Microsoft Word - 43-54 Physics | 43 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Study of the Natural Radioactivity of Selected Samples of the Oil of Al- Nada District in Najaf Heiyam Najy Hady Shahad Fadel Kadim Department of Physics,University of Kufa, Faculty of Education for Girls, Najaf, Iraq hiyamn.alkhafaji@uokufa.edu.iq Article history: Received 19 September 2018, Accepted 15 October 2018, Published December 2018 Abstract This study reported activity concentration of 238 U, 232 Th, 40 K in 50 soil samples AL- Nada district - Najaf Governorate - Iraq Measurement using gamma ray spectrometer NaI (TI) (3x3). The activity concentrations of natural radionuclides are found to range from (31.319 0.741 Bq.Kg-1 to (1.1583 ± 0.0821) Bq.Kg-1with average (11.851 0.281) Bq.Kg- 1 of uranium 238U. From (1.117±0.048) Bq.Kg-1 to (23.948 0.649) Bq.Kg-1 with an average of (6.283 0.148 ) Bq.Kg-1 for thorium 232Th,.from(13.592±0.282) Bq.Kg-1 to (705.834 6.179) Bq.Kg-1 and average (265.494 1.445) Bq.Kg-1 potassium40K , equivalent radium from (12.489 0.328) Bq.Kg-1 to (84.199 1.911) Bq.Kg-1 and average (40.078 0.564) Bq.Kg-1 , internal hazard index from (0.039) Bq.Kg-1to( 0.256) Bq.Kg-1 and average( 0.139) Bq.Kg-1,external hazard index ranged from( 0.033) Bq.Kg-1 to (0.227) Bq.Kg-1 and average( 0.108) Bq.Kg-1 values either of absorbed dose in air from (5.728 0.150) nGy/h to (42.667 0.901) nGy/h and average(19.914 0.264) nGy/h , internal annual effective dose from (0.028 0.0005) mSv/y to (0.209 0.0044) mSv/y and average (0.097 0.0013) mSv/y, external annual effective dose from (0.0070 0.0001) mSv/y to (0.0523 0.001) mSv/y and average (0.0244 0.0003) mSv/y The results were found to be comparable or lower than similar global reporting data. According to this, research soil The area can be considered to have a normal level of natural background radiation Keywords: S oil, Natural Radioactivity, concentrations, NaI (TI) 1. Introduction Human Environment is Radioactive human begins with Exposure to Radiation from sources such as the universe Rays. Natural Radionuclides the water in, air, soil and plants and artificial radioactivity of sediment in nuclear test Medical application. Gamma radiation from natural Radionuclides and cosmic rays constitute external exposure and those from inhalation, ingestion food and drinking water constitute internal exposure Humanity. [1] Estimated 80% dose contribution natural Radionuclides in the Environment the remaining 20% come from cosmic rays and Nuclear process natural Radionuclides Disturbing the terrestrial Environment is mainly Potassium (40K) and Uranium (238U) thorium (232Th) and radioactive gas Radon these naturally occurring radioisotopes are produced by decay Radon directly from the ground the decay of natural radium is the main source radium Radiation exposure [2]. Natural Radioactivity is very extensive spread in the global Environment and mainly depends on Geological and geographical Conditions .and appears in Different Levels of Soil in all regions of the world [3]. It is necessary to explain the methods used in this study including gamma- spectroscopy to determine the concentration of radioisotopes in the soil of radioisotopes in the soil, as they establish the radioactive pathways of humans, plants and animals, and