Conseguences of soil crude oil pollution on some wood properties of olive trees Chemistry | 195 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Co (II) and Cd (II) Mixed-Ligands Complexes Prepared From N'-(4-methylsulfanyl-benzoyl)-hydrazine Carbodithioic Acid Methyl Ester; Synthesis and Physico-Chemical Characterisation Riyadh M. Ahmed Dept. of Chemistry/ College of Education for Pure Science ( Ibn Al-Haitham)/ University of Baghdad Received in:13/November/2016,Accepted in:12/December/2016 Abstract This work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanyl- benzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chemical techniques was used to characterise the new ligand and its mixed-ligand metal complexes. These include; IR, UV- Vis, 1 H, 13 C NMR, elemental micro analyses, magnetic susceptibility, atomic absorption, chloride content, and melting point. The physico-chemical analyses indicated the formation of complexes of the general formula [M(L)2X], (X = ethylene diamine (en), 2,2` bipyridine`(bipy) and 1,10 phenanthroline` (phen)), in which the coordination sphere about metal centre is octahedral. Keywords: N'-(4-Methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester, Dithiocarbamate derivative; Mixed-ligands complexes. Chemistry | 196 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Introduction Transition metal complexes that derived from dithiocarbamate (DTC) species, in particular that with heterocyclic backbone, have shown medicinal and industrial applications [1-3]. The presence of sulfur atoms in these type of compounds enhanced their anti-tumour properties [4] and allowed them to be used as fungicides and pesticides agents [5]. Further, dithiocarbamate (DTC) compounds have displayed cytotoxic properties and applied in the treatment of metal poising [6- 8]. The preparation of substituted dithiocarbamate ligands containing heteroatoms can facilitate these ligands to behave as a bidentate [9], tridentate [10, 11] or multidentate [12] chelating agent, upon complexation. Mixed ligands complexes are an interesting type of species that having at least two different kinds of ligands linked with the same metal ion in a complex. The formation of complexes with more than one ligand allowed researcher varying complex properties and obtaining complexes with interesting physical and chemical properties, compared with that containing one ligand [13-15]. In this work, the formation and structural characterisation of cobalt(II) `and cadmium(II) mixed-ligands compounds that obtained from dithiocarbamate heterocyclic ligand and ethylene diamine (en), 2,2 bipyridine`(bipy) and 1,10 phenanthroline`(phen) co-ligand are reported. The physical and analytical analyses indicated the synthesis of complexes with octahedral coordination sphere around atom centre. Experimental Reagents Reagents were acquired from Aldrich, Fluka and Acros and applied as received. Instruments (C. H. N) analyses were conducted on a EuroEA 3000 analyzer. IR samples were measured as solids, KBr discs, from 4000-400 cm -1 on a Shimadzu 8400 S FTIR `spectrophotometer. UV-Vis samples were recorded from 200-1100 nm for 10 -3 -10 -5 M in DMSO medium at 23 C with a Shimadzu 160 spectrophotometer. A Brucker AMX300 MHz spectrometer was used to obtain 1 H- 13 C-NMR data in DMSO–d6 solutions. Positive Electrospray mass spectroscopy technique (ESMS) was used to achieve the mass spectrum. SMP40 apparatus was used to measure melting points of compounds. Metal content was determined using atomic absorption technique on a Shimadzu