83 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Zahra Mahmood Mohamed Hasan Salwa Salman Abed Abstract In this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard- Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation. Keywords: Banach space, common fixed point, strong convergence, nonexpansive map, condition (A). MSC: 49J40; 47J20 1. Introduction Let B be a non-empty subset of a Banach space M. A mapT on B is called nonexpansive [1]. if β€–π‘‡π‘Žβˆ’π‘‡π‘β€– ≀ β€–π‘Ž βˆ’π‘β€– for all π‘Ž,𝑏 πœ– 𝐡 and 𝐹(𝑇) denoted the set of all fixed points of T. In 1973, Bruck [2]. introduced a map called firmly nonexpansive map in Banach space. Certainly, every firmly nonexpansive is nonexpansive. To discuss the convergence theorem for a pair of nonexpansive maps S and T on B to itself, a generalization of Mann and Ishikawa iterations was given by Das and Debata [3]. and Takahashi and Tamura [4]. This iteration dealt with two maps: π‘Ž1 ∈ 𝐡 𝑏𝑛 = π›½π‘›π‘Žπ‘› +(1βˆ’π›½π‘›)π‘‡π‘Žπ‘› π‘Žπ‘›+1 = π›Όπ‘›π‘Žπ‘› +(1βˆ’π›Όπ‘›)𝑆𝑏𝑛, βˆ€π‘› ∈ 𝑁 where (𝛼𝑛) and (𝛽𝑛) ∈ [0,1]. The aim of this paper is to prove some strongly convergenve theorems for approximating common fixed points of firmly nonexpansive and generalized nonexpansive. 2. Preliminaries We will suppose that 𝑀 is a Banach space and B is a non-empty closed convex subset of M. 𝐹(𝑇,𝑆) denoted the set of all fixed points of S and T. A sequences (π‘Žπ‘›) in 𝐡 is called : Picard-Mann hybrid [5]. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi:10.30526/32.3.2285 Department of Mathematics, College of Education for Pure Sciences,Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. Strongly Convergence of Two Iterations For a Common Fixed Point with an Application zahramoh1990@gmail.com salwaalbundi@yahoo.com Article history: Received 26 December 2018, Accepted 3 March 2019, Publish September 2019 mailto:zahramoh1990@gmail.com mailto:salwaalbundi@yahoo.com 84 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 π‘Žπ‘›+1 = 𝑆𝑏𝑛 𝑏𝑛 = (1βˆ’π›Όπ‘›)π‘Žπ‘› +π›Όπ‘›π‘‡π‘Žπ‘› , βˆ€ 𝑛 ∈ 𝑁 (1) where (𝛼𝑛) is a sequence in (0,1). And a sequence (𝑀𝑛) in 𝐡 is called: Noor iteration [6]. 𝑀𝑛+1 = (1βˆ’π›Όπ‘›)𝑀𝑛 +𝛼𝑛𝑆𝑒𝑛 𝑒𝑛 = (1βˆ’π›½π‘›)𝑀𝑛 +𝛽𝑛𝑇𝑣𝑛 𝑣𝑛 = (1βˆ’π›Ύπ‘›)𝑀𝑛 +𝛾𝑛𝑇𝑀𝑛 ,βˆ€ 𝑛 ∈ 𝑁 (2) where (𝛼𝑛),(𝛽𝑛) and (𝛾𝑛) are sequences in [0,1]. Defintion(1)[2]: A map 𝑇:𝐡 β†’ 𝑀 is called firmly nonexpansive map if β€–π‘‡π‘Ž βˆ’π‘‡π‘β€– ≀ β€–(1βˆ’π‘‘)(π‘‡π‘Ž βˆ’π‘‡π‘)+𝑑(π‘Ž βˆ’π‘)β€–,βˆ€ π‘Ž,𝑏 ∈ 𝐡 and 𝑑 β‰₯ 0. Defintion(2)[7]: A map 𝑇:𝐡 β†’ 𝑀 is said to be generalized nonexpansive map if there are nonnegative constants 𝛿,πœ‡ and πœ” with 𝛿 +2πœ‡ +2πœ” ≀ 1 such that βˆ€ π‘Ž,𝑏 ∈ 𝐡 β€–π‘‡π‘Žβˆ’π‘‡π‘β€– ≀ π›Ώβ€–π‘Ž βˆ’π‘β€–+πœ‡{β€–π‘Ž βˆ’π‘‡π‘Žβ€–+‖𝑏 βˆ’π‘‡π‘β€–}+πœ”{β€–π‘Ž βˆ’π‘‡π‘β€–+‖𝑏 βˆ’π‘‡π‘Žβ€–} Khan. And Fukhar-ud-din [8]. 2005, introduced the concept of condition (𝐴′) to prove the convergence of two-step iterative scheme with errors to common fixed points of two nonexpansive mappings, see also [9,10]. and [11]. Definition(3)[9]: Two maps are called satisfing condition (A) if there is a nondecreasing function 𝑔:[0,∞) β†’ [0,∞) with 𝑔(0) = 0,𝑔(𝑖) > 0,βˆ€ 𝑖 πœ– (0,∞) such that: Either β€–π‘Ž βˆ’ π‘‡π‘Žβ€– β‰₯ 𝑔(𝐷(π‘Ž,𝐹)) π‘œπ‘Ÿ β€–π‘Ž βˆ’π‘†π‘Žβ€– β‰₯ 𝑔(𝐷(π‘Ž,𝐹)),βˆ€ π‘Ž ∈ 𝐡 where 𝐷(π‘Ž,𝐹) = 𝑖𝑛𝑓{β€–π‘Ž βˆ’ π‘Žβˆ—β€–; π‘Žβˆ— πœ– 𝐹} and 𝐹 = 𝐹(𝑇)∩𝐹(𝑆). Definition(4)[12]: A map 𝑇:𝐡 β†’ 𝐡 is called affine if B is convex and 𝑇(π‘Ÿπ‘Ž +(1βˆ’π‘Ÿ)𝑏) = π‘Ÿπ‘‡(π‘Ž)+(1βˆ’π‘Ÿ)𝑇𝑏,βˆ€ π‘Ž,𝑏 ∈ 𝐡 