are Physics | 44 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 indicators of environmental accumulation [4]. The scintillator detector is based on scintillation or luminescence. The crystals of organic and inorganic materials contain activator atoms that fluoresce after absorbing radiation and are then referred to as phosphors. For inorganic phosphors, scintillation phosphors include strontium activated in NaI (TI) [5]. The iodine atom of NaI (TI) provides high gamma ray absorption coefficients and inherent efficiency, and the probability of complete absorption at low energy is very high. Compared with semiconductor detectors (HPGe), this type of detector has the best energy Resolution Detector [7, 6]. The detector used in work is the active area NaI (TI) scintillation detector (3x3). 2. Experimental Technical Calculation In this study, variety of soil samples 50 in AL-Nada District-Najaf Governorate -Iraq in deep 5 cm from the surface of ground. The study area was divided into Najaf and Al- Which represents the Al-Nada neighborhood without the camp area, 35 samples collected from different places. The second section, which represents the camp area, which collected 15 samples randomly, then were taken in a clean plastic container, after drying the samples using an Oven at temperature 50 C , to obtain a net weight, and milling process using a sieve with 1 mm diameter to obtain an equal size .Then were kept moisture-free before radioactivity measurement in an oven for (30) minute to reach a constant weight and avoid any humidity adsorption Samples were be ready to the measure U238, Th232 and K40 concentration using this technique. The location of the studied area using Global positioning system (GPS) Figure 1. Iraq map showing Najaf Governorate Figure 1. Iraq map. Physics | 45 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Figure 2. Shows the Al-Nada distract map. 3. Experimental Technology To measure the gamma activity concentration of naturally occurring radionuclides in soil samples, namely 238U, 232Th and 40K. The gamma ray spectrum of the scintillation detector [8] NaI (TI) from ORTEC has an effective area of "3 x 3" inches (Fig. 1), an energy resolution of 7.9%, and an efficiency of 4.6% at 662 keV. Energy calibration and efficiency calibration of the gamma spectrometer were performed using nuclear reactors (60Co, 137Cs, 22Na and 54Mn). In the physics department, there are seven gamma ray emitters ranging from 511 KeV to 2500 KeV. The minimum detection limits (LLD) for 238U, 232Th and 40K are 3.17 Bq.kg-1, 1.2 Bq.kg-1 and 11.54 Bq.kg-1, respectively. The standard source is placed on the detector, the geometric matching is exactly matched to the geometric sample form, and the distance between the sample and the detector is the same. In some cases, there may be a source of radiation in the counting chamber, rather than the source of the measurement (referred to as the radioactive background). Therefore, shielding must be used to reduce the radioactive background. The shield used in this study consists of two layers, the first layer is stainless steel with a width of (30 mm) and the second layer is lead [9,10] Physics | 46 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Table 1. Concentration of Uranium, Potassium, Thorium