instrument model 680 G. A titration`method using a 686 Titrp`processor with 665 Dosimat`-Metrohm Swiss`instrument was conducted to determine chloride content in complexes. Molar conductance in DMSO solutions was run on a PW 9526 conductance bridge. Magnetic susceptibility measeurments at 30 C were performed on a Sherwood Scientific Devise. Chemistry | 197 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Synthesis Preparation`of HL: The synthesis of HL was performed following a standard procedure stated in [16] in three steps and as follows: Synthesis of the ligand: A solution of 4-methylsulfanyl-benzoyl chloride (1.0 g, 5.35 mmol) in 10 mL of MeOH was added dropwise to hydrazine (99%, 0.17 g, 5.30 mmol) with stirring for 1 h. The product was filter and washed with diethyl ether, which yielded (0.79 g, 81%). The product 4-methylsulfanyl benzoic acid hydrazide (0.7 g, 3.84 mmol) was dissolved in methanolic solution (10 mL) of KOH (0.211 g, 3.83 mmol). The mixture was allowed to cool and then CS2 (0.292 g, 3.83 mmol) was added dropwise with stirring. The obtained solid of N'-(4-methylsulfanyl-benzoyl)-hydrazine potassium thiocarbamate (0.83 g, 73%) was collected by filtration and then reacted with methyl iodide (0.396 g, 2.79 mmole) in methanol medium (20 mL). The mixture was allowed to reflux for 2 h, and the required ligand N'-(4-methylsulfanyl-benzoyl)-hydrazinecarbodithioic acid methyl ester that isolated by filtration`was rinsed with diethyl ether and allowed to dry under vaccu. Yield: (0.53 g, 70%), m.p=187 °C. Infra-red ν(cm-1), (Figure 1): 3329; 3111 cm -1 ν(N-H) of amide and hydrazide, respectively, 1667 ν(C=O), 1637 δ(N-H), 1618 ν(C=C), 1527 ν(C=S-NH), 1113 ν(N-N), 972 ν(C=S). 1 H NMR data (ppm), δH (300 MHz, DMSO-d6), (Figure 4): 1.99 (CS2-CH3), 2.038 (S- CH3), 2.97 (NH-C=S), 6.70 and 7.50 (protons of ring), 8.33 (C=O-NH); 13 C NMR`data (ppm), δC (100.63 MHz, `DMSO-d6), (Figure 5): 17.51 (S2CH3), 19.2 (SCH3), 119.16, 123.20, 124.60, 135.72 (carbon of ring), 173.42 (C=O), 187.18 (C=S). ESMS of HL gave m/z, (Figure 8), 272 (57 %) (M) + indicates the ion peak of the ligand. Peaks observed at m/z 181 (31 %), 124 (100%), 78 (60%), assigned to the [M-(CS2-CH3)] + , [M-(CS2-CH3)+(NH-NH-C=O)] + and [M-(CS2-CH3)+(NH-NH-C=O)+(S-CH3)] + , respectively. Formation of `complexes with mixed-ligands A solution of metal`chloride (1 mmole) in MeOH (10 mL) was added to a mixture of HL (2 mmole) in MeOH and CHCl3 (25 mL, 50 V/V). The mixture was allowed to stirring for 2 h at room temperature followed by addition of co-ligands (ethylene diamine, 2,2-bipyridine and 1,10-phenanthroline) (1 mmole) in methanol (5 mL) that yielded a clear yellow solution. This solution was filtered and kept for slow evaporation, which gave coloured solids that washed with ether (2x5 mL). Physical and chemical data for products are stated in (Table 1). Results and discussion Chemistry: The new multidentate ligand (HL) was obtained in a good yield via a three-step procedure using a mixture of MeOH and CHCl3 medium. The reaction of 4-methylsulfanyl benzoic acid hydrazide with CS2 and KOH yielded N'-(4-methylsulfanyl-benzoyl)-hydrazinepotassium thiocarbamate. This compound was reacted with methyl iodide (0.40 g, 2.79 mmol) at reflux to give the ligand N'-(4-methylsulfanyl-benzoyl)-hydrazinecarbodithioic acid methyl ester (Scheme 1). The ligand was characterised by C.H.N.S analyses (Table 1), Infra-Red analysis (Table 2), Electronic data (Table 3), and NMR spectra. The formation of monomeric mixed ligands complexes with cobalt(II) and