‘ค. ๐‘Ÿ. ๐‘ก. distance function ๐›ถ. We can prove the following theorem Theorem 5 Let ๐‘“: โ„ณ โ†’ โ„ณ be ๐›ถ continuous self-mapping, ๐œ– 0 and ๐‘ž โˆˆ โ„ณ. Suppose that โˆƒ โ„Ž โˆˆ 0, 1 , ๐œ 0, and ๐น โˆˆ ๐ท.If for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ ๐ต ๐‘ž , ๐œ– โŠ‚ โ„ณ with ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ 0 โˆ‹ ๐œ ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐น โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ , (2) and ๐›ถ ๐‘ž , ๐‘“๐‘ž , ๐‘“๐‘ž < 1 ๐‘˜ ๐œ–. (3) Then โˆƒ! ๐‘Ÿโˆ— in ๐ต ๐‘ž , ๐œ– โˆ‹ ๐‘Ÿโˆ— ๐‘“๐‘Ÿโˆ—. Proof: Suppose ๐‘ž โˆˆ โ„ณ such that ๐‘ž ๐‘“๐‘ž , ๐‘ž ๐‘“๐‘ž . Continuing in this way, we get ๐‘ž ๐‘“๐‘ž , โˆ€๐‘› 0. Implies that {๐‘ž } is non-increasing sequence. First, to prove ๐‘ž โˆˆ ๐ต ๐‘ž , ๐œ– , โˆ€๐‘› โˆˆ โ„•, by using mathematical induction. From (3), we get ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž = ๐›ถ ๐‘ž , ๐‘“๐‘ž , ๐‘“๐‘ž 1 ๐‘˜ ๐œ– ๐œ–. (4) Hence, ๐‘ž โˆˆ ๐ต ๐‘ž , ๐œ– . Suppose ๐‘ž ,โ€ฆ.., ๐‘ž โˆˆ ๐ต ๐‘ž , ๐œ– for some๐‘– โˆˆ โ„•. Then from (2) we obtain ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐น ๐›ถ ๐‘“๐‘ž , ๐‘“๐‘ž , ๐‘“๐‘ž ๐น โ„Ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐œ Since ๐น is strictly increasing, we get ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โ„Ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž (5) Now, ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โ‹ฏ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 1 ๐‘˜ โ‹ฏ ๐‘˜ ] 1 ๐‘˜ ๐œ– 1 ๐‘˜ 1 ๐‘˜ ๐œ–. Thus ๐‘ž โˆˆ ๐ต ๐‘ž , ๐œ– , Hence ๐‘Ÿ โˆˆ ๐ต ๐‘ž , ๐œ– โˆ€ ๐‘› โˆˆ โ„•. Continuing, we have ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘Ÿ ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐‘›๐œ This implies that ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐‘›๐œ (6) From (6) we get ๐‘™๐‘–๐‘š โ†’ ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โˆž . Since๐น โˆˆ ๐ท. We get ๐‘™๐‘–๐‘š โ†’ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 0 (7) From (D3) there exists ๐‘ โˆˆ 0,1 such that ๐‘™๐‘–๐‘š โ†’ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 0 (8) ย  ย  142 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 From (6) we have ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐น ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐‘›๐œ 0. (9) By (7), (8) and letting ๐‘› โ†’ โˆž, in (9) we get ๐‘™๐‘–๐‘š โ†’ ๐‘› ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 0 . (10) we observe that from (10), then โˆƒ ๐‘› โˆˆ โ„• โˆ‹ ๐‘› ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 1 , โˆ€ ๐‘› ๐‘› we have ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž , โˆ€ ๐‘› ๐‘› (11) Now, ๐‘š, ๐‘› โˆˆ โ„• โˆ‹ ๐‘š ๐‘› ๐‘› . Then, by properties of ๐›ถ and (11) we obtain ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โ€ฆ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž =โˆ‘ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โˆ‘ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž โˆ‘ (12) The series โˆ‘ is ๐›ถ convergent. as ๐‘› โ†’ โˆž, from (12) we get {๐‘ž is a ๐›ถ-Cauchy sequence since lim , โ†’ ๐›ถ ๐‘ž , ๐‘ž , ๐‘ž 0 . By completeness of โ„ณ, โˆƒ๐‘Ÿโˆ— โˆˆ ๐ต ๐‘Ÿ , ๐œ– โˆ‹ ๐‘ž โ†’ ๐‘Ÿโˆ— ๐‘Ž๐‘  ๐‘› โ†’ โˆž. Since ๐‘“ is ๐›ถ continuous. Then , ๐‘ž ๐‘“๐‘ž โ†’ ๐‘“๐‘Ÿโˆ— as ๐‘› โ†’ โˆž, that is, ๐‘Ÿโˆ— ๐‘“๐‘Ÿโˆ—. Hence ๐‘Ÿโˆ— is a fixed point of ๐‘“. To prove uniqueness, let ๐‘ž, ๐‘ข โˆˆ ๐ต ๐‘ž , ๐œ– and ๐‘ž ๐‘ข be any two fixed point of ๐‘“. Then from (2) we have ๐œ ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ข ๐น โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ข , we obtain, ๐œ ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ข ๐น ๐›ถ ๐‘ž, ๐‘ข, ๐‘ข . which is contradiction, so, ๐‘ž ๐‘ข. For more illustration we give the following example. Example 6 Let โ„ณ ๐‘… and ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ |๐‘ž ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘ž ๐‘ฃ|. Then (โ„ณ,๐›ถ) is a complete G-metric space. Define the mapping ๐‘“: โ„ณโ†’ โ„ณ by, ๐‘“ ๐‘ž ๐‘ž 4 , ๐‘Ÿ โˆˆ 0,1 ๐‘ž 1 2 , ๐‘Ÿ โˆˆ 1, โˆž . ๐‘Ÿ 1, ๐œ– 3 , ๐ต ๐‘Ÿ , ๐œ– , . If ๐น ๐›ผ ln ๐›ผ, ๐›ผ 0 and ๐œ 0, then ๐›ถ 1, ๐‘“1, ๐‘“1 ๐œ–. If ๐‘ž, ๐‘ , ๐‘ก โˆˆ ๐ต ๐‘Ÿ , ๐œ– then 1 4 |๐‘ž ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘ž ๐‘ฃ| 1 2 |๐‘ž ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘ž ๐‘ฃ| So, ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ ย  ย  143 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 Hence ๐œ ๐น ๐›ถ ๐‘“ ๐‘ž, ๐‘“ ๐‘ข, ๐‘“ ๐‘ฃ ๐œ ln ๐›ถ ๐‘“ ๐‘ž, ๐‘“ ๐‘ข, ๐‘“ ๐‘ฃ ln โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ = ๐น โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ If ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ 1, โˆž then ๐‘ž ๐‘ข ๐‘ข ๐‘ฃ ๐‘ฃ ๐‘ž |๐‘Ÿ ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘Ÿ ๐‘ฃ| ๐œ |๐‘“ ๐‘ž ๐‘“ ๐‘ข| |๐‘“ ๐‘ข ๐‘“ ๐‘ฃ| |๐‘“ ๐‘ž ๐‘“ ๐‘ฃ| |๐‘ž ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘ž ๐‘ฃ| So, ๐œ ๐น ๐›ถ ๐‘“ ๐‘ž, ๐‘“ ๐‘ข, ๐‘“ ๐‘ฃ ๐น ๐›ถ ๐‘ž , ๐‘ข, ๐‘ฃ . Then the contraction does not hold on โ„ณ. Now, we