and his geological information on soil samples location. samples Location Latitude(°E) Longitude(°N) Specific Activity Bq/kg U238 Th232 K40 1 E 044 ˑ18.164 N32ˑ03.238 9.339±0.227 5.039±0.101 415.462±1.580 2 E 044 ˑ18.617 N 32ˑ03.434 6.219±0.185 8.161±0.129 LD 3 E 044 ˑ18.294N32 ˑ02.921 10.025±0.235 6.888±0.118 105.385±0.796 4 E 044 ˑ18.332 N32 ˑ03.364 9.047±0.223 5.584±0.106 330.575±1.409 5 E 044 ˑ18.517 N32 ˑ04.230 19.982±0.327 7.457±0.121 231.845±1.165 6 E 044 ˑ17.727 N 32 ˑ04.076 16.097±0.296 4.380±0.939 150.773±0.945 7 E 044 ˑ18.816 N32 ˑ04. 090 10.230±0.235 8.239±0.128 315.661±1.364 8 E 044 ˑ17.430 N32 ˑ03.213 8.601±0.217 4.241±0.092 115.97±0.833 9 044 ˑ18.055 N 32 ˑ04.014 E 13.999±0.276 7.816±0.125 272.748±1.274 10 E 044 ˑ18.411 N 32 ˑ04.009 22.157±0.349 6.509±0.115 297.646±1.336 11 E 044 ˑ17.666 N32 ˑ03.034 9.736±0.234 1.117±0.048 250.888±1.240 12 E 044 ˑ18.826 N 32 ˑ04.712 12.453±0.270 2.802±0.078 274.001±1.324 13 044 ˑ17.792 N 32 ˑ03.053 E LD 2.396±0.074 307.026±1.444 14 E 044 ˑ18.842 N 32.05.929 1.158±0.082 4.287±0.096 268.189±1.303 15 E 044 ˑ17.842N32 ˑ05.181 9.126±0.234 3.256±0.085 274.831±1.341 16 E 044 ˑ18.191 N 32.05.491 8.353±0.219 3.979±0.092 244.231±1.240 17 044 ˑ18.539 N 32 ˑ05.745 E 4.785±0.168 1.708±0.061 380.269±.1.568 18 044 ˑ18.978N32 ˑ03.583 E 7.274±0.200 4.182±0.092 352.066±1.434 19 044 ˑ18.167 N 32 ˑ03.727 E 9.425±0.228 4.674±0.097 395.524±1.543 20 E 044 ˑ18.122N32 ˑ04.825 8.535±0.217 1.997±0.997 381.799±1.514 21 044 ˑ18.289N32 ˑ04.901 E 8.355±0.217 1.780±0.061 395.881±1.562 22 E 044 ˑ18.386 N 32 ˑ04.274 21.323±0.355 1.450±0.056 287.497±1.360 23 044 ˑ18.318N32 ˑ04.040 E 4.688±0.161 8.080±0.129 281.886±1.308 24 E 044 ˑ17.874 N 32 ˑ04.177 12.575±0.267 LD 158.413±0.991 25 044 ˑ18.178 N 32 ˑ04.227 E 15.363±0.301 3.546±0.088 221.693±1.195 26 044 ˑ18.415 N 32 ˑ04.387 E 15.551±0.294 2.678±0.074 368.738±1.494 27 044 ˑ18.764 N 32 ˑ04.371 E 19.156±0.350 6.615±0.125 249.305±1.320 28 044 ˑ18.576 N 32 ˑ04.072 E 4.0676±0.149 2.960±0.077 234.832±1.187 29 044 ˑ19.134 N 32 ˑ05.590 E 10.206±0.256 7.791±0.136 303.618±1.460 30 044 ˑ18.924N 32 ˑ03.754 E 9.563±0.246 5.677±0.1155 369.703±1.599 31 0444 ˑ19.051N 32 ˑ03.691 E 3.301±0.147 5.500±0.116 204.644±1.201 32 044 ˑ18.901 N 32 ˑ03.886 E 3.659±0.154 7.966±0.138 280.366±1.411 33 E 044 ˑ19.154N32 ˑ04.026 24.207±0.380 10.086±0.149 166.349±1.416 Physics | 47 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Table 2. Internal and external Hazard Index, and radium equivalent in soil samples. 34 044 ˑ18.677 N 32 ˑ03.975 E 19.338±0.351 6.754±0.126 190.616±1.152 35 044 ˑ19.817N 32 ˑ04.670 E 2.086±0.108 4.987±0.101 195.395±1.093 36 044 ˑ18.155N 32 ˑ04.255 E 7.127±0.226 8.750±0.151 327.893±1.603 37 044 ˑ19.149 N 32 ˑ04.255 E 9.168±0.240 6.543±0.123 392.18±1.640 38 044 ˑ19.144 N 32 ˑ04.254 E 9.625±0.242 7.131±0.126 363.014±1.551 39 044 ˑ18.18 N 32 ˑ04.029 E 3.336±0.142 4.477±0.100 323.503±1.464 40 044 ˑ18.916 N 32 ˑ04.035 E 29.332±0.401 3.171±0.080 114.524±0.827 41 044 ˑ18.912 N32 ˑ04.044 E 7.430 0.594 23.948 0.649 286.045 3.851 42 044 ˑ18.911 N 32 ˑ04.046 E 10.896 0.741 13.231 0.496 266.496 3.825 43 044 ˑ18.870N32 ˑ04.055 E LD 1.705 0.058 142.469 0.889 44 044 ˑ18.905N32 ˑ04.660 E 10.633 0.726 13.399 0.495 705.834 6.179 45 E 044 ˑ18.912N32 ˑ04.069 4.538±0.164 9.099±0.141 115.923±0.868 46 044 ˑ18.913N32 ˑ04.069 E 6.939±0.193 3.148±0.079 13.592±0.282 47 044 ˑ18.915N32 ˑ04.180 E 23.623±0.358 5.906±0.108 223.463±1.150 48 044 ˑ18.920N 32 ˑ04..085 E 15.225±0.321 5.047±0.112 269.409±1.411 49 044 ˑ18.921N32 ˑ04.089 E 31.319±0.741 4.960±0.105 245.788±1.274 50 E 044 ˑ18.921 N 32 ˑ04.026 29.694±0.418 6.280±0.117 202.917±1.142 average 11.851 0.281 6.283 0.148 265.494 1.445 Maximum 31.319 0.741 23.948 0.649 705.834 6.179 Minimum 1.1583±0.0821 1.117±0.048 13.5920.282 World Wide average [3] 33 45 420 samples Internal Hazard Index 𝟏inH external Hazard Index 𝟏exH radium equivalent 𝑹𝒂𝒆𝒒 𝑩𝒒. 𝑲𝒈 ‒𝟏 1 0.156 0.131 48.537±0.493 2 0.066 0.050 18.511±0.386 3 0.102 0.075 27.989±0.466 4 0.139 0.114 42.487±0.484 5 0.185 0.131 48.498±0.591 6 0.135 0.091 33.970±0.503 7 0.152 0.125 46.318±0.524 8 0.087 0.063 23.596±0.414 9 0.162 0.124 46.178±0.554 10 0.206 0.146 54.384±0.617 Physics | 48 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 11 0.109 0.082 30.653±0.398 12 0.135 0.101 37.558±0.484 13 0.075 0.074 27.524±0.270 14 0.078 0.075 27.940±0.319 15 0.119 0.094 34.944±0.45Z 16 0.111 0.088 32.850±0.447 17 0.111 0.098 36.509±0.377 18 0.128 0.109 40.364±0.444 19 0.151 0.125 46.564±0.487 20 0.133 0.110 40.790±0.424 21 0.134 0.111 41.385±0.425 22 0.180 0.123 45.533±0.540 23 0.115 0.102 37.948±0.447 24 0.103 0.069 25.708±0.397 25 0.142 0.101 37.504±0.519 26 0.171 0.129 47.773±0.515 27 0.180 0.129 47.812±0.631 28 0.082 0.071 26.383±0.352 29 0.148 0.120 44.726±0.563 30 0.150 0.124 46.149±0.534 31 0.081 0.072 26.924±0.407 32 0.108 0.098 36.640±0.461 33 0.204 0.139 51.439±0.674 34 0.170 0.118 43.673±0.621 35 0.071 0.065 24.263±0.338 36 0.140 0.121 44.888±0.568 37 0.156 0.131 48.723±0.543 38 0.155 0.129 47.776±0.542 39 0.102 0.093 34.649±0.398 40 0.194 0.115 42.685±0.579 41 0.192 0.172 63.703 1.819 42 0.165 0.135 50.334 1.746 43 0.039 0.037 13.918 0.204 44 0.256 0.227 84.199 1.911 45 0.083 0.071 26.477±0.434 46 0.052 0.033 12.489±0.328 47 0.197 0.133 49.275±0.602 48 0.157 0.116 43.186±0.591 Physics | 49 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Table 3. Annual Effective internal and external dose and absorbed dose in air in soil samples. 49 0.239 0.154 57.338±0.684 50 0.226 0.146 54.2990.6744 average 0.139 0.108 40.078 0.564 Maximum 0.256 0.227 84.199 1.911 Minimum 0.039 0.033 12.489 0. 328 World Wide average [3] 1 1 370 Samples Absorbed Dose Air in AD 𝐧𝐆𝐲 𝐡⁄ Annual dose Outdoor 𝐦𝐒𝐯 𝐲⁄ Annual dose Indoor 𝐦𝐒𝐯 𝐲⁄ 1 24.769±0.233 0.0304±0.0003 0.121±0.011 2 8.277±0.174 0.0102±0.0002 0.040±0.0009 3 13.303±0.215 0.0163±0.0003 0.065±0.0011 4 21.432±0.228 0.0263±0.0003 0.105±0.0011 5 23.530±0.275 0.0289±0.0003 0.115±0.0014 6 16.444±0.234 0.0202±0.0003 0.080±0.0012 7 23.006±0.245 0.0282±0.0003 0.112±0.0012 8 11.443±0.192 0.0140±0.0002 0.056±0.0009 9 22.695±0.258 0.0278±0.0003 0.111±0.0013 10 26.690±0.288 0.0327±0.0004 0.130±0.0014 11 15.654±0.189 0.0192±0.0002 0.076±0.0009 12 18.919±0.228 0.0232±0.0003 0. 