cadmium(II) were obtained`from the mixing of (1 mmol) of metal chloride salts, (2 mmol) of HL and (1 mmol) of co-ligands (ethylene diamine, 2,2-bpyridine and 1,10-phenanthroline) in MeOH medium. Neutral species of the general composition [M(L)2X], (M = Co (II) , and Cd `(II) ), X= en, bipy, phen, were isolated, see Scheme 2. Chemistry | 198 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 The solid complexes are stable in air that showed solubility in DMF and DMSO. The coordination spheres of the`complexes were based on their physical and chemical data, see Table 1. Table 2 includes the IR data of the HL and its complexes. NMR and IR Spectra The NMR data were used to deduce the chemical structure of the ligand. Proton NMR spectrum of HL in DMSO-d6 solvent, Figure 4: revealed peaks at 1.99 and 2.83 ppm assigned to (CS2-CH3) and (S-CH3), respectively which appeared as expected at lower chemical shift. Signal at 2.97 ppm assigned to (NH-C=S) that observed up-field due to its neighbouring to (C=S) group that lead to increase the density on (N-H) group and causes the shielding. The signal of ring protons was observed at 6.70 and 7.50 ppm, while the chemical shift at 8.33 ppm attributed to (C=O-NH). The appearance of this peak down-field can be attributed to intra- or intermolecular-hydrogen bonding to the oxygen atom and/or to the NMR solvent, respectively. Such interaction causes a decrease in the electrons density on the (N-H) moiety. The 1 H`NMR of [Cd(L)2(en)], (Figure 6), indicated the disappearance of proton signal that attributed to (NH-C=S) segment. This is due to loss of hydrazinic proton and confirming the involvement of nitrogen in coordination with Cd(II) ion. The spectrum showed signal at 2.25 ppm attributed to CH2 group. Peak at 2.95 ppm assigned to (NH2) of the ethylenediamine co- ligand. The down-field appearance of this peak, compared with that in ethylendiamine, may attribute to the involvement`of the nitrogen atoms in the coordination to the Cd(II) ion. 13 C NMR spectrum (ppm), (Figure 7): δC, 18.44 (SCH3), 19.74 (S2CH3), 44.16 (CH2), 116.01, 123.78, 127.57, 139.16 (carbon of ring), 167.82 (C=O), 192.67 (C=S). The infrared chart of the free ligand, Figure 1, exhibited typical bands related to ν(N-H), `ν(C=O), δ(N-H), `ν(C=C) and ν(C=S-NH), ν(C=S) functional groups. The distinct frequency around 3329, 3111 cm -1 assigned to ν(N-H). The band at 1667 can be attributed to ν(C=O) [17]. Bands noticed at 1637 and 1618 cm -1 allocated to`ν(C=N) and`ν(C=C), respectively [18]. Peaks at 1527 and 972 cm -1 related to ν(C=S-NH) and ν(C=S), respectively`[19]. The infrared spectra of the complexes confirmed HL bands`with the suitable changes and the`M-N and`M-O vibrations, confirming complexation (Table 2). Upon complex formation, new bands appeared at 3305, 3113 and 3328, 3188 cm -1 attributed to ν(NH2), confirming the involvement of ethylenediamine group in the coordination to metal ion in complexes 1 and 2, respectively. The ν(C=O) and δ(N-H) is shifted, to lower`frequency, and detected around 1642-1653 and 1606-1624 cm -1 for the complexes indicating the coordination of the N-H of hydrazide and oxygen of carbonyl amide group to the metal ions, compared`with that in the`free ligand [20-22]. The negative shift of 14-25 cm -1 in ν(C=O) value and the presence of new two bands at 422-590 cm -1 related to ν(M-N) suggests bonding of metal ions with ethylene diamine, bpy and 1,10-phenanthroline and one of hydrazinic nitrogen, after loss of a proton. The involvement of hydrazinic nitrogen in bonding is supported by