present two properties of๐‘“, ๐‘“: โ„ณ โ†’ โ„ณ. We say that ๐‘“ satisfies the condition: I- ฯ‰ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ 1, โˆ€ ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ whenevere ฯ‰ โˆถ โ„ณ โ†’ ๐‘… , ฯ‰ ๐‘ž, ๐‘ข, ๐‘ฃ 1. II- for given a sequence {๐‘ž โŠ‚ โ„ณ with ๐‘ž โ†’ ๐‘ž โˆˆ โ„ณ as ๐‘› โ†’ โˆž, if ฯ‰ ๐‘ž , ๐‘ž , ๐‘ž ฯ† ๐‘ž , ๐‘ž , ๐‘ž , โˆ€๐‘› โˆˆ ๐‘ โ‡’ ๐‘“ ๐‘ž โ†’ ๐‘“๐‘ž, where ฯ‰, ฯ†: โ„ณ โ†’ ๐‘… are two functions. If ฯ† ๐‘ž, ๐‘ข, ๐‘ฃ 1 then (II) reduces (I). Let โˆ†๐œ“ ๐œ“: ๐‘… โ†’ ๐‘… โˆถ โˆ€ ๐‘ก , ๐‘ก , ๐‘ก , ๐‘ก โˆˆ ๐‘… , ๐‘ก ๐‘ก ๐‘ก ๐‘ก 0, โˆƒ๐œ 0 โˆ‹ ๐œ“ ๐‘ก , ๐‘ก , ๐‘ก , ๐‘ก ๐œ . Definition 7 Let ๐‘“ be a self- mapping on a ๐บ-metric space (โ„ณ, ๐›ถ) and ๐‘Ÿ โˆˆโ„ณ with ๐œ– 0. Suppose that ๐œ”: โ„ณ โ†’ 0, โˆž , ฯ†: โ„ณ โ†’ ๐‘… two functions. We say that ๐‘“ is called ๐œ”-ฯ†- ๐œ“๐น contraction on a closed ball if for all ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ ๐ต ๐‘ž , ๐œ– โŠ† โ„ณ, with ๐œ” ๐‘ž, ๐‘“๐‘ž, ๐‘“๐‘ž , ๐‘ข, ๐‘“๐‘ข, ๐‘“๐‘ข , ๐‘ฃ, ๐‘“๐‘ฃ, ๐‘“๐‘ฃ ฯ† ๐‘ž, ๐‘ข, ๐‘ฃ and ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ 0, we have ๐œ“ ๐›ถ ๐‘ž, ๐‘“๐‘ž, ๐‘“๐‘ž , ๐›ถ ๐‘ข, ๐‘“๐‘ข, ๐‘“๐‘ข , ๐›ถ ๐‘ฃ, ๐‘“๐‘ฃ, ๐‘“๐‘ฃ ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐น โ„Ž ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ , 13 and ๐›ถ ๐‘ž , ๐‘“๐‘ž , ๐‘“๐‘ž 1 ๐‘˜ ๐œ–, 14 where 0 ๐‘˜ 1, ๐œ“ โˆˆ โˆ†๐œ“ and ๐น โˆˆ ๐ท. Definition 8 Let ๐‘“: โ„ณ โ†’ โ„ณ be a self โ€“mapping and๐œ”, ฯ†: โ„ณ ร— โ„ณร— โ„ณ โ†’ [0, +โˆž) be two functions. ๐‘“ Is called that is ๐œ”- admissible mapping with respect to ฯ† if ๐‘ž, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, ฯ† (๐‘ž, ๐‘ข, ๐‘ฃ) ๐œ” ๐‘ž, ๐‘ข, ๐‘ฃ implies that ฯ† (๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ) ๐œ” ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ) and ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ 0, we have ๐œ“ ๐›ถ ๐‘ž, ๐‘“๐‘ž, ๐‘“๐‘ž , ๐›ถ ๐‘ข, ๐‘“๐‘ข, ๐‘“๐‘ข , ๐›ถ ๐‘ฃ, ๐‘“๐‘ฃ, ๐‘“๐‘ฃ , ๐›ถ ๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ , ๐›ถ ๐‘ข, ๐‘“๐‘ž, ๐‘“๐‘ฃ , ๐›ถ ๐‘ฃ, ๐‘“๐‘ž, ๐‘“๐‘ข ๐น ๐›ถ ๐‘“๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐น ๐‘€ ๐‘ž, ๐‘ข, ๐‘ฃ (15) where ๐‘€ ๐‘ž, ๐‘ข, ๐‘ฃ ๐‘š๐‘Ž๐‘ฅ ๐›ถ ๐‘ž, ๐‘ข, ๐‘ฃ , ๐›ถ ๐‘ž, ๐‘“๐‘ž, ๐‘“๐‘ž , ๐›ถ ๐‘ข, ๐‘“๐‘ข, ๐‘“๐‘ข , ๐›ถ ๐‘ฃ, ๐‘“๐‘ฃ, ๐‘“๐‘ฃ , ๐›ถ ๐‘ž, ๐‘“๐‘ข, ๐‘“๐‘ฃ ๐›ถ ๐‘ข, ๐‘“๐‘ž, ๐‘“๐‘ฃ ๐›ถ ๐‘ฃ, ๐‘“๐‘ž, ๐‘“๐‘ข 3 and ย  ย  144 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 โˆ‘ ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ โ‰ค, โˆ€๐‘— โˆˆ ๐‘ and ๐œ– 0. (16) ๐œ“ โˆˆ โˆ†๐œ“ and๐น โˆˆ ๐ท. Theorem 9 Let ๐‘“: โ„ณ โ†’ โ„ณ be ๐œ”-ฯ†- ๐œ“๐น contraction mapping on a closed ball where (i) ๐‘“ is an ๐œ”- admissible mapping with respect to ฯ†, ii there exists ๐‘Ÿ โˆˆ โ„ณ such that ๐œ” ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ฯ† ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , (iii) ๐‘“ is an ๐œ”-ฯ†- continuous. Then there exists a point ๐‘Ÿ in ๐ต ๐‘Ÿ , ๐œ– such that ๐‘“๐‘Ÿ ๐‘Ÿ Proof: Let ๐‘Ÿ in โ„ณ such that ๐œ” ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ฯ† ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ . For ๐‘Ÿ โˆˆโ„ณ. Let us construct a sequence ๐‘Ÿ such that ๐‘Ÿ ๐‘“ ๐‘Ÿ , ๐‘Ÿ ๐‘“ ๐‘Ÿ ๐‘“ ๐‘Ÿ continuing this way, ๐‘Ÿ ๐‘“ ๐‘Ÿ ๐‘“ ๐‘Ÿ , โˆ€ ๐‘› โˆˆ ๐‘. Since, ๐‘“ is an ๐œ”- admissible mapping with respect to ฯ†, then ๐œ” ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐œ” ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ฯ† ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ฯ† ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ . Continuous we get ฯ† ๐‘Ÿ , ๐‘“ ๐‘Ÿ , ๐‘“ ๐‘Ÿ =ฯ† ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐œ” ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , โˆ€ ๐‘› โˆˆ ๐‘ (17 If โˆƒ ๐‘› โˆˆ ๐‘ โˆ‹ ๐›ถ ๐‘Ÿ , ๐‘“ ๐‘Ÿ , ๐‘“ ๐‘Ÿ 0 , there is nothing to prove. So, suppose that ๐‘Ÿ ๐‘Ÿ with ๐›ถ ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ๐›ถ ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ 0 , โˆ€ ๐‘› โˆˆ ๐‘. First, we see that ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– , โˆ€ ๐‘› โˆˆ ๐‘. Since ๐‘“ be a ๐œ”-ฯ†- ๐œ“๐น contraction mapping on a closed ball, we get ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ 1 ๐‘˜ ๐œ– ๐œ– (18) Thus ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– . Suppose ๐‘Ÿ , โ€ฆ , ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– for some ๐‘— โˆˆ ๐‘, such that ๐œ“ ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ +๐น ๐›ถ ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ๐น โ„Ž ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ . This implies, ๐œ“ ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , 0 ๐น ๐›ถ ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ , ๐‘“๐‘Ÿ ๐น โ„Ž ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ . By definition of ๐œ“, (๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , 0 0, So, โˆƒ๐œ 0 such that, ๐œ“ ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ . 