Microsoft Word - 157-166 ย  ย  ย  157ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 ContractiveiMappings Having Mixed Finite MonotoneiProperty in GeneralizediMetric Spaces Zena Hussein Maibed mrs_ zena.hussein@yahoo.com Department of Mathematics, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. Article history: Received 25 October 2018, Accepted 11 November 2018, Publish January 2019 Abstract The concepts of the modified tuple coincidence points and the mixed finite monotone property is introduced in this paper. Also, the existence and uniqueness of modified tupled coincidence point is discusses without continuous condition for mappings having mixed finite monotone property in generalized metric spaces. Keywords: generalized metric spaces, fixed point, coincidence point, monotone property. 1. Introduction In 2000,iDhage [1] introduced๐ทโ€“metric space as a generalization of metric space and he proved many results in this spaceibut in 2005, Mustafa and Sims [2] proved thatithe results presented by Dhage are invalid in topological structure and hence they introducedi๐บโ€“metric space and as a generalized of metric space. On other Bhashkar andiLakshmikantham in [3] introduced the conceptiof coupled fixed point and proved the existence of a coupledifixed theoremiin partiallyiordered complete metric space. In 2009, Lakshmikantham and Ciric [4] definedimixedi๐‘”โ€“monotone propertyiand coupled coincidenceipoint in partiallyiordered metric spaces, also in 2011, Berinde and Borcut [5] introduced the concept ofitriple fixed pointiand proved some resultsia roundiand in 2012, Berinde and Borcut [6] defined the concept of triple Coincidenceipoint and establishedisome triple Coincidenceipoint theoremsiin partially orderedimetric space. In this paper, we will give a mixed finite monotone property and modified tupled coincidence point with study the existence of modified tupled coincidence point in partially ordered generalized metric space. 2.Background In this section, we recall some definitions and properties introduced by Mustafa and Simis [2] Definition 1 Let ๐‘‹ beia nonemptyiset, ๐’ข: ๐‘‹ ๐‘‹ ๐‘‹ โ†’ ๐‘… be a function satisfying: 1. ๐’ข ๐‘ฅ, ๐‘ฆ, ๐‘ง 0 ๐‘–๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ง. 2.0 ๐’ข ๐‘ฅ, ๐‘ฅ, ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฅ ๐‘ฆ. ย  ย  ย  158ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 3. ๐’ข ๐‘ฅ, ๐‘ฅ, ๐‘ฆ ๐’ข ๐‘ฅ, ๐‘ฆ, ๐‘ง for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฆ ๐‘ง 4. ๐’ข ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐’ข ๐‘ฅ, ๐‘ง, ๐‘ฆ ๐บ ๐‘ฆ, ๐‘ง, ๐‘ฅ โ€ฆ. ๐‘ ymmetry in all hree variable 5. ๐’ข ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐’ข ๐‘ฅ, ๐‘Ž, ๐‘Ž ๐’ข ๐‘Ž, ๐‘ฆ, ๐‘ฅ, ๐‘ง ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘Ž โˆˆ ๐‘‹ . Then the function ๐’ข is called generalized metric and the pair (X, ๐’ข) is called a generalized metric space or more specially ๐’ข_ metric space. Definition 2 Let (X, ๐’ข) be ai๐’ข_ metricispace, and let ๐‘ฅ be a sequence of points of ๐‘‹.We say that ๐‘ฅ is ๐’ข_convergentito ๐‘ฅ if lim , โ†’ ๐’ข ๐‘ฅ, ๐‘ฅ , ๐‘ฅ 0, thatiis, for any ๐œ€ 0 there exist ๐‘ โˆˆ โ„• such that ๐’ข ๐‘ฅ, ๐‘ฅ , ๐‘ฅ ๐œ€, for all ๐‘›, ๐‘š ๐‘.We call ๐‘ฅ the limit of sequence and write ๐‘ฅ โ†’ ๐‘ฅ or lim ,โ†’ ๐‘ฅ ๐‘ฅ. Definition 3 Let (X, ๐’ข) be a ๐’ข_ metric space, A sequence ๐‘ฅ is called ๐’ข_cauchy sequence if for any ๐œ€ 0 there exist ๐‘ โˆˆ โ„• such that ๐’ข ๐‘ฅ , ๐‘ฅ , ๐‘ฅ ๐œ€ for all ๐‘›, ๐‘š, ๐‘™ ๐‘, that is, ๐’ข ๐‘ฅ , ๐‘ฅ , ๐‘ฅ โ†’ 0 ๐‘Ž๐‘  ๐‘›, ๐‘š, ๐‘™ โ†’ โˆž . Proposition 4 Let (X, ๐’ข) be a ๐บ_ metricispace. A mapping is called ๐’ข_continuousiat ๐‘ฅ โˆˆ ๐‘‹ if and if it is ๐’ข_sequentiallycontinuous at ๐‘ฅ, that is ,wheneveri ๐‘ฅ is ๐’ข_convergentito ๐‘ฅ, ๐‘“ ๐‘ฅ ๐‘–๐‘  ๐’ข_convergentito ๐‘“ ๐‘ฅ . Proposition 5 A ๐’ข_ metric space (X, ๐’ข) is called ๐บ_completeiif every ๐’ข_cauchyisequence is ๐’ข_convergentiin (X, ๐’ข). 