and π‘Ÿ ∈ [0,1]. Definition(5)[5]: Let (𝑓𝑛) and (𝑔𝑛) be two sequences of real numbers that converge to 𝑓 and 𝑔, resepectively. Assume that there exists a real number 𝑙 such that: lim π‘›β†’βˆž ‖𝑓𝑛 βˆ’π‘“β€– ‖𝑔𝑛 βˆ’π‘”β€– = 𝑙. If 𝑙 = 0, then we say that (𝑓𝑛) converges faster to 𝑓 than (𝑔𝑛) to 𝑔. Lemma(6)[13]: Let (𝛢𝑛) ∞ n=0 and (πœ˜π‘›) ∞ n=0 be nonnegative real sequences satisfying the inequality: 𝛢𝑛+1 ≀ (1βˆ’πœπ‘›)𝛢𝑛 +πœ˜π‘› where πœπ‘› ∈ (0,1),βˆ€ 𝑛 β‰₯ 𝑛0,βˆ‘ πœπ‘› ∞ 𝑛=1 = ∞ and πœ˜π‘› πœπ‘› β†’ 0 π‘Žπ‘  𝑛 β†’ ∞,then limπ‘›β†’βˆž 𝛢𝑛 = 0. Lemma(7)[14]: Let M be a uniformly convex Banach space and 0 < 𝑙 ≀ 𝑑𝑛 ≀ π‘˜ < 1,βˆ€ 𝑛 ∈ 𝑁. Suppose that (π‘Žπ‘›) and (𝑏𝑛) are two sequences of M such that limπ‘›β†’βˆžβ€–π‘Žπ‘›β€– ≀ π‘š,limπ‘›β†’βˆžβ€–π‘π‘›β€– ≀ π‘š and limπ‘›β†’βˆžβ€–π‘‘π‘›π‘Žπ‘› +(1βˆ’π‘‘π‘›)𝑏𝑛‖ = π‘š hold for some π‘š β‰₯ 0. Then limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘π‘›β€– = 0. 3. The Main Results Lemma (3.1): Let M be a Banach space,𝐡 βŠ† 𝑀, 𝑇:𝐡 β†’ 𝐡 be a Lipschitzain and firmly nonexpansive map and 𝑆:𝐡 β†’ 𝐡 be Lipschitzain and generalized nonexpansive map. Let 1-(π‘Žπ‘›) defined in (1) where (𝛼𝑛) ∈ (0,1),𝑛 ∈ 𝑁. 2-(𝑀𝑛) defined in (2) where (𝛼𝑛),(𝛽𝑛) and (𝛾𝑛) ∈ [0,1]. If 𝐹(𝑆,𝑇) β‰  βˆ…, then limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– and limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘Ž βˆ—β€– exist βˆ€ π‘Žβˆ— ∈ 𝐹(𝑆,𝑇). Proof: Let π‘Ž * ∈ 𝐹(𝑇,𝑆). 1- Now, to proof limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– exists. Let the sequence (π‘Žπ‘›) be as shown in step (1), so 85 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– = ‖𝑆𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ 𝛿‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+πœ‡{β€–π‘Žβˆ— βˆ’π‘Žβˆ—β€–+‖𝑏𝑛 βˆ’π‘†π‘π‘›β€–}+πœ”{β€–π‘Ž βˆ— βˆ’π‘†π‘π‘›β€– +‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–} ≀ (𝛿 +2πΎπœ‡ +2πΎπœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (𝛿 +2πœ‡ +2πœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– = β€–(1βˆ’π›Όπ‘›)π‘Žπ‘› +π›Όπ‘›π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+𝛼𝑛(1βˆ’π‘‘)β€–π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+ π›Όπ‘›π‘‘β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+𝛼𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– ≀ β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– Then, limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– exists βˆ€π‘Žβˆ— ∈ 𝐹(𝑇,𝑆). 2- Now, to proof limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘Ž βˆ—β€– exists. Let the sequence (𝑀𝑛) be as shown in step (2), so ‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘› +𝛾𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘› +𝛽𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– Now, ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝛿 +2πœ‡ +2πœ”)‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘› +𝛼𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– Then, limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘Ž βˆ—β€– exists βˆ€π‘Žβˆ— ∈ 𝐹(𝑇,𝑆). Lemma(3.2): Let M be a uniformly convex Banach space and 𝐡 βŠ† 𝑀. Let 1- 𝑇:𝐡 β†’ 𝐡 be a Lipschitzain and firmly nonexpansive map, 𝑆:𝐡 β†’ 𝐡 be affine, Lipschitzain and generalized nonexpansive map and (π‘Žπ‘›) defined in (1) . 