70 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Bareq Baqe Selman Alaa M. Hamad Abstract This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package. Keywords: Power distribution, (S-S) Stress-Strength Reliability, Maximum Likelihood, Moment method, Least Squares method, Shrinkage method. 1. Introduction The power function distribution represents one of the most important distribution approach in statistical process. It can be expressed by π‘₯~π‘π‘œπ‘€(π‘₯, 𝛼) . Actually, it can be considered as a simple and flexible distribution method that can be used in different applications such as the estimation of reliability for electrical components [1]. This distribution has been introduced in (1967) by Malik H.J throughout studying the exact moment of power function distribution and found a precise expression for moment of power function distribution [2]. Although Bayesian estimation method of parameters have been used by several statisticians and mathematical analysts, but many researchers considered the power function distribution is better than a lot of distributions such as lognormal distribution, exponential distribution and weibull distribution. The power function distribution is as a special case for person first kind distribution that represents the simplicity of the moments for power function distribution [3]. In fact blue estimation method has been introduced for the estimation of the scale and location parameter from the Log-gamma distribution. Many of others researchers were presented estimations of normal distribution parameters by using likelihood function [4-6]. The aim of this work is to estimate the reliability system in the stress- strength model of power function distribution. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi:10.30526/32.3.2284 Article history: Received 24 February 2019, Accepted 14 April 2019, Publish September 2019. Department of Mathematics, College of Education for Pure Science, Ibn-Al-Haitham, University of Baghdad, Baghdad, Iraq. bareqbaqe@gmail.com alaa_073@yahoo.com Different Estimation Methods of the Stress-Strength Reliability Power Distribution mailto:bareqbaqe@gmail.com mailto:bareqbaqe@gmail.com mailto:alaa_073@yahoo.com 71 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 This process has been carried out with using and comparing different estimation methods such as Maximum likelihood estimation (MLE), Moment (MOM), least square (LS) and Shrinkage estimation methods (SH). The (c.d.f) of random variable X for power function distribution is given as in the following [7, 8]. 𝐹(π‘₯, πœƒ, 𝛼) = π‘₯𝛼 πœƒπ›Ό 0 < π‘₯ < πœƒβˆ’1 (1) While the probability density function (P.d.f) of power distribution can be defined as: 𝑓(π‘₯, πœƒ, 𝛼) = π›Όπœƒπ›Ό π‘₯π›Όβˆ’1 0 < π‘₯ < πœƒβˆ’1 (2) Where Ξ± and ΞΈ represent the shape and scale parameters respectively. In special case, if πœƒ = 1 then (c. d. f) will be as follows: 𝐹(π‘₯, 𝛼) = π‘₯𝛼 0 < π‘₯ < 1 (3) And consequently, the (p. d. f) of power function distribution will be: 𝑓(π‘₯, 𝛼) = 𝛼π‘₯π›Όβˆ’1 0 < π‘₯ < 1 (4) The two random variable X and Y are following the power function distribution with parameters (Ξ±1, 1) and (𝛼2, 1) respectively and according to strength – stress (S-S) model. Hence, the π‘₯~π‘π‘œπ‘€(π‘₯, 𝛼1) and 𝑦~π‘π‘œπ‘€(𝑦, 𝛼2)in the strength – stress model can be defined as in the following: 𝑅 = 𝑃(𝑦 < π‘₯) ∫ ∫ 𝑓(π‘₯) 𝑓(𝑦) 𝑑𝑦 𝑑π‘₯ 𝑋 𝑂 1 0 = ∫ ∫ 𝛼1π‘₯ 𝛼1βˆ’1𝛼2𝑦 𝛼2βˆ’1𝑑𝑦 𝑑π‘₯ π‘₯ 0 1 0 Where 𝑝(𝑦 < π‘₯) = 𝑅 = 𝛼1 𝛼1+𝛼2 (5) 2. Estimation Methods 2.1 Maximum Likelihood Estimator (MLE) The maximum likelihood estimator is most popular method because it is approximates the minimum variance unbiased [12]. Letπ‘₯1, π‘₯2 … … π‘₯𝑛 be a random sample ofπ‘π‘œπ‘€(𝛼1, 1) and𝑦1, 𝑦2 … … π‘¦π‘š be a random sample of π‘π‘œπ‘€(𝛼2, 1) Then, the Maximum likelihood for𝛼1 and𝛼2 will be: 𝐿 = 𝐿(𝛼𝑖 , π‘₯𝑖 , 𝑦𝑖 ) = ∏ 𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 ∏ 𝑔(𝑦𝑖 ) π‘š 𝑖=1 𝐿 = ∏ 𝛼1 𝑛 𝑛 𝑖=1 π‘₯𝑖 𝛼1βˆ’1 ∏ 𝛼2 π‘š π‘š 𝑖=1 𝑦𝑖 𝛼2βˆ’1 Taking the logarithm of both sides, then: 𝐿𝑛 𝐿 = 𝑛 ln 𝛼1 + (𝛼1 + 1) ln βˆ‘ π‘₯𝑖 𝑛 𝑖=1 + π‘š ln 𝛼2 + (𝛼2 + 1) ln βˆ‘ 𝑦𝑖 π‘š 𝑖=1 Taking the partial derivation for the above equations with respect to the shape parameter and then equating the results to zero, this will lead to: οΏ½Μ‚οΏ½1π‘šπ‘™π‘’ = βˆ’π‘› ln βˆ‘ π‘₯𝑖 𝑛 𝑖=1 (6) οΏ½Μ‚οΏ½2π‘šπ‘™π‘’ = βˆ’π‘š 𝑙𝑛 βˆ‘ 𝑦𝑖 π‘š 𝑖=1 (7) οΏ½Μ‚οΏ½2π‘šπ‘™π‘’ in equation (5); the reliability estimation of stress – strength model using maximum likelihood method will become: οΏ½Μ‚οΏ½π‘šπ‘™π‘’ = οΏ½Μ‚οΏ½1π‘šπ‘™π‘’ οΏ½Μ‚οΏ½1π‘šπ‘™π‘’ +οΏ½Μ‚οΏ½2π‘šπ‘™π‘’ (8) 72 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 2.2. Moment Method (MOM) The moment method can be considered as the most common and a simple method that have been used in estimation of the parameters. It can be summarized by equating the population moments π‘€π‘Ÿ = 𝐸(π‘₯ π‘Ÿ ) as in the following [8]. 𝐸(π‘₯) = 𝛼1 𝛼1+1 π‘Žπ‘›π‘‘ 𝐸(𝑦) = 𝛼2 𝛼2+1 When equating the sample mean E(x) and E(y) to the corresponding population mean, then 𝛼1 𝛼1+1 = βˆ‘ π‘₯𝑖 𝑛 𝑖=1 𝑛 (9) 𝛼2 𝛼2+1 = βˆ‘ 𝑦𝑖 π‘š 𝑖=1 π‘š (10) From equations (9) and (10), the estimation of parameters 𝛼1and Ξ±2 using moment method will be written as in the following: οΏ½Μ‚οΏ½1π‘šπ‘œπ‘š = βˆ‘ π‘₯𝑖𝑛𝑖=1 π‘›βˆ’βˆ‘ π‘₯𝑖𝑛𝑖=1 (11) οΏ½Μ‚οΏ½2π‘šπ‘œπ‘š = βˆ‘ π‘¦π‘–π‘šπ‘–=1 π‘šβˆ’βˆ‘ π‘¦π‘–π‘šπ‘–=1 (12) Substituting the equations (11) and (12) in equation (5), then the estimation of stress – strength reliability with using moment method will become: οΏ½Μ‚οΏ½π‘šπ‘œπ‘š = οΏ½Μ‚οΏ½1π‘šπ‘œπ‘š οΏ½Μ‚οΏ½1π‘šπ‘œπ‘š +οΏ½Μ‚οΏ½2π‘šπ‘œπ‘š (13) 2.3 Least Square Method (LSM) [5] [9] Letπ‘₯1, π‘₯2 … … π‘₯𝑛 be a random sample of π‘π‘œπ‘€(𝛼1, 1) and𝑦1, 𝑦2 … … π‘¦π‘š be a random sample of π‘π‘œπ‘€(𝛼2, 1), then: 𝐹(π‘₯1) = π‘₯𝑖 𝛼1 π‘₯𝑖 = [𝐹(π‘₯𝑖 )] 1 𝛼1 Taking the logarithm for the both sides of the above equation, then: ln(π‘₯𝑖 ) = 1 𝛼1 ln[𝐹(π‘₯𝑖 )] 𝑦 = π‘Žπ‘₯ + 𝑏 𝑦 = ln π‘₯𝑖, π‘Ž = 1 𝛼𝑖 , π‘₯𝑖 = ln[𝐹(π‘₯𝑖 )], 𝑏 = 0 Hence π‘Ž = βˆ‘ π‘₯𝑖 𝑦𝑖 𝑛 𝑖=1 βˆ’ βˆ‘ π‘₯𝑖 𝑦𝑖 𝑛 𝑖=1 𝑛 βˆ‘ π‘₯𝑖 2𝑛 𝑖=1 βˆ’ (βˆ‘ π‘₯𝑖 𝑛 𝑖=1 )2 𝑛 οΏ½Μ‚οΏ½1𝐿𝑠 = βˆ‘ [ln 𝐹(π‘₯𝑖)] 2𝑛 𝑖=1 βˆ’ [βˆ‘ ln 𝐹(π‘₯𝑖) 𝑛 𝑖=1 ] 2 𝑛 βˆ‘ ln 𝐹(π‘₯𝑖) ln π‘₯π‘–βˆ’ 𝑛 𝑖=1 βˆ‘ ln 𝐹(π‘₯𝑖) ln π‘₯𝑖 𝑛 𝑖=1 𝑛 (14) οΏ½Μ‚οΏ½2𝐿𝑠 = βˆ‘ [ln 𝐺(𝑦𝑖)] 2π‘š 𝑖=1 βˆ’ [βˆ‘ ln 𝐺(𝑦𝑖) π‘š 𝑖=1 ] 2 π‘š βˆ‘ ln 𝐺(𝑦𝑖) ln π‘¦π‘–βˆ’ π‘š 𝑖=1 βˆ‘ ln 𝐺(𝑦𝑖) ln 𝑦𝑖 π‘š 𝑖=1 π‘š (15) For stress – strength reliability �̂�𝐿𝑠using least square method as in the following: 73 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 �̂�𝐿𝑠 = οΏ½Μ‚οΏ½1𝐿𝑠 οΏ½Μ‚οΏ½1𝐿𝑠 +οΏ½Μ‚οΏ½2𝐿𝑠 (16) 2.4 Shrinkage Estimation Method (sh) [10][13]. The shrinkage estimation method can be considered as the Bayesian approach which has depended on the prior information. The basic reasons for using the prior estimation had been introduced by Thompson in 1968.In the shrinkage estimation method the parameter was used as initial value 𝛼0 from the past and usual estimator �̂�𝑒𝑏 through consideration them by shrinkage weight factor, βˆ…(οΏ½Μ‚οΏ½) , 0 < βˆ…(οΏ½Μ‚οΏ½) < 1, which can be written as: οΏ½Μ‚οΏ½π‘ β„Ž = βˆ…(οΏ½Μ‚οΏ½)�̂�𝑒𝑏 + (1 βˆ’ βˆ…(οΏ½Μ‚οΏ½))𝛼0 (17) To find Ξ±Μ‚ub from οΏ½Μ‚οΏ½π‘šπ‘™π‘’ οΏ½Μ‚οΏ½π‘šπ‘™π‘’ = βˆ’π‘› ln βˆ‘ π‘₯𝑖 𝑛 𝑖=1 𝑛 𝑛 βˆ’ 1 οΏ½Μ‚οΏ½π‘šπ‘™π‘’ β‰  οΏ½Μ‚οΏ½π‘šπ‘™π‘’ �̂�𝑒𝑏 = π‘›βˆ’1 𝑛 οΏ½Μ‚οΏ½π‘šπ‘™π‘’ �̂�𝑒𝑏 = βˆ’(π‘›βˆ’1) βˆ‘ ln π‘₯𝑖 𝑛 𝑖=1 (18) 2.4.1 Shrinkage Weight Function ( π’”π’‰πŸ) [11]. In this case, the shrinkage weight factor has used as a function of n, in which: βˆ…(οΏ½Μ‚οΏ½) = | sin 𝑛 𝑛 |, �̂�𝑒𝑏 = βˆ’(π‘›βˆ’1) βˆ‘ ln π‘₯𝑖 𝑛 𝑖=1 Substituting in equation (17), then: οΏ½Μ‚οΏ½1π‘ β„Ž1 = | sin 𝑛 𝑛 | �̂�𝑒𝑏 + (1 βˆ’ | sin 𝑛 𝑛 |) 𝛼0 (19) οΏ½Μ‚οΏ½2π‘ β„Ž1 = | sin π‘š π‘š | �̂�𝑒𝑏 + (1 βˆ’ | sin π‘š π‘š |) 𝛼0 (20) Substituting οΏ½Μ‚οΏ½1π‘ β„Ž1 ,οΏ½Μ‚οΏ½2π‘ β„Ž1 in equation (5), then the reliability estimation of stress – strength model with using shrinkage weight function will become: οΏ½Μ‚οΏ½π‘ β„Ž1 = οΏ½Μ‚οΏ½1π‘ β„Ž1 οΏ½Μ‚οΏ½1π‘ β„Ž1 +οΏ½Μ‚οΏ½2π‘ β„Ž1 (21) 2.4.2 Constant Shrinkage Factor ( π’”π’‰πŸ ) [11]. In constant shrinkage factor case, it can be assumed thatβˆ…(οΏ½Μ‚οΏ½) = π‘˜, K=0.001 which represent the constant shrinkage weight factor. Implying (1-K=0.999), then: οΏ½Μ‚οΏ½1π‘ β„Ž2 = π‘˜1�̂�𝑒𝑏 + (1 βˆ’ π‘˜1)𝛼0 (22) οΏ½Μ‚οΏ½2π‘ β„Ž2 = π‘˜2�̂�𝑒𝑏 + (1 βˆ’ π‘˜2)𝛼0 (23) SubstitutingοΏ½Μ‚οΏ½1π‘ β„Ž2 ,οΏ½Μ‚οΏ½2π‘ β„Ž2 in equation (5), then reliability estimation of stress – strength model with using constant shrinkage factor will become as in the following: οΏ½Μ‚οΏ½π‘ β„Ž2 = οΏ½Μ‚οΏ½1π‘ β„Ž2 οΏ½Μ‚οΏ½1π‘ β„Ž2 +οΏ½Μ‚οΏ½2π‘ β„Ž2 (24) 74 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 2.4.3 Beta Shrinkage Factor (π’”π’‰πŸ‘) [11]. In this case, the assumption ofβˆ…(οΏ½Μ‚οΏ½) = 𝛽(1, 𝑛, π‘š) for the Beta shrinkage weight factor has been taken asβˆ…(οΏ½Μ‚οΏ½1) = 𝛽(1, 𝑛), and βˆ…(οΏ½Μ‚οΏ½2) = 𝛽(1, π‘š) and this implies to the following shrinkage estimators: οΏ½Μ‚οΏ½1π‘ β„Ž3 = 𝛽(1, 𝑛)�̂�𝑒𝑏 + (1 βˆ’ 𝛽(1, π‘š))𝛼0 (25) οΏ½Μ‚οΏ½2π‘ β„Ž3 = 𝛽(1, 𝑛)�̂�𝑒𝑏 + (1 βˆ’ 𝛽(1, π‘š))𝛼0 (26) SubstitutingοΏ½Μ‚οΏ½1π‘ β„Ž3 , οΏ½Μ‚οΏ½2π‘ β„Ž3 in equation (5), then the reliability estimation of stress – strength model with using Beta shrinkage factor will become as in the following: οΏ½Μ‚οΏ½π‘ β„Ž3 = οΏ½Μ‚οΏ½1π‘ β„Ž3 οΏ½Μ‚οΏ½1π‘ β„Ž3 +οΏ½Μ‚οΏ½2π‘ β„Ž3 (27) 3- Simulation Process The simulation process has done with using different sample size such as (30, 50 and 100) and built on 1000 iteration and using the mean square error (MSE) to measure and check the performance as in the following steps: Step 1: the random sample generated for X according to the uniform distribution over the interval (0, 1) asπ‘Ÿ1,π‘Ÿ2β€¦β€¦β€¦β€¦π‘Ÿπ‘› and the random sample generated for Y according to the uniform distribution over the interval (0, 1), as 𝑠1,𝑠2,β€¦β€¦β€¦β€¦π‘ π‘š Step 2: transforming the above power distribution with using reliability as in the following: 𝑅(π‘₯) = 1 βˆ’ π‘₯𝛼 π‘₯𝑖 = (1 βˆ’ π‘Ÿπ‘– ) 1 𝛼 i=1, 2, 3 ……..n Using the same procedure .then 𝑦𝑗 = (1 βˆ’ 𝑠𝑗 ) 1 𝛼 j=1, 2, 3 ……..m Step 3: calculatingοΏ½Μ‚οΏ½1π‘šπ‘™π‘’ and οΏ½Μ‚οΏ½2π‘šπ‘™π‘’ using equations (6) and (7) respectively. Step 4: calculatingοΏ½Μ‚οΏ½1π‘šπ‘œπ‘š and οΏ½Μ‚οΏ½2π‘šπ‘œπ‘š using equations (9) and (10) respectively. Step 5: calculatingοΏ½Μ‚οΏ½1𝐿𝑠 and οΏ½Μ‚οΏ½2𝐿𝑠 using equations (14) and (15) respectively. Step 6: calculating οΏ½Μ‚οΏ½1π‘ β„Žπ‘– and οΏ½Μ‚οΏ½2π‘ β„Žπ‘– when i=1, 2, 3 using equations (19), (20), (22), (23), (25) and (26) respectively. Step 7: calculatingοΏ½Μ‚οΏ½π‘šπ‘™π‘’ , οΏ½Μ‚οΏ½π‘šπ‘œπ‘š , �̂�𝐿𝑠 , οΏ½Μ‚οΏ½π‘ β„Ž1 , οΏ½Μ‚οΏ½π‘ β„Ž2 andοΏ½Μ‚οΏ½π‘ β„Ž3 using equations (8), (13), (16), (21), (24) and (27) respectively. Where, 𝑅 Μ‚point to the suggest estimator of reliability R. The outcomes results are listed in the Tables 1, 3, 5, 7, 9, 11, 13, 15, 17. respectively. 4. Numerical Result Some methods of goodness of fit analysis are employed here; the measurement give an indication of best method is mean square error (MSE) from tables for all. 1. For all n=(30,50,100) and m=(30,50,100) in this work for minimum mean square error (MSE) for the stress-strength reliability estimator of power function distribution after noted the mean square error in tables, the result indicates that shrinkage estimator (Sh2) is the best . 