positive shifts (10- 48) cm -1 in ν(N-N) in all complexes [20, 23]. Further, complexes displayed new bands around 551-615 cm -1 that allocated to ν(M-O) and confirming the involvement of oxygen atom in complexation [18, 19], Figure 2 and 3. Electronic`spectra, magnetic`measuerments and molar`conductance: The`UV-Vis spectrum of HL displays a peak at 245 nm related to π → π*. Peaks at 305 and 423 nm assigned to n→ π* transitions. The UV-Vis spectra of the complexes`showed peaks assigned to ligand`field π → π* and to the charge transfer transitions (Table 3). The [Co II (L)2en] spectrum, Figure 8, showed band in the d-d region attributed to 4 T2g (F) → 4 A2g (F) transition [24, 25]. The electronic information and the eff value confirmed an octahedral arrangment about the Co(II) atom [26]. The spectra of [Co II (L)2bipy], Figure 9, and [Co II (L)2phen] also show one additional peak at 650 and 633 nm, respectively`attributed to Chemistry | 199 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 spin forbidden transition and confirming octahedral geometry [24, 25, 26]. The eff value of Co(II) complexes confirmed a high spin`octahedral`structure. The UV-Vis data of Cd(II) species showed bands related to ligand`field and intra-ligand interaction [26]. As expected, these compounds are diamagnetic, d 10 system The conductivity measurements indicate a non- electrolyte complexes, Table (1) [27]. Conclusion A range of mixed-ligands Co(II) and Cd(II) complexes are reported. The complexes were obtained from the interaction of the multidentate ligand (HL) with Co(II) and Cd(II) metal ions and co-ligand ethylenediamine, 2,2-bipyridine or 1,10-phenanthroline. The entity and chemical structure of the complexes were deduced using a range of analytical and physical techniques. These methods indicated the formation of distorted octahedral geometries about metal centres. References 1. Lal, R. A.; Bhaumik, S.; Lemtur, A.; Singh, M. K.; Basumatari, D.; Choudhury, S.; De A.and Kumar. A., (2004), Synthesis, characterization and crystal structure of manganese (IV) complex derived from salicylic acid, Inorg. Chim. Acta, 359, 3105, 2004. 2. Pecoraro V. L., (1992), Manganese Redox enzymes. VCH Publish ers, New York 290. 3. Dismukes,G. C., (1996), Manganese Enzymes with Binuclear Active Sites Chem Rev., 96:2909. 4. Trevisan, A.; Marzano C.; Cristofori P.; Venturini M. B.; Giovagnini L. and Fregona D., (2002), Synthesis of a palladium(II)-dithiocarbamate complex: biological assay and nephrotoxicity in rats, Arch Toxicol, 262–268, 76. 5. Jaga K. and Dharmani C., (2006), Ocular toxicity from pesticide exposure: A recent review Environ Health Prevent Med, 102–107, 11. 6. Alverdi, V.; Giovagnini, L.; Marzano, C.; Serglia R.; Bettio F.; Sitran S.; Graziania R. and Fregona D., (2002), Characterization studies and cytotoxicity assays of Pt(II) and Pd(II) dithiocarbamate complexes by means of FT-IR, NMR spectroscopy and mass spectrometry J. Inorg. Biochem., 1117–1128, 98. 7. Atanasov, A. G.; Tam, S.; Rocken, J. M.; Baker, M. E. And Odermatt A., (2003), Inhibition of 11β-hydroxysteroid dehydrogenase type 2 by dithiocarbamates Biochem Biophys Res Commun., 257–262, 308. 8. Erl, W.; Weber, C. and Hansson, G. K., (2000), Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu 2+ and Zn 2+ , Am J Physiology-Cell Physiology, 1116–1125, 278. 9. Wang, X.; Deng, Z.; Jin, B.; Tian Y. and Lin X., (2002), Bull Chem Soc Jpn., 1269, 75. 