2- 𝑇:𝐡 β†’ 𝐡 be a Lipschitzain and firmly nonexpansive map, 𝑆:𝐡 β†’ 𝐡 be Lipschitzain and generalized nonexpansive map and (𝑀𝑛) defined in (2). Suppose that β€–π‘Ž βˆ’π‘‡π‘β€– ≀ β€–π‘†π‘Ž βˆ’π‘‡π‘β€–,βˆ€ π‘Ž,𝑏 ∈ 𝐡 holds. If 𝐹(𝑆,𝑇) β‰  βˆ…, then: lim π‘›β†’βˆž β€–π‘‡π‘Žπ‘› βˆ’π‘Žπ‘›β€– = 0 = lim π‘›β†’βˆž β€–π‘†π‘Žπ‘› βˆ’π‘Žπ‘›β€– and lim π‘›β†’βˆž ‖𝑇𝑀𝑛 βˆ’π‘€π‘›β€– = 0 = lim π‘›β†’βˆž ‖𝑆𝑀𝑛 βˆ’π‘€π‘›β€–. Proof: Let π‘Ž * ∈ 𝐹(𝑇,𝑆). 1-By Lemma (3.1) limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– exists βˆ€π‘Žβˆ— ∈ 𝐹(𝑇,𝑆). Suppose that limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’ π‘Žβˆ—β€– = 𝑐,βˆ€ 𝑐 β‰₯ 0. If 𝑐 = 0, no prove is needed. Now suppose 𝑐 > 0, β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– = ‖𝑆𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– By Lemma (3.1), we show that ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– . This implies to: 86 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 lim π‘›β†’βˆž ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– = 𝑐 Next consider. 𝑐 = ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+π›Όπ‘›β€–π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€– By applying Lemma (2.7), we get: lim π‘›β†’βˆž β€–π‘Žπ‘› βˆ’π‘‡π‘Žπ‘›β€– = 0 𝑐 = lim π‘›β†’βˆž β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– = lim π‘›β†’βˆž ‖𝑆𝑏𝑛 βˆ’π‘Ž βˆ—β€– and, ‖𝑆[(1βˆ’π›Όπ‘›)π‘Žπ‘› +π›Όπ‘›π‘‡π‘Žπ‘›]βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘†π‘Žπ‘› βˆ’π‘Ž βˆ—β€– +π›Όπ‘›β€–π‘†π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€– By applying Lemma (2.7), we get: lim π‘›β†’βˆž β€–π‘†π‘Žπ‘› βˆ’π‘†π‘‡π‘Žπ‘›β€– = 0 Now, β€–π‘†π‘Žπ‘› βˆ’π‘Žπ‘›β€– ≀ β€–π‘†π‘Žπ‘› βˆ’π‘†π‘‡π‘Žπ‘›β€–+β€–π‘†π‘‡π‘Žπ‘› βˆ’π‘Žπ‘›β€– By using the hypothesis condition, we obtain: β€–π‘†π‘Žπ‘› βˆ’π‘Žπ‘›β€– ≀ 2β€–π‘†π‘Žπ‘› βˆ’π‘†π‘‡π‘Žπ‘›β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. Thus, lim π‘›β†’βˆž β€–π‘†π‘Žπ‘› βˆ’π‘Žπ‘›β€– = 0. 2-By Lemma (3.1) limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘Ž βˆ—β€– exists βˆ€π‘Žβˆ— ∈ 𝐹(𝑇,𝑆). Suppose that limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’ π‘Žβˆ—β€– = 𝑐,βˆ€ 𝑐 β‰₯ 0. If 𝑐 = 0, no prove is needed. Now, suppose 𝑐 > 0, Since ‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–, and as proved by Lemma (3.1) ‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– and ‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑣𝑛 βˆ’π‘Ž βˆ—β€–. Then, limπ‘›β†’βˆžβ€–π‘‡π‘€π‘› βˆ’π‘Ž βˆ—β€– ≀ 𝑐, limπ‘›β†’βˆžβ€–π‘†π‘’π‘› βˆ’π‘Ž βˆ—β€– ≀ 𝑐 and limπ‘›β†’βˆžβ€–π‘‡π‘£π‘› βˆ’π‘Ž βˆ—β€– ≀ 𝑐 Moreover, lim π‘›β†’βˆž ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– = 𝑐 𝑐 = ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– By applying Lemma (2.7), we obtain: lim π‘›β†’βˆž ‖𝑀𝑛 βˆ’π‘†π‘’π‘›β€– = 0 Next, ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘†π‘’π‘›β€–+‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– 𝑦𝑖𝑒𝑙𝑑𝑠 β†’ 𝑐 ≀ lim π‘›β†’βˆž 𝑖𝑛𝑓‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– Therefore, we get: lim π‘›β†’βˆž ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– = 𝑐 87 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 𝑐 = ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛(1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– +𝛽𝑛𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– So, by applying Lemma (2.7), we obtain: lim π‘›β†’βˆž ‖𝑀𝑛 βˆ’π‘‡π‘€π‘›β€– = 0. Next, ‖𝑀𝑛 βˆ’π‘†π‘€π‘›β€– ≀ ‖𝑀𝑛 βˆ’π‘†π‘’π‘›β€–+‖𝑆𝑒𝑛 βˆ’π‘€π‘›β€–+‖𝑀𝑛 βˆ’π‘†π‘€π‘›β€– Letting nβ†’βˆž, we obtain: ‖𝑀𝑛 βˆ’π‘†π‘€π‘›β€– ≀ ‖𝑀𝑛 βˆ’π‘†π‘€π‘›β€– That means limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘†π‘€π‘›β€– = 0. Theorem (3.3): Let 𝑇:𝐡 β†’ 𝐡 be a Lipschitzain, firmly nonexpansive map, 𝑆:𝐡 β†’ 𝐡 be a Lipschitzain and generalized nonexpansive map, with 𝐹(𝑆,𝑇) β‰  βˆ… and, 1- (π‘Žπ‘›) defined in (1) and (𝛼𝑛) ∈ (0,1) satisfying βˆ‘ 𝛼𝑖 ∞ 𝑖=0 = ∞. 