2. For all n=(30,50,100) and m=(30,50,100) the minimum mean square error (MSE) for the stress- strength reliability estimator of power function distribution ,we noticed that the shrinkage estimator is the best and follows by maximum likelihood estimator (MLE), moment estimator (MOM) and least square estimator (LS). 3. For the various cases when (n=30 and m=30), (𝛼1=1and Ξ±2=1) then be moment 75 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 estimator (MOM) batter then maximum likelihood estimator (MLE). Table 1. The estimation when R=0.5, alpha1= 1, alpha2= 1. Table 2. MSE values when R = 0.5, alpha1= 1, alpha2= 1. Table 3. The estimation when R =0.333333, alpha1= 1, alpha2= 2. n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.490139 0.511770 0.500105 0.500003 0.500106 0.491397 50 0.502377 0.501424 0.485568 0.500000 0.492930 0.498530 100 0.500411 0.497019 0.485535 0.500002 0.487835 0.495937 50 30 0.497673 0.499256 0.514426 0.500001 0.507071 0.501789 50 0.501290 0.502633 0.499992 0.499999 0.499969 0.501975 100 0.501921 0.501610 0.499903 0.499999 0.494837 0.500422 100 30 0.496428 0.499589 0.514526 0.500001 0.512236 0.502114 50 0.497654 0.498059 0.500099 0.500001 0.505168 0.501268 100 0.500210 0.500975 0.499999 0.500000 0.499997 0.498823 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.000519010585 0.000403849563 0.000000057885 0.000000000048 0.000000059360 0.001867492654 π‘šπ‘ π‘’sh2 50 0.003335498758 0.00404372155 0.00021100121 0.00000000367 0.00005342323 0.00596515484 π‘šπ‘ π‘’sh2 100 0.00275059025 0.00358047587 0.00021203899 0.00000000287 0.00015090743 0.00535912842 π‘šπ‘ π‘’sh2 50 30 0.00338030723 0.00439697723 0.00021093108 0.00000000358 0.00005343251 0.00621983678 π‘šπ‘ π‘’sh2 50 0.00264717587 0.00349108397 0.00000007768 0.00000000277 0.00000120029 0.00505326237 π‘šπ‘ π‘’sh2 100 0.00186086110 0.00248158856 0.00000006313 0.00000000196 0.00002730713 0.00387593133 π‘šπ‘ π‘’sh2 100 30 0.00268746093 0.00362852707 0.00021403837 0.00000000301 0.00015287915 0.00474061679 π‘šπ‘ π‘’sh2 50 0.00191579777 0.00247303858 0.00000006418 0.00000000198 0.00002736419 0.00382297898 π‘šπ‘ π‘’sh2 100 0.00130008952 0.00169115906 0.00000003502 0.00000000134 0.00000013940 0.00230190166 π‘šπ‘ π‘’sh2 n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.333767 0.334263 0.333414 0.333336 0.333415 0.336289 50 0.337382 0.334902 0.320640 0.333333 0.327086 0.336407 100 0.338877 0.336147 0.320533 0.333332 0.322533 0.335001 50 30 0.336594 0.338421 0.346229 0.333331 0.339564 0.342261 50 0.333468 0.332847 0.333339 0.333334 0.333357 0.334368 100 0.335005 0.333733 0.333255 0.333334 0.328789 0.335376 76 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 4. MSE values when R = 0.333333, alpha1= 1, alpha2= 2. Table 5. The estimation when R =0.666666, alpha1= 2, alpha2= 1. 100 30 0.328662 0.329458 0.346444 0.333337 0.344379 0.334704 50 0.332007 0.332608 0.333424 0.333335 0.337963 0.334676 100 0.335370 0.335221 0.333327 0.333332 0.333320 0.335713 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.00333045942 0.00407349011 0.00000456676 0.00000000366 0.00000468648 0.00602348672 π‘šπ‘ π‘’sh2 50 0.00272675676 0.00317425319 0.00016326720 0.00000000289 0.00004172719 0.00491135012 π‘šπ‘ π‘’sh2 100 0.00235315660 0.00304112894 0.00016601546 0.00000000241 0.00011895110 0.00417668486 π‘šπ‘ π‘’sh2 50 30 0.00253964500 0.00309479408 0.00016860628 0.00000000272 0.00004151959 0.00486156577 π‘šπ‘ π‘’sh2 50 0.0020245050 0.00236857438 0.00000005918 0.00000000211 0.00000091460 0.00367715958 π‘šπ‘ π‘’sh2 100 0.00155424555 0.00194082119 0.00000004951 0.00000000158 0.00002113966 0.00293098875 π‘šπ‘ π‘’sh2 100 30 0.00224635487 0.00265176602 0.00017436372 0.00000000250 0.00012458560 0.00424344399 π‘šπ‘ π‘’sh2 50 0.00149852589 0.00180930296 