0 ๐œ. Therefore, ๐น ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐น ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐น โ„Ž ๐›ถ ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐œ 19 To complete, we follow the same steps of the theorem (9),since โ„ณ is complete ๐บ metric space there exists ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– such that ๐‘Ÿ โ†’ ๐‘Ÿ as ๐‘› โ†’ โˆž . ๐‘“ is an ๐œ”-ฯ†- continuous and ฯ† ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ ๐œ” ๐‘Ÿ , ๐‘Ÿ , ๐‘Ÿ , โˆ€ ๐‘› โˆˆ ๐‘. Then ย  ย  145 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 ๐‘Ÿ ๐‘“ ๐‘Ÿ โ†’ ๐‘“ ๐‘Ÿ as ๐‘› โ†’ โˆž. That is, ๐‘Ÿ ๐‘“ ๐‘Ÿ hence ๐‘Ÿ is a fixed point of ๐‘“. To illustrate theorem 9, we give the following example Example 10 Let โ„ณ ๐‘… and ๐›ถ be ๐บ metric on โ„ณ as in Example 6 Define ๐‘“: โ„ณ โ†’ โ„ณ, ๐œ”: โ„ณ โ„ณ โ„ณ โ†’ โˆž โˆช 0, โˆž , ฯ†: โ„ณ โ„ณ โ„ณ โ†’ ๐‘… , ๐œ“: ๐‘… โ†’ ๐‘… , and ๐น: ๐‘… โ†’ ๐‘… by ๐‘“ ๐‘Ÿ โˆš ๐‘Ÿ, ๐‘Ÿ โˆˆ 0,1 , 2๐‘Ÿ, ๐‘Ÿ โˆˆ 1, โˆž , ๐œ” ๐‘Ÿ, ๐‘ข, ๐‘ฃ ๐‘’ , ๐‘Ÿ โˆˆ 0,1 , otherwise ฯ† ๐‘Ÿ, ๐‘ข, ๐‘ฃ for all ๐‘Ÿ, ๐‘ข, ๐‘ฃ โˆˆ โ„ณ, ๐œ“ (๐‘ก , ๐‘ก , ๐‘ก , ๐‘ก ) = ๐œ 0 and ๐น ๐‘ž ln ๐‘ž with ๐‘ž 0. ๐‘Ÿ 1 3 , ๐œ– 1 , ๐ต ๐‘Ÿ , ๐œ– 1 6 , 5 6 then ๐›ถ ( , ๐‘“ , ๐‘“ 0.732 ๐œ–. If ๐‘Ÿ, ๐‘ข, ๐‘ฃ โˆˆ ๐ต ๐‘Ÿ , ๐œ– then ๐œ” ๐‘Ÿ, ๐‘ข, ๐‘ฃ ๐‘’ ฯ† ๐‘Ÿ, ๐‘ข, ๐‘ฃ . On the other hand, ๐‘“ ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– , โˆ€ ๐‘Ÿ โˆˆ ๐ต ๐‘Ÿ , ๐œ– . Then, ๐œ” ๐‘“๐‘Ÿ, ๐‘“๐‘ข, ๐‘“๐‘ฃ ฯ† ๐‘Ÿ, ๐‘“๐‘Ÿ, ๐‘“๐‘Ÿ with ๐›ถ ๐‘“ ๐‘Ÿ, ๐‘“๐‘ข, ๐‘“๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ข โˆš๐‘ข โˆš๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ฃ 0. Clearly ๐œ” 0, ๐‘“1, ๐‘“1 ฯ† 0, ๐‘“1, ๐‘“1 , then we have ๐›ถ ๐‘“๐‘Ÿ, ๐‘“๐‘ข, ๐‘“๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ข โˆš๐‘Ÿ โˆš๐‘ข โˆš๐‘Ÿ โˆš๐‘ข โˆš๐‘ข โˆš๐‘ฃ โˆš๐‘ข โˆš๐‘ฃ โˆš๐‘ข โˆš๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ฃ ๐‘Ÿ ๐‘ข โˆš๐‘Ÿ โˆš๐‘ข ๐‘ข ๐‘ฃ โˆš๐‘ข โˆš๐‘ฃ ๐‘Ÿ ๐‘ฃ โˆš๐‘Ÿ โˆš๐‘ฃ โ„Ž |๐‘Ÿ ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘Ÿ ๐‘ฃ| Consequently ๐œ ๐น ๐›ถ ๐‘“ ๐‘Ÿ, ๐‘“๐‘ข, ๐‘“๐‘ฃ ฯ„ ln ๐›ถ ๐‘“ ๐‘Ÿ, ๐‘“๐‘ข, ๐‘“๐‘ฃ ln โ„Ž ๐›ถ ๐‘Ÿ , ๐‘ข, ๐‘ฃ ๐น โ„Ž ๐›ถ ๐‘Ÿ , ๐‘ข, ๐‘ฃ . If ๐‘Ÿ โˆ‰ ๐ต ๐‘Ÿ , ๐œ– or ๐‘ข โˆ‰ ๐ต ๐‘Ÿ , ๐œ– or ๐‘ฃ โˆ‰ ๐ต ๐‘Ÿ , ๐œ– then ๐œ” ๐‘Ÿ , ๐‘ข, ๐‘ฃ 1 5 โ‰ฑ 1 3 ฯ† ๐‘Ÿ , ๐‘ข, ๐‘ฃ 2(|๐‘Ÿ ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘Ÿ ๐‘ฃ| |๐‘Ÿ ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘Ÿ ๐‘ฃ| |๐‘“ ๐‘Ÿ ๐‘“ ๐‘ข| |๐‘“ ๐‘ข ๐‘“ ๐‘ฃ| |๐‘“ ๐‘Ÿ ๐‘“ ๐‘ฃ| |๐‘Ÿ ๐‘ข| |๐‘ข ๐‘ฃ| |๐‘Ÿ ๐‘ฃ| ๐œ ๐น ๐›ถ ๐‘“ ๐‘Ÿ, ๐‘“ ๐‘ข, ๐‘“ ๐‘ฃ ๐น ๐›ถ ๐‘Ÿ , ๐‘ข, ๐‘ฃ The contraction does not hold. 