092±0.0011 13 14.501±0.131 0.0178±0.0002 0.071±0.0006 14 14.381±0.151 0.0176±0.0002 0.070±0.0007 15 17.698±0.217 0.0217±0.0003 0.086±0.0011 16 16.515±0.210 0.0203±0.0003 0.081±0.0010 17 19.129±0.181 0.0235±0.0002 0.093±0.0009 18 20.639±0.210 0.0253±0.0003 0.101±0.0010 19 23.750±0.230 0.0291±0.0003 0.116±0.0011 20 21.104±0.203 0.0259±0.0002 0.103±0.0010 21 21.474±0.203 0.0263±0.0002 0.105±0.0010 22 22.740±0.255 0.0279±0.0003 0.111±0.0013 23 18.938±0.209 0.0232±0.0003 0.092±0.0010 24 12.822±0.188 0.0157±0.0002 0.062±0.0009 25 18.544±0.243 0.0227±0.0003 0.091±0.0012 Physics | 50 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 26 24.224±0.244 0.0297±0.0003 0.118±0.0012 27 23.354±0.295 0.0286±0.0004 0.114±0.0014 28 13.510±0.166 0.0166±0.0002 0.066±0.0008 29 22.214±0.264 0.0272±0.0003 0.109±0.0013 30 23.360±0.252 0.0286±0.0003 0.114±0.0012 31 13.474±0.191 0.0165±0.0002 0.066±0.0009 32 18.329±0.216 0.0225±0.0003 0.089±0.0011 33 24.384±0.312 0.0299±0.0004 0.119±0.0015 34 21.077±0.289 0.0258±0.0004 0.103±0.0014 35 12.208±0.158 0.0150±0.0002 0.059±0.0008 36 22.400±0.266 0.0275±0.0003 0.109±0.0013 37 24.653±0.256 0.0302±0.0003 0.120±0.0013 38 24.013±0.255 0.0295±0.0003 0.117±0.0013 39 17.812±0.189 0.0218±0.0002 0.087±0.0009 40 20.296 0.269 0.0249 0.0003 0.099 0.0013 41 30.233 0.838 0.0371 0.0010 0.148 0.0041 42 24.362 0.810 0.0299 0.0010 0.119 0.0040 43 7.234 0.097 0.0089 0.0001 0.035 0.0005 44 42.667 0.901 0.0523 0.0011 0.209 0.0044 45 12.581 0.200 0.0154 0.0002 0.061 0.0010 46 5.728 0.150 0.0070 0.0002 0.028 0.0007 47 23.900 0.281 0.0293 0.0003 0.117 0.0014 48 21.402 0.277 0.0262 0.0003 0.105 0.0014 49 27.799 0.320 0.0341 0.0004 0.136 0.0016 50 26.080 0.313 0.0320 0.0004 0.127 0.0015 average 19.914 0.264 0.0244 0.0003 0.097 0.0013 Maximum 42.667 0.901 0.0523 0.0011 0.209 0.0044 Minimum 5.728 0.150 0.0070 0.0001 0.028 0.0005 [3] World Wide average 55 1 1 Physics | 51 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Figure 2. The specific effectiveness of uranium in selected soil samples. Figure 3. The specific effectiveness of Thorium in selected soil samples. Physics | 52 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Figure 4. The specific effectiveness of Potassium in selected soil samples. Figure 5. The equivalent radium in selected soil samples. 3. Results and Discussion In the present study, the NaI(TI) scintillation detector was used to determine the level of natural radioactivity soil samples collected AL-Nada District-Najaf Government –Iraq After calculation of the specific effectiveness of radionuclides 238U,232Th,40K, radium equivalent internal Hazard Index and external Hazard Index, internal and external annual dose absorbed Physics | 53 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 dose in air. The results of 50 samples of al-Nada district soil in Najaf, Iraq as shown in Tables (1-3) the results were compared with the universally value [3] It was noted that:  The value of Uranium-238 (31.319 0.741) 𝐵𝑞 𝑘𝑔 𝑤𝑎𝑠 ⁄ in sample 49 which is within the camp area and the Minimum value is (1.158 0.0821) 𝐵𝑞 𝑘𝑔 ⁄ in sample 14 located within an empty area with no buildings and gardens and the rate of these values is (11.851 0.281) 𝐵𝑞 𝑘𝑔 ⁄  For the thorium-238, the Maximum value is (23.948 ± 0.649) Bq / kg in sample 41 taken from the camp area and the Minimum (1.117 ± 0.048) Bq / kg is sample 11taken from a public (6.283 0.148) 𝐵𝑞 𝑘𝑔 ⁄  Potassium-40, the Maximum value for specific efficacy is (705.834 ± 6.179) Bq / kg in sample 44, which was taken from the camp area and the Minimum value was (13.5926 ± 0.282) Bq / kg Taken from the camp area and the average values were (265.494±1.445)Bq / kg  For internal