10. Tarafder M. T.; Ali A. M.; Wee D. J.; Azahari K.; Silong S. and Crouse K. A.,( 2000), Complexes of a tridentate ONS Schiff base. Synthesis and biological properties Transition Met. Chem., 456, 25. http://www.sciencedirect.com/science/article/pii/S0020169304006747 http://www.sciencedirect.com/science/article/pii/S0020169304006747 http://pubs.acs.org/doi/abs/10.1021/cr950053c http://link.springer.com/article/10.1007/s00204-002-0329-7 http://link.springer.com/article/10.1007/s00204-002-0329-7 http://link.springer.com/article/10.1265/ehpm.11.102 http://link.springer.com/article/10.1265/ehpm.11.102 http://www.sciencedirect.com/science/article/pii/S0162013404000911 http://www.sciencedirect.com/science/article/pii/S0162013404000911 http://www.sciencedirect.com/science/article/pii/S0006291X03013597 http://www.sciencedirect.com/science/article/pii/S0006291X03013597 http://ajpcell.physiology.org/content/278/6/C1116 http://ajpcell.physiology.org/content/278/6/C1116 http://link.springer.com/article/10.1023/A%3A1007062409973 Chemistry | 200 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 11. Tarafder, M. T.; Ali, A. M.; Saravanan, N.; Weng, W. Y.; Kumar, S.; Umar-Tsafe N. and Crouse K. A., (2000), Coordination chemistry and biological activity of two tridentate ONS and NNS Schiff bases derived from S-benzyldithiocarbazate Transition Met. Chem., 295, 25. 12. Ali, A. M.; Mirza, A. H.; Butcher, R. J. and Tarafder, M. T., (2001), Synthetic, spectroscopic, biological and X-ray crystallographic structural studies on a novel pyridine- nitrogen-bridged dimeric nickel(II) complex of a pentadentate N3S2 ligand, Inorg. Chim. Acta, 1, 320. 13. Kumar, R.; Johar, R. and Aggarwal, A. K., (2012), Synthesis, structural elucidation and antimicrobial effectiveness of coordination entities of cobalt (II) and nickel (II) derived from 9,17-diaza-2,6,11,15-tetrathia-1,7,10,16-(1,2)-tetrabenzenacyclooctadecaphan-8,17-diene, Eurp. J. of chem., 3(1), 57-64. 14. Sanap, S. V. and R. M. Patil, (2013), Synthesis, Characterisation and Biological Activity of Chiral Mixed Ligand Ni(II) Complexes ,Res. J. Pharma. Sci., 2(1), 1. 15. Ndosiri, N. B.; Agwara, M. O.; Paboudam, A. G.; Ndifon, P. T.; Yufanyi, D. M. and Amah C., (2013), Res. J.Pharma., Bio. Chem. Sci., 4(1), 386. 16. Singh, M.; Aggarwal ,V.; Singh, U. P. and Singh, N. K., (2009), Synthesis, characterization and spectroscopic studies of a new ligand [N′-(2- methoxybenzoyl)hydrazinecarbodithioate] ethyl ester and its Mn(II) and Cd(II) complexes: X- ray structural study of Mn(II) complex, Polyhedron, 107, 28. 17. Al-Jeboori, M .J.; Issa, I. O. and Al-Dulaimi, J. S., (2011), Formation of binuclear metal complexes with multidentate Schiff-base oxime ligand: synthesis and spectral investigation, Journal of Ibn Al-Haitham for Pure and Applied Sciences, 24, (2) , 142-153. 18. Al-Jeboori, M. J.; Abdul Rahman, A. A and Atia, S., (2005), Journal of Ibn Al-Haitham for Pure and Applied Sciences, 18, (2), 51. 19. Nakomoto K., (1996), Infrared Spectra of Inorganic and Coordination Compounds, 4 th ed., J. Wiely and Sons, New York. 20. Al-Jeboori M. J.; Al-Dujaili A. H. and Al-Janabi A. E., (2009), Coordination of carbonyl oxygen in the complexes of polymeric N-crotonyl-2-hydroxyphenylazomethine , Transition Met. Chem., 34, 109. 21. Livingston, S. E.; Mayfield, J. H. and Moorse, D. S.,(1975), Thio derivatives of β- diketones and their metal chelates. XX. Magnetic moments of some ruthenium(III) chelates of fluorinated Monothio-β-diketones , Aust. J. Chem., 28, 2531. 22. El-Sonbati, A. Z.; El-bindary, A.A. and Al-Sarawy, A.A.,(2002), Stereochemistry of new nitrogen containing heterocyclic aldehyde. IX. Spectroscopic studies on novel mixed-ligand complexes of Rh(III), Spectrochim Acta Part A, 58, 2771. 