3.Conclusion and Open Problem This research focus on introducing new idea of F-contraction on a closed ball which is different from F-contraction given in [4]. Therefore a generalization of results is very useful so far as it requires the F-contraction mapping only on a closed ball rather the whole space. This new idea however guides the researcher towards futher investigations and applications.At the ย  ย  146 Ibn Al-Haitham Jour. for Pure & Appl. Sc i. IHJPAS ย https://doi.org/10.30526/32.1.1977ย  Vol. 32 (1) 2019 same time,it will be interesting to apply these concepts in a various spaces. In future,we suggest study the results in [8] to verify the extent achieved in the setting of ๐น contraction mappings in modular spaces. References 1. 1.Mustafa,Z.; Sims,B.A. New Approach to Generalized Metric Space. J. of Nonlinear and Convex Analysis. 2006. 7, 2, 289-297. 2. Abed,S.S.; Luaibi, H. H. Two Fixed Point Theorems in Generalized Metric Spaces. International Journal of Advanced Statistics and Probability. 2016,4,1, 16-19. 3. Gajic, L.; Stojakovic, M.; Thomas, S. Type Fixed Point Theorems in Generalized Metric Spaces. Filomat. 2017, 31,11, 3347โ€“3356 4. Tahat, N.; et al. Common Fixed Points for Single Valued and Multi-Valued Maps Satisfying Generalized Contraction in G-Metric Spaces. Fixed Point Theory and Applications. 2012, 7, 31-39. 5. Abed, S.S.; Faraj, A.N.Topological properties of ๐บ-Hausdorff metric. International Journal of Applied Mathematics and Statistical Sciences (IJAMSS). 2018, 7, 5, 1-18. 6. Abed, S.S. Fixed Point Principles in General ๐‘ Metric Spaces and ๐‘ Menger Probabilistic spaces. Journal of AL-Qadisiyah for computer science and mathematics. 2018, 10, 2, 2521-0204. 7. Abed,S.S.; Luaibi, H.H. Implicit Fixed Points in Manger G- Metric Spaces. International Journal of advanced Scientific Technical Research. 2016, 6, 1, 117-127. 8. Abed,S.S.; Abdul Sada, K.E. Common Fixed Points in Modular Spaces, Ibn Al-Haitham Journal for Pure and Applied science. 2017. Special Issue. 9. Phaneendra, T.; Swamy,K. K. Unique Fixed Point in G-Metric Space Through Greatest Lower Bound Properties. Novi Sat J. Math. 2013, 43, 2,107-115. 10. Mustafa,Z.; Hamed,O.; Aawdeh, F. Some Fixed Point Theorems for Mapping on Complete G-Metric Space. Hindawi Publishing Corporation. Fixed Point Theory and Applications. 2008,1-12. 11. A.Kaewcharoen, A.; Kaewkhao, A. Common Fixed Points for Single- Valued and Multi- Valued Mappings in G-Metric Spaces. Int J. of Math Analysis. 2011, 5, 36, 1775-1790.