Hazard Index H , the Maximum value is (0.256) Bq / kg, which is model 44 and Minimum is (0.039) Bq / kg, which is model 46 and the average of these values is (0.139) Bq / kg  For the external Hazard Index H_ex, the Maximum value of was (0.227) Bq / kg, which is the number 44 and the lowest is (0.033) Bq / kg, which is model 46. The average value of (.108)  For indoor dose, the Maximum (0.209 ± 0.0044) mSv/y was the number 44 and the lowest value is (0.028 ± 0.0005) mSv/y, which is the 46th location within the camp area and the mean value is (0.097±0.0013) mSv/y The Maximum absorption value was (42.667 ± 0.901) mSv/y, which represented the average values were (0.0244±0.0003) mSv/y The Maximum absorption value was (42.667 ± 0.901) mSv/y, which represented the 44th site that represented the camp.The Minimum value was (5.728 ± 0.150) mSv/y, which represents site 46, which represents the camp The (19.914 ± 0.264) mSv /y. 4. Conclusion The active concentrations of 238U and 40K and 232Th are lower than the world average. The value of the known radiation hazard index in the study area is also calculated below the recommended value. The results show that the average dose rate does not exceed the world's average recommended value and does not pose a serious health hazard. The data provided can be used for comparisons in future surveys and can be used to develop radiographs for the area. The results can also be used as reference data for monitoring possible future radioactive contamination References 1. International Atomic Energy Agency. (IAEA). Radiation safety. Regulation for the safe transport of radioactive material IAEA Division of Public Information 1996, 96e00725 IAEA/PI/A47E. 2. Environmental Protection Agency, (EPA, 2007). United States. Ionizing radiation Fact book. EPA. Office of Radiation and Indoor Air 2007. EPA-402-F-06e061. 3. United Nation Scientific Committee on the Effects of Atomic. (UNSCEAR). Radiation Sources and effects of ionizing radiation. New York, USA: United Nations. Physics | 54 Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHJPAS https://doi.org/10.30526/31.3.2026 Vol. 31 (3) 2018 Report of the United Nations Scientific Committee on the Effect of Atomic Radiation to General Assembly, 2000. 4. Annunciata, M.F.L. Handbook of radioactivity Analysis; 2 nd ed.; USA, 2003. 5. Paul, F.; Jan, V. Ch. 4 Semiconductor Detectors.in Handbook of Radioactivity 2003, Analysis: Canberra industries. Inc.USA., 239-321. 6. Ashraf, K. Ch.9. Radiation Detection Method in Radionuclide concentration in food the Environment. Taylor. Francis Group LLC, USA, c2007, p. 269-331. 7. Gordon, R;Gilmore, Practical Gamma-ray spectrometry, 2 nd ed. ; John wiley sons: Ltd, USA, 2008. 8. Ravisankar, R; Chandrasekaran, A; Vijayagopal, P; Venkatraman, B; Senthilkumar, G; Eswaran, P;Rajalakshmi, A; Radiat. Phy. Chem. 2012, 81, 1789–1795. 9. Harb, S.; Kamel,A. H. E. ; Abd El-Mageed, l. A. ; Abbady, I. A. ; Wafaa, R. Concentration of U-238, U-235, Ra226, Th-232 and K-40 for some granite samples in eastern desert of Egypt. In Proceedings of the 3rd Environmental Physics Conference: Aswan Egypt, 2008, 109–117. 10. Perez-Andujar. A.; Pibida. L.; Perormance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements : Applied Radiation and Isotopes. 2004, 60, 1, 41-47.