0.00000005236 0.00000000161 0.00002197596 0.00292503967 π‘šπ‘ π‘’sh2 100 0.00105247266 0.00125820431 0.00000002811 0.00000000107 0.00000011190 0.00203644507 π‘šπ‘ π‘’sh2 n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.662728 0.663078 0.666702 0.666668 0.666702 0.664002 50 0.663332 0.663325 0.653800 0.666670 0.660460 0.658256 100 0.667976 0.666353 0.653665 0.666666 0.655736 0.664065 50 30 0.662408 0.663825 0.679385 0.666668 0.672938 0.661386 50 0.666429 0.665317 0.666658 0.666665 0.666634 0.664104 100 0.666855 0.665989 0.666582 0.666666 0.662053 0.663561 100 30 0.660560 0.663617 0.679517 0.666669 0.677516 0.667085 50 0.665754 0.666582 0.666742 0.666665 0.671203 0.667305 100 0.66579 0.665672 0.666668 0.666667 0.666668 0.665879 77 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 6. MSE values when R = 0.666666, alpha1= 2, alpha2= 1. Table7. The estimation when R =0.2500000, alpha1= 1, alpha2= 3. Table 8. MSE values when R = 0.2500000, alpha1= 1, alpha2= 3. n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.251955 0.249262 0.250052 0.250001 0.250053 0.251874 50 0.253903 0.253116 0.239376 0.250000 0.244759 0.253825 100 0.253407 0.252539 0.239330 0.250001 0.241002 0.253077 50 30 0.251326 0.252295 0.260959 0.250000 0.255319 0.256074 50 0.251116 0.249421 0.250005 0.250001 0.250020 0.251890 100 0.250869 0.250132 0.249939 0.250002 0.246185 0.251854 100 30 0.248037 0.248544 0.261095 0.250002 0.259334 0.252563 50 0.250922 0.250898 0.250069 0.250000 0.253894 0.254081 100 0.250477 0.250285 0.250003 0.250000 0.250005 0.250916 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.00328250122 0.00373222061 0.00000425693 0.00000000342 0.00000436837 0.00606980612 π‘šπ‘ π‘’sh2 50 0.00259447656 0.00324478044 0.00016767398 0.00000000266 0.00004106095 0.00517968821 π‘šπ‘ π‘’sh2 100 0.00206071212 0.00242868274 0.00017126775 0.00000000222 0.00012180771 0.00389842610 π‘šπ‘ π‘’sh2 50 30 0.00273481415 0.00325502994 0.00016399215 0.00000000291 0.00004210945 0.00532038893 π‘šπ‘ π‘’sh2 50 0.00185242541 0.00225935108 0.00000005461 0.00000000194 0.00000084415 0.00353063805 π‘šπ‘ π‘’sh2 100 0.00157365989 0.00185528680 0.00000005292 0.00000000166 0.00002184280 0.00302255985 π‘šπ‘ π‘’sh2 100 30 0.00239094911 0.00285689399 0.00016762461 0.00000000253 0.00012031708 0.00390968491 π‘šπ‘ π‘’sh2 50 0.00138303657 0.00166057068 0.00000004423 0.00000000141 0.00002102378 0.00268810353 π‘šπ‘ π‘’sh2 100 0.00096451894 0.00119679615 0.00000002584 0.00000000099 0.00000010287 0.00200269936 π‘šπ‘ π‘’sh2 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.00238794868 0.002815755086 0.000003239263 0.000000002596 0.000003324242 0.004110057260 π‘šπ‘ π‘’sh2 50 0.00179231243 0.002194623563 0.000114274591 0.000000001810 0.000029189762 0.003461646653 π‘šπ‘ π‘’sh2 100 0.00154622400 0.002007092701 0.000115260720 0.000000001531 0.000082459639 0.003073759490 π‘šπ‘ π‘’sh2 50 30 0.00194448207 0.002350645135 0.000121745483 0.000000002092 0.000030292392 0.003608076782 π‘šπ‘ π‘’sh2 50 0.00148586648 0.001741949682 0.00000004300 0.00000000153 0.00000066465 0.00273533263 π‘šπ‘ π‘’sh2 100 0.0010774882 0.00133269966 0.00000003359 0.00000000109 0.00001488988 0.00219412488 π‘šπ‘ π‘’sh2 100 30 0.00152834454 0.001698567219 0.00012497442 0.00000000173 0.00008905011 0.00286844206 π‘šπ‘ π‘’sh2 50 0.00112174712 0.001257705394 0.00000003779 0.00000000120 0.00001556871 0.00215713682 π‘šπ‘ π‘’sh2 100 0.00072228004 0.000834738472 0.00000001933 0.00000000074 0.00000007694 0.00145595257 π‘šπ‘ π‘’sh2 78 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 9. The estimation when R =0.5000000, alpha1= 2, alpha2= 2. Table 10. MSE values when R = 0.5000000, alpha1= 2, alpha2= 2. Table 11.The estimation when R =0.750000, alpha1= 3, alpha2= 