2- (𝑀𝑛) defined in (2) and (𝛼𝑛),(𝛽𝑛) and (𝛾𝑛) ∈ [0,1] satisfying βˆ‘ 𝛼𝑖 ∞ 𝑖=0 𝛽𝑖𝛾𝑖 = ∞. Then (π‘Žπ‘›) and (𝑀𝑛) converge to a unique common fixed point π‘Ž βˆ— ∈ 𝐹(𝑆,𝑇). Proof: 1-‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+π›Όπ‘›β€–π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+𝛼𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– Suppose πœ‰ = (1βˆ’π‘‘)π‘˜ +𝑑 ≀ (1βˆ’(1βˆ’πœ‰)𝛼𝑛)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– = ‖𝑆𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ 𝛿‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+πœ‡{β€–π‘Žβˆ— βˆ’π‘Žβˆ—β€–+‖𝑏𝑛 βˆ’π‘†π‘π‘›β€–}+πœ”{β€–π‘Ž βˆ— βˆ’π‘†π‘π‘›β€–+‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–} ≀ (𝛿 +2πœ‡ +2πœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’(1βˆ’πœ‰)𝛼𝑛)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– By induction: β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– ≀ ∏ (1βˆ’(1βˆ’πœ‰)𝛼𝑖)β€–π‘Ž0 βˆ’π‘Ž βˆ—β€–π‘›π‘–=0 ≀ β€–π‘Ž0 βˆ’π‘Ž βˆ—β€–π‘’βˆ’(1βˆ’πœ‰)βˆ‘ 𝛼𝑖 𝑛 𝑖=0 Since βˆ‘ 𝛼𝑖 ∞ 𝑖=0 = ∞,𝑒 βˆ’(1βˆ’πœ‰)βˆ‘ 𝛼𝑖 𝑛 𝑖=0 β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. Thus, limπ‘›β†’βˆžβ€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– = 0. 2-‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛[(1βˆ’π‘‘)π‘˜ +𝑑]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– Setting πœ‰ = (1βˆ’π‘‘)π‘˜ +𝑑 ≀ (1βˆ’π›Ύπ‘› +π›Ύπ‘›πœ‰)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+π›½π‘›πœ‰β€–π‘£π‘› βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+π›½π‘›πœ‰(1βˆ’π›Ύπ‘› +π›Ύπ‘›πœ‰)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛(1βˆ’π›Ύπ‘› +π›Ύπ‘›πœ‰)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– 88 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Now, ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛[ 𝛿‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–+πœ‡{β€–π‘Žβˆ— βˆ’π‘Žβˆ—β€–+‖𝑒𝑛 βˆ’π‘†π‘’π‘›β€–} +πœ”{β€–π‘Žβˆ— βˆ’π‘†π‘’π‘›β€–+‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–}] ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝛿 +2πœ‡ +2πœ”)‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛(1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– +𝛼𝑛𝛽𝑛(1βˆ’π›Ύπ‘› +π›Ύπ‘›πœ‰)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ [1βˆ’π›Όπ‘›π›½π‘›π›Ύπ‘› +π›Όπ‘›π›½π‘›π›Ύπ‘›πœ‰]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ [1βˆ’π›Όπ‘›π›½π‘›π›Ύπ‘›]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– By induction: ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– ≀ ∏ [1βˆ’π›Όπ‘–π›½π‘–π›Ύπ‘–]‖𝑀0 βˆ’π‘Ž βˆ—β€–π‘›π‘–=0 ≀ ‖𝑀0 βˆ’π‘Ž βˆ—β€–π‘’βˆ’βˆ‘ 𝛼𝑖𝛽𝑖𝛾𝑖 𝑛 𝑖=0 Since βˆ‘ 𝛼𝑖 ∞ 𝑖=0 𝛽𝑖𝛾𝑖 = ∞,𝑒 βˆ’βˆ‘ 𝛼𝑖𝛽𝑖𝛾𝑖 𝑛 𝑖=0 β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. Thus, limπ‘›β†’βˆžβ€–π‘€π‘› βˆ’π‘Ž βˆ—β€– = 0. Theorem(3.4): Let 𝐡,𝑆,𝑇,(π‘Žπ‘›) and (𝑀𝑛) be as in Lemma (3.2) and S,T satisfying condition (A). If 𝐹(𝑆,𝑇) β‰  βˆ…, then (π‘Žπ‘›) and (𝑀𝑛) converge strongly to a common fixed point of S and T. Proof: Now, we will show that (π‘Žπ‘›) strong convergence. By Lemma (3.1), limπ‘›β†’βˆž β•‘π‘Žnβˆ’π‘Ž * β•‘exists. Suppose that limπ‘›β†’βˆž β•‘π‘Žnβˆ’π‘Ž * β•‘ = 𝑐,𝑐 β‰₯ 0. From Lemma (3.1), we have, β•‘π‘Žn+1βˆ’π‘Ž * β•‘ ≀ β•‘π‘Žnβˆ’π‘Ž * β•‘ That gives: π‘–π‘›π‘“π‘Žβˆ—βˆˆπΉ β•‘π‘Žn+1βˆ’π‘Ž * β•‘ ≀ π‘–π‘›π‘“π‘Žβˆ—βˆˆπΉ β•‘π‘Žnβˆ’π‘Ž * β•‘ Which means, 𝐷(π‘Žn+1,𝐹) ≀ 𝐷(π‘Žn,𝐹) 𝑦𝑖𝑒𝑙𝑑𝑠 β†’ limπ‘›β†’βˆž 𝐷(π‘Žn,𝐹) exists. By using condition (A), we have: limπ‘›β†’βˆž 𝑔(𝐷(π‘Žn,𝐹)) ≀ limπ‘›β†’βˆž β•‘π‘Žnβˆ’π‘‡π‘Žnβ•‘ = 0. Or, limπ‘›β†’βˆž 𝑔(𝐷(π‘Žn,𝐹)) ≀ limπ‘›β†’βˆž β•‘π‘Žnβˆ’π‘†π‘Žnβ•‘ = 0. In both situation, we obtain limπ‘›β†’βˆž 𝑔(𝐷(π‘Žn,𝐹)) = 0. Since g is a non-decreasing function and 𝑔(0) = 0, it follows that: limπ‘›β†’βˆž 𝐷(π‘Žπ‘› ,𝐹) = 0. Now to show that (π‘Žπ‘›) is a Cauchy sequence in A. Let πœ– > 0, limπ‘›β†’βˆž 𝐷(π‘Žπ‘› ,𝐹) = 0,βˆƒ a positive integer 𝑛0, such that: 𝐷(π‘Žπ‘›,𝐹) < πœ– 4 , βˆ€π‘› β‰₯ 𝑛0 In particular, inf {β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–,π‘Žβˆ— ∈ 𝐹} < πœ– 2 Thus must exist π‘Žβˆ—βˆ— ∈ 𝐹 such that β€–π‘Žπ‘› βˆ’π‘Ž βˆ—βˆ—β€– < πœ– 2 . Now, βˆ€ 𝑛,𝑀 β‰₯ 𝑛0, we obtain: β€–π‘Žπ‘›+𝑀 βˆ’π‘Žπ‘›β€– ≀ β€–π‘Žπ‘›+𝑀 βˆ’π‘Ž βˆ—βˆ—β€–+β€–π‘Žπ‘› βˆ’π‘Ž βˆ—βˆ—β€– < πœ– 2 + πœ– 2 = πœ– Hence, (π‘Žπ‘›) is Cauchy sequence in B of M. Then (π‘Žπ‘›) converges to a point 𝑝 ∈ 𝐡. Lim π‘›β†’βˆž 𝐷(π‘Žπ‘› ,𝐹) = 0 𝑦𝑖𝑒𝑙𝑑𝑠 β†’ 𝐷(𝑝,𝐹) = 0. 89 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Since F is closed, hence 𝑝 ∈ 𝐹. By utilizing the same procedure, we can prove (𝑀𝑛) convergence strongly. Theorem (3.5): Let 𝑀 be a Banach space, βˆ… β‰  𝐡 βŠ† 𝑀. Let 𝑇:𝐡 β†’ 𝐡 be lipschitzain, firmly nonexpansive maps, 𝑆:𝐡 β†’ 𝐡 be Lipschitzain, generalized nonexpansive map and π‘Žβˆ— ∈ 𝐡 be a common fixed point of S and T. Let (π‘Žπ‘›) and (𝑀𝑛) be the Picard-Mann and Noor iterations defined in (1) and (2). Suppose (𝛼𝑛),(𝛽𝑛) and (𝛾𝑛)satisfied the following conditions: 1- (𝛼𝑛),(𝛽𝑛) and (𝛾𝑛) ∈ (0,1),βˆ€ 𝑛 β‰₯ 0. 2- βˆ‘π›Όπ‘› = ∞. 3- βˆ‘π›Όπ‘›π›½π‘› < ∞. If 𝑀0 = π‘Ž0 and 𝑅(𝑇),𝑅(𝑆) are bounded, then the Picard-Mann iteration sequence π‘Žπ‘› β†’ π‘Ž βˆ— and The Noor iteration sequence 𝑀𝑛 β†’ π‘Ž βˆ—. Proof: Since the range of T and S are bounded, let 𝑀1 = π‘ π‘’π‘π‘Žβˆˆπ΅{β€–π‘‡π‘Žβ€–}+β€–π‘Ž0β€– < ∞ And, 𝑀2 = π‘ π‘’π‘π‘Žβˆˆπ΅{β€–π‘†π‘Žβ€–}+β€–π‘Ž0β€– < ∞ Let 𝑀 = π‘šπ‘Žπ‘₯{𝑀1,𝑀2} Then, β€–π‘Žπ‘›β€– ≀ 𝑀,‖𝑏𝑛‖ ≀ 𝑀,‖𝑀𝑛‖ ≀ 𝑀,‖𝑒𝑛‖ ≀ 𝑀,‖𝑣𝑛‖ ≀ 𝑀 Therefore, β€–π‘‡π‘Žπ‘›β€– ≀ 𝑀,‖𝑇𝑀𝑛‖ ≀ 𝑀 . β€–π‘Žπ‘›+1 βˆ’π‘€π‘›+1β€– = ‖𝑆𝑏𝑛 βˆ’(1βˆ’π›Όπ‘›)𝑀𝑛 βˆ’π›Όπ‘›π‘†π‘’π‘›β€– ≀ ‖𝑆𝑏𝑛 βˆ’π‘€π‘›β€–+𝛼𝑛‖𝑆𝑒𝑛 βˆ’π‘€π‘›β€– ≀ (𝛿 +2πœ‡ +2πœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝛿 +2πœ‡ +2πœ”)‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–+(1+𝛼𝑛) (𝛿 +2πœ‡ +2πœ”)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–+(1+𝛼𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝑀 +β€–π‘Ž βˆ—β€–) ‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– Since T is lipschitzain and firmly nonexpansive, setting πœ‰ = π‘˜ βˆ’π‘˜π‘‘ +𝑑 ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+π›Ύπ‘›πœ‰β€–π‘€π‘› βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+π›½π‘›πœ‰β€–π‘£π‘› βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ 𝑀 +β€–π‘Žβˆ—β€– Then, β€–π‘Žπ‘›+1 βˆ’π‘€π‘›+1β€– ≀ ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–+(1+𝛼𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝑀 +β€–π‘Ž βˆ—β€–)+ 𝛼𝑛( 𝑀 +β€–π‘Ž βˆ—β€–)+(1+𝛼𝑛)(𝑀+β€–π‘Ž βˆ—β€–) ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘€π‘›β€–+(1βˆ’π›Όπ‘›)(𝑀+β€–π‘Ž βˆ—β€–) +2𝛼𝑛(𝑀 +β€–π‘Ž βˆ—β€–)+(1+𝛼𝑛)(𝑀+β€–π‘Ž βˆ—β€–) ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘€π‘›β€–+2 (1+𝛼𝑛)(𝑀 +β€–π‘Ž βˆ—β€–) Let 𝛢𝑛 = β€–π‘Žπ‘› βˆ’π‘€π‘›β€–,πœ˜π‘› = (2+2𝛼𝑛)(𝑀 +β€–π‘Ž βˆ—β€–) and πœ˜π‘› πœπ‘› β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. By applying