23. Nakamoto, K., (1986), Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley Interscience, New York. 24. Ma Q.; Zhu M.; Feng L. L. and J. Yan, (2011), Trinuclear-based coordination compounds of Mn(II) and Co(II) with 4-amino-3,5-dimethyl-1,2,4-triazole and azide and thiocyanate anions: Synthesis, structure and magnetic properties, Inorg. Chem. Acta, 370, 102-107. 25. Silverstein M. R., (2005), Spectrometric identification of organic compounds 7 th edition, John Willey and Son, inc., 174 .26. Nakamoto K. and Ohkaku N., (1971), Metal isotope effect on metal-ligand vibrations. VI. Metal complexes of 8-hydroxyquinoline, Inorg. Chem., 10, 798. 27. Al-Jeboori, M. J.; Abdul-Ghani, A. J. and Al-Karawi, A. J., (2008), Synthesis and structural studies of new Mannich base ligands and their metal complexes, Transition Met Chem, 33, 925-930. http://link.springer.com/article/10.1023/A%3A1007044910814 http://link.springer.com/article/10.1023/A%3A1007044910814 http://www.sciencedirect.com/science/article/pii/S0020169301004522 http://www.sciencedirect.com/science/article/pii/S0020169301004522 http://www.sciencedirect.com/science/article/pii/S0020169301004522 http://www.eurjchem.com/index.php/eurjchem/article/view/448 http://www.eurjchem.com/index.php/eurjchem/article/view/448 http://www.eurjchem.com/index.php/eurjchem/article/view/448 http://www.isca.in/IJPS/Archive/v2/i1/1.ISCA-RJPcS-2012-003.php http://www.isca.in/IJPS/Archive/v2/i1/1.ISCA-RJPcS-2012-003.php http://www.sciencedirect.com/science/article/pii/S0277538708005330 http://www.sciencedirect.com/science/article/pii/S0277538708005330 http://www.sciencedirect.com/science/article/pii/S0277538708005330 http://www.sciencedirect.com/science/article/pii/S0277538708005330 http://www.publish.csiro.au/CH/CH9752531 http://www.publish.csiro.au/CH/CH9752531 http://www.publish.csiro.au/CH/CH9752531 http://www.sciencedirect.com/science/article/pii/S1386142502000215 http://www.sciencedirect.com/science/article/pii/S1386142502000215 http://www.sciencedirect.com/science/article/pii/S1386142502000215 http://www.sciencedirect.com/science/article/pii/S0020169311000363 http://www.sciencedirect.com/science/article/pii/S0020169311000363 http://www.sciencedirect.com/science/article/pii/S0020169311000363 http://pubs.acs.org/doi/abs/10.1021/ic50098a027 http://pubs.acs.org/doi/abs/10.1021/ic50098a027 Chemistry | 201 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table(1): Colours,`yields,`elemental analyses, and conductivity`values. Comp. Colo. Yield m.p Found (Calcd.) (%) M (cm 2 Ω -1 mol -1 ) M C H N Cl HL yellow 70 187 43.48 (44.09) 4.52 (4.44) 9.77 (10.28) - - [Co II (L)2en] yellow 68 276 8.12 (8.90) 39.37 (39.92) 4.67 (4.57) 12.87 (12.70) - - 7 [Cd II (L)2en] yellow 64 292 15.78 (15.71) 35.72 (36.94) 4.08 (4.23) 11.27 (11.75) - - 6 [Co II (L)2bpy] orange 69 289 7.56 (7.78) 46.73 (47.54) 3.67 (3.99) 10.19 (11.09) - - 8 [Cd II (L)2bpy] orange 72 284 13.17 (13.85) 43.96 (44.41) 3.42 (3.73) 10.07 (10.36) - - 4 [Co II (L)2phen] pale yellow 66 271 7.24 (7.54) 48.75 (49.15) 3.41 (3.87) 10.42 (10.75) - - 8 [Cd II (L)2phen] yellow 63 283 12.83 (13.46) 45.74 (46.01) 3.47 (3.62) 9.68 (10.06) - - 6 Table (2). IR data (cm –1 ) of compounds. Compound ν(N-H) ν(N-H2) ν(C=O) δ(N-H) ν(C=C) ν(N- N) ν(C= S) ν(M- O) ν(M-N) HL 3329 3111 - 1667 1637 1618 1113 972 - - [Co II (L)2en] 3165 3305 3113 1653 1618 1618 1161 958 551 501, 422 [Cd II (L)2en] 3131 3328 3188 1649 1612 1612 1128 945 609 502, 455 [Co II (L)2bipy] 3119 - 1644 1566 1566 1149 918 615 476, 441 [Cd II (L)2bipy] 3141 - 1642 1618 1618 1123 916 565 549, 486 [Co II (L)2phen] 3149 - 1647 1573 1573 1143 950 557 480, 457 [ Cd II (L)2phen] 3124 - 1645 1558 1558 1144 963 615 590, 515 Chemistry | 202 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Table( 3).