1. n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.500752 0.500283 0.499984 0.500000 0.499984 0.498106 50 0.501153 0.500582 0.485629 0.500000 0.492974 0.497582 100 0.502017 0.500986 0.485552 0.500001 0.487843 0.498328 50 30 0.497610 0.498436 0.514437 0.500001 0.507076 0.501432 50 0.498133 0.498306 0.500010 0.500002 0.500040 0.495669 100 0.502684 0.501383 0.499900 0.499999 0.494824 0.500963 100 30 0.497646 0.499452 0.514483 0.499999 0.512190 0.500630 50 0.499560 0.500307 0.500088 0.499999 0.505127 0.502454 100 0.500073 0.500067 0.500000 0.500000 0.499999 0.501504 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.004128967671 0.004604492710 0.000005672908 0.000000004557 0.000005821534 0.007466248540 π‘šπ‘ π‘’sh2 50 0.003355245833 0.003784728713 0.000209383584 0.000000003620 0.000052863372 0.006185754049 π‘šπ‘ π‘’sh2 100 0.002539072228 0.002862493900 0.000211322115 0.000000002679 0.000150482732 0.004649858803 π‘šπ‘ π‘’sh2 50 30 0.003222287571 0.003616390312 0.0002112752765 0.000000003490 0.000053445804 0.006250665745 π‘šπ‘ π‘’sh2 50 0.002543357768 0.002951662489 0.000000077652 0.000000002770 0.000001200648 0.005053937844 π‘šπ‘ π‘’sh2 100 0.001813708137 0.001971894924 0.000000061788 0.000000001892 0.000027409095 0.003494129231 π‘šπ‘ π‘’sh2 100 30 0.002623859568 0.003039695366 0.000212392743 0.000000002745 0.000151354885 0.004670769245 π‘šπ‘ π‘’sh2 50 0.001796372291 0.001975020089 0.000000057684 0.000000001826 0.000026875471 0.003170938343 π‘šπ‘ π‘’sh2 100 0.001240136539 0.001388572811 0.000000033491 0.000000001284 0.000000133296 0.002447561555 π‘šπ‘ π‘’sh2 n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.747445 0.747676 0.749984 0.750000 0.749984 0.742832 50 0.748323 0.748968 0.739063 0.750000 0.744691 0.743426 100 0.749614 0.749635 0.739003 0.750001 0.740768 0.745187 50 30 0.745730 0.747290 0.760672 0.750000 0.755268 0.746282 50 0.746656 0.747272 0.750008 0.750001 0.750029 0.742852 100 0.750657 0.749959 0.749925 0.749999 0.746097 0.748081 100 30 0.746228 0.748209 0.760705 0.750000 0.759030 0.746915 50 0.748316 0.749575 0.750066 0.749999 0.753825 0.749445 100 0.748535 0.748006 0.750002 0.750000 0.750005 0.749047 79 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 12. MSE values when R = 0.750000, alpha1= 3, alpha2= 1. Table 13. The estimation when R =0.400000, alpha1= 2, alpha2= 3. Table 14. MSE values when R = 0.400000, alpha1= 2, alpha2= 3. n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.002384459481 0.002851628898 0.000003192342 0.000000002563 0.000003275999 0.004521397784 π‘šπ‘ π‘’sh2 50 0.001948985166 0.002244248987 0.000121340373 0.000000002036 0.000030219158 0.003732969877 π‘šπ‘ π‘’sh2 100 0.001431149872 0.001606728294 0.000122472102 0.000000001507 0.000086823942 0.002762765254 π‘šπ‘ π‘’sh2 50 30 0.001920772013 0.002309071883 0.000115391937 0.000000001963 0.000029585622 0.003739290580 π‘šπ‘ π‘’sh2 50 0.001497007264 0.001814282137 0.000000043673 0.000000001558 0.000000675002 0.003051262077 π‘šπ‘ π‘’sh2 100 0.001020052304 0.001169978602 0.000000034777 0.000000001064 0.000015586022 0.002017961664 π‘šπ‘ π‘’sh2 100 30 0.001547120432 0.001996286322 0.000115999905 0.000000001544 0.000083023582 0.002746512587 π‘šπ‘ π‘’sh2 50 0.001026872629 0.001229979595 0.000000032430 0.000000001027 0.000014956803 0.001827470288 π‘šπ‘ π‘’sh2 100 0.000702148814 0.000841172097 0.000000018293 0.000000000701 0.000000072800 0.001371989596 π‘šπ‘ π‘’sh2 n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.404506 0.403784 0.399881 0.399997 0.399879 0.403496 50 0.404397 0.402729 0.386249 0.399998 0.393222 0.399588 100 0.402856 0.400909 0.386181 0.400001 0.388360 0.398094 50 30 0.398661 0.399451 0.413926 0.400001 0.406817 0.406414 50 0.403676 0.403770 0.399987 0.399997 