Lemma (2.6), we get lim π‘›β†’βˆž β€–π‘Žπ‘› βˆ’π‘€π‘›β€– = 0 90 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 If π‘Žπ‘› β†’ π‘Ž βˆ— ∈ 𝐹(𝑆,𝑇), then ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑀𝑛 βˆ’π‘Žπ‘›β€–+β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞ If 𝑀𝑛 β†’ π‘Ž βˆ— ∈ 𝐹(𝑆,𝑇), then β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– ≀ β€–π‘Žπ‘› βˆ’π‘€π‘›β€–+‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. Theorem (3.6): Let 𝑇:𝐡 β†’ 𝐡 be a Lipschitzain, firmly nonexpansive map with π‘˜π‘‘ < 1, 𝑆:𝐡 β†’ 𝐡 be a Lipschitzain and generalized nonexpansive map.Suppose that the Picard-Mann and Noor iterations converge to the same common fixed point π‘Žβˆ—.Then picard-Mann iteration converges faster than Noor iteration. Proof: Let π‘Žβˆ— ∈ 𝐹(𝑇,𝑆). Then for Picard-Mann iteration. ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€–+π›Όπ‘›β€–π‘‡π‘Žπ‘› βˆ’π‘Ž βˆ—β€– Setting πœ‰ = (1βˆ’π‘‘)π‘˜ +𝑑, then we have ≀ (1βˆ’(1βˆ’πœ‰)𝛼𝑛)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– Next, β€–π‘Žπ‘›+1 βˆ’π‘Ž βˆ—β€– = ‖𝑆𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ 𝛿‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–+πœ‡{β€–π‘Žβˆ— βˆ’π‘Žβˆ—β€–+‖𝑏𝑛 βˆ’π‘†π‘π‘›β€–}+πœ”{β€–π‘Ž βˆ— βˆ’π‘†π‘π‘›β€–+‖𝑏𝑛 βˆ’π‘Ž βˆ—β€–} ≀ (𝛿 +2π‘˜πœ‡ +2π‘˜πœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (𝛿 +2πœ‡ +2πœ”)‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ ‖𝑏𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’(1βˆ’πœ‰)𝛼𝑛)β€–π‘Žπ‘› βˆ’π‘Ž βˆ—β€– . . ≀ (1βˆ’(1βˆ’πœ‰)𝛼)π‘›β€–π‘Ž1 βˆ’π‘Ž βˆ—β€– Let 𝑓𝑛 = (1βˆ’(1βˆ’πœ‰)𝛼) π‘›β€–π‘Ž1 βˆ’π‘Ž βˆ—β€– Now, Noor iteration, ‖𝑣𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛾𝑛‖𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+π›Ύπ‘›πœ‰β€–π‘€π‘› βˆ’π‘Ž βˆ—β€– = ‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛽𝑛‖𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€– . ≀ (1βˆ’(1βˆ’πœ‰)𝛽𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– Then, ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛‖𝑆𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–+𝛼𝑛(𝛿 +2πœ‡ +2πœ”)‖𝑒𝑛 βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’π›Όπ‘› +𝛼𝑛(1βˆ’(1βˆ’πœ‰)𝛽𝑛)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– Assume that 𝛼𝑛 ≀ (1βˆ’π›Όπ‘› +𝛼𝑛(1βˆ’(1βˆ’πœ‰)𝛽𝑛) ≀ 𝛼𝑛‖𝑀𝑛 βˆ’π‘Ž βˆ—β€– . . ≀ 𝛼𝑛‖𝑀1 βˆ’π‘Ž βˆ—β€– Let 𝑔𝑛 = 𝛼 𝑛‖𝑀1 βˆ’π‘Ž βˆ—β€– Now, 91 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 𝑓𝑛 𝑔𝑛 = (1βˆ’(1βˆ’πœ‰)𝛼)π‘›β€–π‘Ž1βˆ’π‘Ž βˆ—β€– 𝛼𝑛‖𝑀1βˆ’π‘Ž βˆ—β€– ≀ (1βˆ’(1βˆ’πœ‰)) 𝑛 β€–π‘Ž1βˆ’π‘Ž βˆ—β€– ‖𝑀1βˆ’π‘Ž βˆ—β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. Then, (π‘Žπ‘›) converges faster than (𝑀𝑛) to π‘Ž βˆ—. Example (3.7): Let 𝑇,𝑆:𝑅 β†’ 𝑅 (where R is the set of all real numbers) be two maps defined by π‘‡π‘Ž = 2π‘Ž 3 and π‘†π‘Ž = π‘Ž 2 βˆ€π‘Ž ∈ 𝑅. Choose 𝛼𝑛 = 3 7 ,𝛽𝑛 = 1 7 ,𝛾𝑛 = 3 7 ,βˆ€π‘› with initial value π‘Ž1 = 20. The Picard-Mann iteration converges faster than Noor iteration, it is clear from Table 1. and Figure 1. Table 1. Numerical results corresponding to π‘Ž1 = 20 for 50 steps. n Picard-Mann n Noor Iteration n Picard-Mann n Noor iteration 0 20.0000 0 20.0000 26 - 26 0.0244 1 8.5714 1 15.4519 27 - 27 0.0189 2 3.6735 2 11.9381 28 - 28 0.0146 3 1.5747 3 9.2233 29 - 29 0.0113 4 0.6747 4 7.1259 30 - 30 0.0087 5 0.2892 5 5.5054 31 - 31 0.0067 6 0.1239 6 4.2534 32 - 32 0.0052 7 0.0531 7 3.2862 33 - 33 0.0040 8 0.0228 8 2.5389 34 - 34 0.0031 9 0.0098 9 1.9615 35 - 35 0.0024 10 0.0042 