`Magnetic values with electronic data in DMSO solutions. Comp. eff (BM) Band position ( nm) Extinction coefficient max(dm 3 mol - 1 cm -1 ) Assignments Co II (L)2(en)] 2.44 240 421 626 861 680 630    * n   * 4 T2g (F) → 4 A2g (F) [Cd II (L)2en] 3.03 260 325 422 2608 1354 100    * n   * CT [Co II (L)2bipy] 0.79 245 370 650 631 800 340 L.F C.T 4 T1g (F) → 4 A2g (F) [Cd II (L)2bipy] 1.77 265 305 2163 1287 Intra-ligand C.T [Co II (L)2phen] 1.55 235 395 633 727 510 500 L.F C.T 4 T1g (F)  4 A2g (F) [Cd II (L)2phen 0.38 245 422 413 120 L.F C.T Chemistry | 203 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 KOH CS2 C H 3 I NH2-NH2+ 4-Methylsulf anyl-benzoyl chloride 4-Methylsulf anyl-benzoic acid hydrazide N '-(4-Methylsulf anyl-benzoyl)- hydrazinepotassium thiocarbamate N '-(4-Methylsulf anyl-benzoyl)- hydrazinecarbodithioic acid methyl ester S O Cl H3C S O NH H3C H2N S O HN H3C NH S S K S O HN H3C NH S S CH3 H2O HCl CH C l3 CH 3 O H Scheme (1). Synthetic route of` ligand Scheme (2). General structure of complexes` Chemistry | 204 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (1): IR spectrum`of L Figure`(2): IR`spectrum of [Co(L)2en] complex Figure`(3): IR`spectrum of [Co(L)2bipy] complex Chemistry | 205 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure.(4): 1 H NMR.spectrum of L Figure.(5): 13 C NMR.spectrum of L Figure (6): 1 H NMR spectrum of [Co(L)2en] complex Chemistry | 206 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure (7): 13 C NMR spectrum of [Co(L)2en] complex Figure( 8): Mass spectrum of L Figure(9): UV-Vis spectrum of [Co(L)2en] complex Chemistry | 207 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 Figure(10): UV-Vis spectrum of [Co(L)2bipy] complex Chemistry | 208 2016( عاو 3انعذد ) 29يجهت إبٍ انهيثى نهعهىو انظزفت و انخطبيقيت انًجهذ Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (3) 2016 -N'-(4مع نيكاوذات مختهطة مه Cd(II)وانـ Co(II) معقذات انـ Methylsulfanyl-benzoyl)-hydrazine Carbodithioic acid Methyl Ester كيميائي-، تحضير وتشخيص فيزيو رياض محمود احمذ / جايعت بغذاد(ابٍ انهيثى )كهيت انخزبيت نهعهىو انظزفت قسى انكيًياء/ 6132/كاوون األول/36،قبم في:6132/تشريه انثاوي/31استهم انبحث في: انخالصة -N'-(4-methylsulfanylحضًٍ انبحث ححضيز يعقذاث انكىبهج وانكادييىو يع نيكاَذاث يخخهطت يٍ حفاعم benzoyl)-hydrazine carbodithioic acid methyl ester كهيكاَذ واسخخذاو انـethylendiamine (en) 2,2'- bipyridine (bipy) or 1,10-phenanthroline (phen) .كًساعذ نيكاَذ يع انهيذراسيٍ نيعطي methylsulfanyl-benzoyl chloride-4حى ححضيز انهيكاَذ بعذة خطىاث ، حيث حى يفاعهت انـ 4-methylsulfanyl-benzoic acid hydrazide ويٍ ثى حى يفاعهت انُاحج يع ،CS2 وهيذروكسيذ انبىحاسيىو وانذي N'-(4-methylsulfanyl-benzoyl)-hydrazine potassium thiocarbamateوباسخعًال انًيثاَىل نيعطي حى يفاعهخه يع انًثيم ايىديذ نيعطي انهيكاَذ. ,IRكيًيائيت نخشخيض انهيكاَذ انجذيذ وانًعقذاث نهيكاَذ انًخخهظ ويُها يطيافيت -حى اسخعًال يجًىعت يٍ انخقُياث انفيشيى UV-Vis, 1 H, 13 C NMR وطيف انكخهت وانخحهيم انذقيق نهعُاطز، انحساسيت انًغُاطيسيت، االيخظاص انذري، يحخىي X= en, bipyحيث [M(L)2X]كيًيائيت حكىيٍ انًعقذاث بانظيغت -يشيىانكهىر ودرجت االَظهار. بيُج انخحانيم انف and phen .واٌ انكزة انخخُاسقيت حىل انفهش هى ثًاَي انسطىح هيذراسيٍ كاربىثُائي ثايىيك اسذ يثيم اسخز، يشخقاث ثُائي -بُشويم(-يثيم سىنفاَيم -4)- انكهمات انمفتاحية: ثايىكارباياث، يعقذاث نيكاَذاث يخخهطت