0.399947 0.407139 100 0.401190 0.400025 0.399914 0.400001 0.395066 0.403155 100 30 0.397284 0.397751 0.414066 0.400001 0.411838 0.402213 50 0.401166 0.401576 0.400081 0.399998 0.404928 0.402906 100 0.401270 0.401548 0.399996 0.399999 0.399992 0.403123 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.003968719837 0.004339244098 0.000005400944 0.000000004337 0.000005542471 0.007343458817 π‘šπ‘ π‘’sh2 50 0.002871054638 0.003168491061 0.000191532791 0.000000003008 0.000048857539 0.005249976869 π‘šπ‘ π‘’sh2 100 0.002560059256 0.002759431582 0.000193533534 0.000000002729 0.000138181811 0.004430761642 π‘šπ‘ π‘’sh2 50 30 0.003057266048 0.003368884673 0.000196646030 0.000000003292 0.000049708350 0.005687576189 π‘šπ‘ π‘’sh2 50 0.002354827003 0.002572130065 0.000000068179 0.000000002433 0.000001053332 0.004695426152 π‘šπ‘ π‘’sh2 100 0.001758583317 0.001851572994 0.000000057177 0.000000001821 0.000024931773 0.003154647116 π‘šπ‘ π‘’sh2 100 30 0.002509204252 0.002634167448 0.000200568619 0.000000002757 0.000142971140 0.004464657451 π‘šπ‘ π‘’sh2 50 0.001776285618 0.001939439022 0.000000056642 0.000000001834 0.000024872335 0.003451614797 π‘šπ‘ π‘’sh2 100 0.001103485740 0.001185957806 0.000000029215 0.000000001120 0.000000116266 0.002211734727 π‘šπ‘ π‘’sh2 80 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 15. The estimation when R =0.600000, alpha1= 3, alpha2= 2. Table 16. MSE values when R = 0.600000, alpha1= 3, alpha2= 2. Table 17. The estimation when R =0.500000, alpha1= 3, alpha2= 3. n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.598078 0.599079 0.600008 0.600000 0.600008 0.597839 50 0.599919 0.598806 0.586143 0.600000 0.593246 0.594149 100 0.602922 0.601586 0.585963 0.599999 0.588188 0.597739 50 30 0.597608 0.597803 0.613749 0.600000 0.606745 0.594849 50 0.598873 0.599349 0.600002 0.600000 0.600008 0.598037 100 0.599726 0.598941 0.599914 0.600001 0.595049 0.596674 100 30 0.595986 0.597631 0.613846 0.600000 0.611669 0.598814 50 0.600409 0.601163 0.600076 0.599998 0.604884 0.602419 100 0.598798 0.598789 0.600004 0.600001 0.600008 0.599235 n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.004102721803 0.004522527871 0.000005539858 0.000000004450 0.000005685018 0.006919868113 π‘šπ‘ π‘’sh2 50 0.002991823998 0.003292540439 0.000194592389 0.000000003159 0.000048701124 0.005449357116 π‘šπ‘ π‘’sh2 100 0.002314174187 0.002431988951 0.000199450713 0.000000002484 0.000142040001 0.004537099349 π‘šπ‘ π‘’sh2 50 30 0.003193844527 0.003419488337 0.000191806526 0.000000003451 0.000048845005 0.005550811660 π‘šπ‘ π‘’sh2 50 0.002287353696 0.002455944918 0.000000066626 0.000000002377 0.000001029306 0.004372047489 π‘šπ‘ π‘’sh2 100 0.001805434274 0.001965307620 0.000000059644 0.000000001910 0.000025136702 0.003323110300 π‘šπ‘ π‘’sh2 100 30 0.002590582075 0.002917038767 0.000194259147 0.000000002723 0.000138841425 0.004619688057 π‘šπ‘ π‘’sh2 50 0.001637625023 0.001733549825 0.000000051603 0.000000001680 0.000024385304 0.003120969456 π‘šπ‘ π‘’sh2 100 0.001157990638 0.001271271929 0.000000031146 0.000000001194 0.000000123958 0.002418378384 π‘šπ‘ π‘’sh2 n m οΏ½Μ‚οΏ½mle οΏ½Μ‚οΏ½mom οΏ½Μ‚οΏ½sh1 οΏ½Μ‚οΏ½sh2 οΏ½Μ‚οΏ½sh3 οΏ½Μ‚οΏ½Ls 30 30 0.497664 0.497663 0.500090 0.500003 0.500091 0.499114 50 0.501338 0.501712 0.485595 0.500001 0.492961 0.498385 100 0.502409 0.501254 0.485551 0.500000 0.487837 0.495447 50 30 0.498054 0.498944 0.514417 0.500000 0.507064 0.501263 50 0.501699 0.501955 0.499991 0.499998 0.499964 0.501553 100 0.499867 0.498715 0.499915 0.500001 0.494868 0.498597 100 30 0.496367 0.497546 0.514469 0.500001 0.512188 0.499887 50 0.500860 0.501257 0.500083 0.499998 0.505135 0.502239 100 0.499098 0.499134 0.500005 0.500001 0.500010 0.498614 81 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Table 18. MSE values when R = 0.500000, alpha1= 3, alpha2= 3. 5. Conclusion In this absence of real data, we study the performance of the estimator obtained from simulated and the tables, that to estimate the reliability of shrinkage estimator method special constant type shrinkage (Sh2) is the best performance. References 1. Rahman, H.; Roy, M.K.; Baizid, A.R. Bayes estimation under conjugate prior for the case of power function distribution. American Journal of Mathematics and Statistics. 2012, 2, 3, 44-48 2. Akhter, A.S. Methods for Estimating the Parameters of the Power Function Distribution. Pakistan Journal of Statistics and Operation Research.2013, 9, 2, 213-224. 3. Shakeel, M. Comparison of two new robust parameter estimation methods for the power function distribution. PloS one.2016, 11, 8, 686-692. 4. Al-mutairianed, O.; Low, H.C. Bayesian Estimate for Shape Parameter from Generalized Power Function Distribution. Mathematical Theory and Modeling.2012, 2, 12, 1-7. 5. Oguntunde, P.E.; Odetunmibi, O.A.; Okagbue, H.I. The Kumaraswamy-power distribution: A generalization of the power distribution. International Journal of Mathematical Analysis.2015, 9, 13, 637-645. 6. Malik, H.J. Exact moments of order statistics from a power-function distribution. Scandinavian Actuarial Journal.1967, 1967, 1-2, 64-69 7. Salman, A.N.; Hamad, A. Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution. International Journal of Mathematics Trends and Technology.2016, 36, 1, 45-56 8. Dhanya, M.; Jeevavand, E.S. Stress-Strength Reliability of Power Function Distribution Based on Records. Journal of statistics Application probability.2018, 7, 1, 39-48. 9. Kundu, D.; Raqab, M.Z. Generalized Rayleigh distribution: different methods of estimations. Computational statistics & data analysis.2005, 49, 1, 187-200. 10. Salman, A.N.; Sail, F.H. On reliability estimation of stress- strength model. Msc. thesis, University of Baghdad, College of education for pure science, Ibn AL-Haitham,2017. n m π’Žπ’”π’†mle π’Žπ’”π’†mom π’Žπ’”π’†sh1 π’Žπ’”π’†sh2 π’Žπ’”π’†sh3 π’Žπ’”π’†Ls Best 30 30 0.004060583137 0.004327864388 0.000005599720 0.000000004497 0.000005746462 0.007686836923 π‘šπ‘ π‘’sh2 50 0.003215899017 0.003479527896 0.000210304289 0.000000003546 0.000052923876 0.006368191686 π‘šπ‘ π‘’sh2 100 0.002691692024 0.002822200371 0.000211674187 0.000000002885 0.000150965205 0.004745640879 π‘šπ‘ π‘’sh2 50 30 0.003106889720 0.003372070208 0.000210555251 0.000000003353 0.000053185081 0.005623109954 π‘šπ‘ π‘’sh2 50 0.002496078235 0.002679722628 0.000000074148 0.000000002646 0.000001145840 0.004620145844 π‘šπ‘ π‘’sh2 100 0.001836797867 0.001944809665 0.000000059352 0.000000001906 0.000026943768 0.003330357287 π‘šπ‘ π‘’sh2 100 30 0.002900030258 0.003015179856 0.000212289915 0.000000003071 0.000151620014 0.004919492350 π‘šπ‘ π‘’sh2 50 0.002003087543 0.002106729457 0.000000066242 0.000000002166 0.000027084341 0.003655290108 π‘šπ‘ π‘’sh2 100 0.001207869505 0.001273452513 0.000000032502 0.000000001246 0.000000129359 0.002575201627 π‘šπ‘ π‘’sh2 82 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 11. Salman, A.N.; Hamed, A.M. Estimating the shape parameter for the power function distribution through shrinkage Technique. International Journal of Science and Research.2017, 23, 78-96. 12. Hamad, A.M. Estimation of the parameter of an exponential distribution when applying maximum likelihood and probability plot methods using simulation. Ibn Al-Haitham Journal for Pure and Applied Science.2017, 25, 1, 427- 435. 13. Abdulateef, E.A.; Abbas, N.S. On Shrinkage Estimation for R (s, k) in Case of Exponentiated Pareto Distribution. Ibn AL-Haitham Journal for Pure and Applied Science. 2019, 32, 1, 152-162.