3. Main Results In this section, the modification of tupled coincidence point is proposed as the follows: Definition 6 Let ๐‘‹, be a partiallyiordered set. If ๐’ฏ : ๐‘‹ โ†’ ๐‘‹, ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ, ๐’ฑ: ๐‘‹ โ†’ ๐‘‹ are there mappings. An element ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ โˆˆ ๐‘‹ is called modified tupled coincidence point of ๐’ฏ , ๐’ฏ , โ€ฆ ๐’ฏ , ๐’ฐ and ๐’ฑ if: ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ โ‹ฎ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ย  ย  ย  159ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 Definition 7 Let ๐‘‹, be a partiallyiordered set. If ๐’ฏ : ๐‘‹ โ†’ ๐‘‹, ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ, ๐’ฑ: ๐‘‹ โ†’ ๐‘‹ are there mappingsiwe say that ๐‘“ have mixedifinite monotone property if ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ is monotoneifinite increasing if ๐‘› is odd, and ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ is monotone finite decreasingiif ๐‘› is even That is, forieach ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ โˆˆ ๐‘‹ ๐‘ฆ , ๐‘ง โˆˆ ๐‘‹, ๐’ฐ๐’ฑ ๐‘ฆ ๐’ฐ๐’ฑ ๐‘ง โŸน ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ง , ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ๐‘ฆ , ๐‘ง โˆˆ ๐‘‹, ๐’ฐ๐’ฑ ๐‘ฆ ๐’ฐ๐’ฑ ๐‘ง โŸน ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฆ , ๐‘ฅ , โ€ฆ , ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ง , ๐‘ฅ , โ€ฆ , ๐‘ฅ โ‹ฎ ๐‘ฆ , ๐‘ง โˆˆ ๐‘‹, ๐’ฐ๐’ฑ ๐‘ฆ ๐’ฐ๐’ฑ ๐‘ง โŸน ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฆ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ง ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฆ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ง ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘› Let i. ๐’œ is the setiof all mappings ๐’ฏ : ๐‘‹ โ†’ ๐‘‹ and ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ and ๐’ฑ โˆถ ๐‘‹ โ†’ ๐‘‹ such that: 1. ๐’ฐ๐’ฑ ๐‘‹ is completeisubspace of ๐‘‹, containing ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘‹ 2. ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ and ๐’ฑ are continuousiand commuteimappings. 3. ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , have mixed finite monotone property. ii. ๐”… is the set of all mappings ๐œ”: 0, โˆž โ†’ 0, โˆž increasing mapping Such that: 1. ๐œ” ๐‘ก ๐‘ก โˆ€ ๐‘ก 0 2. ๐œ” 0 0 ๐‘Ž๐‘›๐‘‘ lim โ†’ ๐œ” ๐‘ก 0 , where ๐œ” denotes the ๐‘› the iterate of ๐œ”. From the above definition, we show the following modification ย  ย  ย  160ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 Theorem 8 Let ๐‘‹, ๐’ข, be a partiallyiordered generalized metric space, ๐’ฏ : ๐‘‹ โ†’ ๐‘‹ and ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ and ๐’ฑ โˆถ ๐‘‹ โ†’ ๐‘‹ are mappingsilies in ๐’œ and hold that following conditions, โˆ€ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐‘ฆ , ๐‘ฆ , โ€ฆ , ๐‘ฆ โˆˆ ๐‘‹ ๐‘Ž๐‘›๐‘‘ โ„’ 0 ๐’ข ๐’ฏ ๐’ฏ โˆ— โ€ฆ โˆ— ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฆ , โ€ฆ ๐‘ฆ , โ„’ ๐“Œ max ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ , โ€ฆ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ 1 Where is ๐“Œ upper semicontinuous from ๐‘… into itself satisfying ๐“Œ ๐‘ฅ ๐‘ฅ for all ๐‘ฅ 0 .If ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ , ๐‘ฅ โ‹ฎ 2 ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ if ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ if ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘› Then ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘๐’ฑ have a modified tupled coincidence point. Proof Define ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ , ๐‘ฅ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ โŸน ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is odd ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is even Also, we define, ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ , ๐‘ฅ โ‹ฎ ย  ย  ย  161ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ Since ๐‘“ has mixed finite monotone property ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is odd ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is even Continue process until we get to ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is odd ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ if ๐‘› is even In general: ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ , ๐‘ฅ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฅ , ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ And ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ โ€ฆ .. ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ โ€ฆ .. โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ .. if ๐‘› is odd ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ . . ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ . โ€ฆ .. if ๐‘› is even Now, we have ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฅ , โ€ฆ โ€ฆ ๐‘Ž๐‘›๐‘‘ ๐’ฐ๐’ฑ ๐‘ฅ are sequence in ๐‘”๐‘‡ ๐‘‹ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐‘Ÿ , โ€ฆโ€ฆโ€ฆ, ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐‘Ÿ ย  ย  ย  162ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 Since ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ โˆˆ ๐’ฐ๐’ฑ ๐‘‹ , then there exists ๐‘ฅ , ๐‘ฅ , โ€ฆ โ€ฆ , ๐‘ฅ โˆˆ ๐‘‹. Such that, ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘ฅ , ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘ฅ , โ€ฆ โ€ฆ . , ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘ฅ Considering the hypotheses (i) and (ii) give in the theorem we get ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐‘Ÿ โ‹ฎ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐‘Ÿ ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘ฅ ๐‘Ÿ ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘› Since ๐’ฐ and ๐’ฑ are continuous mapping, then we have: ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ โ‹ฎ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ And hence, ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘Ÿ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘Ÿ โ‹ฎ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘Ÿ ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ฐ๐’ฑ ๐‘Ÿ ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘› Choose โ„’ satisfy: ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’, ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฅ , โ€ฆ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐“Œ max ๐œ” ๐’ข ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , โ€ฆ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐“Œ max ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , โ€ฆ , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ But, ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ ,โ€ฆโ€ฆโ€ฆ..and ย  ย  ย  163ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ Which is implies, by definition ๐’ข-convergentiin ๐’ข-metric space, ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’ 0 โŸน ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘Ÿ Also, choose โ„’ satisfy: ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ , ๐‘Ÿ , โ„’ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ , ๐‘Ÿ , โ„’ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ , ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ , ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฅ , โ€ฆ , ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐“Œ max ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , โ€ฆ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ ๐“Œ max ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ , โ€ฆ , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ But, ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ ,โ€ฆโ€ฆโ€ฆ.. and ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ โ†’ ๐’ฐ๐’ฑ ๐‘Ÿ Which is implies, by definition ๐’ข -convergent in ๐’ข-metric space, ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’ 0 โŸน ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘Ÿ Continue these processes Choose โ„’ โˆ— satisfy: ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’โˆ— ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’โˆ—, ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— ๐’ข ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฅ , โ€ฆ โ€ฆ , ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— ๐“Œ max ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’ โˆ— , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— , โ€ฆ โ€ฆ , ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— ๐“Œ max ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— , โ€ฆ โ€ฆ , ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ , โ„’โˆ— But , ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ is ๐’ขโ€“convergent to ๐’ฐ๐’ฑ ๐‘Ÿ ย  ย  ย  164ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ is ๐’ขโ€“convergent to ๐’ฐ๐’ฑ ๐‘Ÿ โ‹ฎ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ is ๐’ขโ€“convergent to ๐’ฐ๐’ฑ ๐‘Ÿ ๐’ฐ๐’ฑ ๐’ฐ๐’ฑ ๐‘ฅ is ๐’ขโ€“convergent to ๐’ฐ๐’ฑ ๐‘Ÿ Which is implies, by definition of ๐’ขโ€“convergent in ๐บโ€“metric space, ๐’ข ๐’ฐ๐’ฑ ๐‘Ÿ , ๐‘“ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ , โ„’โˆ— 0 โ‡’ ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ ๐’ฐ๐’ฑ ๐‘Ÿ So ๐‘Ÿ , ๐‘Ÿ , โ€ฆ โ€ฆ , ๐‘Ÿ is a modified tupled coincidence point of ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘ ๐’ฑ. From theorem(8),we can get the following corollaries Corollary 9 Let ๐‘‹, ๐’ข, be a partiallyiordered generalizedimetric space .Under the same assumptionsiof theorem(8) but ๐’ข ๐’ฏ ๐’ฏ โˆ— โ€ฆ โˆ— ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฆ , โ€ฆ ๐‘ฆ , โ„’ ๐“Œ 1 ๐‘› ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ โ‹ฏ ๐œ” ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ Then ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘๐’ฑ have a modified tupled coincidence point. Corollary 10 Let ๐‘‹, ๐บ, be a partiallyiordered generalized metric space ๐’ข ๐’ฏ ๐’ฏ โˆ— โ€ฆ โˆ— ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฆ , โ€ฆ ๐‘ฆ , โ„’ ๐“Œ ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ โ‹ฏ ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ ,such that ๐‘˜ โˆˆ 0,1 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘– 1,2, โ€ฆ โ€ฆ , ๐‘›.Then ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘๐’ฑ have a modifieditupled coincidence point. Corollary 11 Let ๐‘‹, ๐’ข, be a partiallyiordered generalizedimetric space .Under the same assumptions of theorem(8) but ๐’ข ๐’ฏ ๐’ฏ โˆ— โ€ฆ โˆ— ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฆ , โ€ฆ ๐‘ฆ , โ„’ ๐“Œ max ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ , ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ , โ€ฆ , ๐‘˜ ๐’ข ๐’ฐ๐’ฑ ๐‘ฅ , ๐’ฐ๐’ฑ ๐‘ฆ , โ„’ ย  ย  ย  165ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 such that ๐‘˜ โˆˆ 0,1 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘– 1,2, โ€ฆ โ€ฆ , ๐‘›.Then ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘๐’ฑ have a modified tupled tupled coincidenceipoint. Corollary 12 Let ๐‘‹, ๐’ข, be a partiallyiordered generalizedimetric space .Under the same assumptions of theorem(8) but ๐’ข ๐’ฏ ๐’ฏ โˆ— โ€ฆ โˆ— ๐’ฏ ๐‘ฅ , ๐‘ฅ , โ€ฆ , ๐‘ฅ , ๐’ฏ ๐’ฏ โ€ฆ ๐’ฏ ๐‘ฆ , ๐‘ฆ , โ€ฆ ๐‘ฆ , โ„’ ๐’ข ๐’ฐ๐’ฑ ,๐’ฐ๐’ฑ โ„’ ๐’ข ๐’ฐ๐’ฑ ,๐’ฐ๐’ฑ ,โ„’ โ‹ฏ ๐’ฐ๐’ฑ ,๐’ฐ๐’ฑ ,โ„’ . Then ๐’ฏ , ๐’ฏ , โ€ฆ , ๐’ฏ , ๐’ฐ ๐‘Ž๐‘›๐‘‘๐’ฑ have a modified tupled coincidence point . 4.Conclusion The new concepts of modified tupledicoincidence points and mixed finite monotone property are introduced. Also, we established some modified tupled coincidence theorems in partially ordered generalized metric space. ย  References 1. Dhage,B.Generalized Metric Space and Topological Structure. I. Analele scientific ale universities AI.I.โ€ Cuzadin Lasi, Sieve Nona. Matematca. 2000 ,47, 3-24. 2. Mustafa,Z.; partiallyiordered generalizedimetric space Sims. A New Approach To Generalized Metric Space. Journal of Nonlinear And Convex Analysis. 2006,7, 289-297. 3. GnanBhaskar, T.; Lakshmikantham,V.Fixed Point Theorems In Partially Ordered Metric Spaces And Applications. Nonlinear Analysis. 2006, 65, 79-93. 4. Lakshmikantham, V.; Ciric,L.Coupled Fixed Point Theorems For Nonlinear Contractions In Partially Ordered Metric Spaces. Nonlinear Analysis. 2009,12, 43-49. 5. Berind, V.; Borcut,M. Tripled Fixed Point Theorems For Contractive Type Mappings In Partially Ordered Metric Spaces, Nonlinear Theory, Method & Applications. 2011,74, 89-97. 6. Berind, V.; Borcut,M.Tripled Coincidence Theorems For Contractive type Mappings In Partially Ordered Metric.Appl.Mathematics And Computer. 2012,218, 29-36. 7. Savitri, E.; Hooda,N. Fixed Point Theorems For Mapping Having The Mixed Monotone Property. Tnt. Ach. App. Sci. Technol. 2011, 2, 19-23. 8. Shatanawi,W.; postolache,M.; Mustafa,Z. Tripled And Coincidence Fixed Point Theorems For Contractive Mappings Satisfying ษธ-maps In Partially Ordered Metric Spaces. An. St. Univ. Ovidius Constants. 2014, 22, 179-200. ย  ย  ย  166ย  Ibn Al-Haitham Jour. for Pure & Appl.Sci. IHJPAS https://doi.org/10.30526/32.1.1988 Vol. 32 (1) 2019 9. Choudhury, S.; Karapinar,E.; Kundu, A.Tripled Coincidence Point Theorems For Nonlinear Contractions In Partially Ordered Metric Space. Int. Journal of Math And Math. Sciences. 2012, 201, 14 pages. 10. Imdad,M.; Soliman, A.; Choudhary, S.; Das, P. On n-Tupled Coincidence Point Results In Metric Spaces. Journal of Operators. 2013, 2013, 8 pages.