10 1.5155 36 - 36 0.0019 11 0.0018 11 1.1708 37 - 37 0.0014 12 0.0008 12 0.9046 38 - 38 0.0011 13 0.0003 13 0.6989 39 - 39 0.0009 14 0.0001 14 0.5400 40 - 40 0.0007 15 0.0001 15 0.4172 41 - 41 0.0005 16 0.0000 16 0.3223 42 - 42 0.0004 17 0.0000 17 0.2490 43 - 43 0.0003 18 - 18 0.1924 44 - 44 0.0002 19 - 19 0.1486 45 - 45 0.0002 20 - 20 0.1148 46 - 46 0.0001 21 - 21 0.0887 47 - 47 0.0001 22 - 22 0.0685 48 - 48 0.0001 23 - 23 0.0530 49 - 49 0.0001 24 - 24 0.0409 50 - 50 0.0000 25 - 25 0.0319 Figure 1. Convergence behavior corresponding to π‘Ž1 = 20 for 50 steps. 92 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 4. Applications Let the space C([f, h]) of all continuous real valued functions on a closed interval [f, h] be endowed with the chebyshev norm β€–π‘Ž βˆ’π‘β€–βˆž = maxπ‘‘βˆˆ[𝑓,β„Ž]|π‘Ž(𝑑)βˆ’π‘(𝑑)|. (𝐢[𝑓,β„Ž],β€–.β€–βˆž) be a Banach space. The following delay differential equation: 𝑀΄ (𝑑) = 𝑔(𝑑,𝑀(𝑑),𝑀(𝑑 βˆ’πœ)),𝑑 ∈ [𝑑0,β„Ž] with initial condition 𝑀(𝑑) = πœ—(𝑑),𝑑 ∈ [𝑑0 βˆ’πœ,𝑑0] (3) Assume the conditions are satisfied: i- 𝑑0,β„Ž ∈ 𝑅,𝜏 > 0. ii- 𝑔 ∈ 𝐢([𝑑0,β„Ž]×𝑅 2,𝑅). iii- πœ— ∈ 𝐢([𝑑0 βˆ’πœ,β„Ž],𝑅). iv- There is 𝐿𝑔 > 0 such that |𝑔(𝑑,π‘₯1,π‘₯2)βˆ’π‘”(𝑑,𝑦1,𝑦2)| ≀ 𝐿𝑔 βˆ‘ |π‘₯𝑖 βˆ’π‘¦π‘–| 2 𝑖=1 βˆ€ π‘₯𝑖,𝑦𝑖 ∈ 𝑅,𝑖 = 1,2,𝑑 ∈ [𝑑0,β„Ž]. v- 2𝐿𝑔(β„Žβˆ’ 𝑑0) < 1. Now, let us consider the following integral equation: 𝑀(𝑑) = { πœ—(𝑑) 𝑑 ∈ [𝑑0 βˆ’πœ,𝑑0] πœ—(𝑑)+∫ 𝑔(π‘Ÿ,𝑀(π‘Ÿ),𝑀(π‘Ÿβˆ’πœ))π‘‘π‘Ÿ 𝑑 ∈ [𝑑0,β„Ž] 𝑑 𝑑0 This is the solution of the above delay differential equation [15]. Theorem (4.1): Suppose the conditions (i-v) are accomplished the problem (3) has a unique solution π‘Žβˆ— 𝑖𝑛 𝐢([𝑑0 βˆ’πœ,β„Ž],𝑅)∩𝐢 βˆ’1([𝑑0,β„Ž,𝑅]) and the Noor iteration converges to π‘Ž βˆ—. Proof: Let (𝑀𝑛) be an iterative sequence generated by Noor for an map defined by 𝑇𝑀(𝑑) = { πœ—(𝑑) 𝑑 ∈ [𝑑0 βˆ’πœ,𝑑0] πœ—(𝑑)+∫ 𝑔(π‘Ÿ,𝑀(π‘Ÿ),𝑀(π‘Ÿ βˆ’πœ))π‘‘π‘Ÿ 𝑑 ∈ [𝑑0,β„Ž] 𝑑 𝑑0 Let (π‘Žβˆ—) be a fixed point. Now, it is easy to see 𝑀𝑛 β†’ π‘Ž βˆ— for each 𝑑 ∈ [𝑑0 βˆ’πœ,𝑑0]. Next, for 𝑑 ∈ [𝑑0,β„Ž], we get: ‖𝑣𝑛 βˆ’π‘Ž βˆ—β€–βˆž = β€–(1βˆ’π›Ύπ‘›)𝑀𝑛 +𝛾𝑛𝑇𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛾𝑛 maxπ‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0]|𝑇𝑀𝑛(𝑑)βˆ’π‘‡π‘Ž βˆ—(𝑑)| ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛾𝑛 max π‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0] |πœ—(𝑑)+∫ 𝑔(π‘Ÿ,𝑀(π‘Ÿ),𝑀(π‘Ÿβˆ’πœ))π‘‘π‘Ÿ βˆ’πœ—(𝑑) βˆ’βˆ« 𝑔(π‘Ÿ,π‘Žβˆ—(π‘Ÿ),π‘Žβˆ—(π‘Ÿβˆ’πœ))π‘‘π‘Ÿ 𝑑 𝑑0 𝑑 𝑑0 | ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛾𝑛 max π‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0] ∫ (|𝑔(π‘Ÿ,𝑀(π‘Ÿ),𝑀(π‘Ÿβˆ’πœ))| 𝑑 𝑑0 +|𝑔(π‘Ÿ,π‘Žβˆ—(π‘Ÿ),π‘Žβˆ—(π‘Ÿβˆ’πœ))|)π‘‘π‘Ÿ 93 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛾𝑛 ∫ (𝐿𝑔( max π‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0] |𝑀𝑛(𝑑)βˆ’π‘Ž βˆ—(𝑑)| 𝑑 𝑑0 + max π‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0] |𝑀𝑛(𝑑 βˆ’πœ)βˆ’π‘Ž βˆ—(𝑑 βˆ’πœ)|)π‘‘π‘Ÿ ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛾𝑛 ∫ 𝐿𝑔(‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž)π‘‘π‘Ÿ 𝑑 𝑑0 ≀ (1βˆ’π›Ύπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +2𝛾𝑛𝐿𝑔(𝑑 βˆ’π‘‘0)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ [1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛾𝑛]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž Next, ‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–βˆž = β€–(1βˆ’π›½π‘›)𝑀𝑛 +𝛽𝑛𝑇𝑣𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ (1βˆ’π›½π‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛽𝑛 max π‘‘βˆˆ [𝑑0βˆ’πœ,𝑑0] |𝑇𝑣𝑛(𝑑)βˆ’π‘‡π‘Ž βˆ—(𝑑)| ≀ [1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛽𝑛]‖𝑣𝑛 βˆ’π‘Ž βˆ—β€–βˆž Therefore, ‖𝑀𝑛+1 βˆ’π‘Ž βˆ—β€–βˆž = β€–(1βˆ’π›Όπ‘›)𝑀𝑛 +𝛼𝑛𝑇𝑒𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ (1βˆ’π›Όπ‘›)‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž +𝛼𝑛 max π‘‘βˆˆ[𝑑0βˆ’πœ,𝑑0] |𝑇𝑒𝑛(𝑑)βˆ’π‘‡π‘Ž βˆ—(𝑑)| ≀ [1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛼𝑛]‖𝑒𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ [1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛼𝑛][1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛽𝑛][1βˆ’(1 βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)𝛾𝑛]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž ≀ [1βˆ’(𝛼𝑛 +𝛽𝑛 +𝛾𝑛)[1βˆ’(1βˆ’2𝐿𝑔(β„Ž βˆ’π‘‘0)]‖𝑀𝑛 βˆ’π‘Ž βˆ—β€–βˆž setting πœ†π‘› = 𝛼𝑛 +𝛽𝑛 +𝛾𝑛 and by condition (v) 2𝐿𝑔(β„Ž βˆ’π‘‘0) < 1. Now, under the conditions (i-v) and using theorem (3.3) , therefore the delay differential equation has a unique solution π‘Žβˆ— 𝑖𝑛 𝐢([𝑑0 βˆ’πœ,β„Ž],𝑅)∩𝐢 βˆ’1([𝑑0,β„Ž,𝑅]) and the Noor iteration converges to π‘Žβˆ—. In support of this work, we would like to refer to our other results in this field in [16]. References 1. Goebel, K.; Kirk, W.A. Fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc.1972, 35, 171-174. 2. Bruck, R.E. Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 1973, 47, 341-355. 3. Das, G.; Debata, J.P. Fixed points of quasinonexpansive mappings. Indian J. Pure Appl. Math.1998, 17, 11, 1263–1269. 4. Takahashi,W.; Tamura, T. Convergence theorems for a pair of nonexpansive mappings. J. Convex Anal.1998, 5, 1, 45–56. 5. Khan, S.H. A Picard-Mann hybrid iteration process. Fixed Point Theory. Appl.2013, 2013, 69-75. 6. Noor, M.A. New Approximation Schemes for general variation inequalities. J. Math. Anal. Appl.2000, 251, 217-299, doi:10.1006/jmaa.2000.7042. 94 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 7. Fuster, E.L.; Galvez, E.M. The fixed point theory for some generalized nonexpansive mapping. Abstract . Appl. Anal.2011, 435686, 1-15, doi:10.1155/2011/435686. 8. Khan, S.H.; Fukhar-ud-din, H. Weak and strong convergence of a scheme with errors for two nonexpansive mappings. Nonlinear Anal.2005, 61, 1295-1301. 9. Fukhar-ud-din, H.; Khan, S.H. Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl.2007, 328, 821– 829. 10. Khan, S.H.; Abbas, M.; Khan, A.R. Common fixed points of two nonexpansive mappings by a new One-step iteration process. Iranian Journal of Science & Technology, Transuction.2009, 33, 1-13. 11. Saluja, G.S. Convergence to common fixed point for two asymptotically quasi- nonexpansive mappings in the intermediate sense in Banach spaces. Mathematica Moravica.2015, 19, 1, 33–48. 12. Deli, W.; Yisheng, S.; Xinwen, M. Common fixed points for non-commuting generalized (f,g)- nonexpansive maps. Applied Mathematices Sciences.2008, 2, 52, 2597-2602. 13. Yildirim, I.; Abbas, M.; Karaca, N. On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators. J. Nonlinear. Sci. Appl.2016, 9, 3773-3786. 14. Anupam, S.; Mohammad, I. Approximating fixed points of generalized nonexpansive mappings Via faster iteration schemes. Fixed point theory.2014, 4, 4, 605-623. 15. Arino, O.; Hbid, M.L.; Ait Dads, E. Delay differential Equations and Applications. Proceeding of NATO, Springer, New York,2002. 16. Faraj, A.N.; Abed, S.S. Result in G-Metric Spacesfixed Points. Ibn AL- Haitham Journal For Pure and Applied Science.2019, 32, 1, 139-146.