117 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Ali Sh. Ajeel Haibat K. Mohammadali Abstract We introduce in this paper the concept of approximaitly semi-prime submodules of unitary left 𝑅-module 𝑇 over a commutative ring 𝑅 with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule 𝐿 of an 𝑅-module 𝑇 is called an approximaitly semi-prime submodule of , if whenever π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇). Furthermore the behaviors of approximaitly semi- prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are introduced. Keywords: Prime submodules, Semi-prime submodules, Quasi-prime submodules, Approximaitly prime submodules, Approximaitly semi-prime submodules, Multiplication module, Socle of modules. 1. Introduction Throughout this article, all rings are commutative rings with identity and all modules are unitary. Prime submodules play an important role in module theory over commutative ring with identity, where a proper submodule 𝐿 of an 𝑅- module 𝑇 is called a prime, if whenever π‘Žπ‘‘ ∈ 𝐿, with π‘Ž ∈ 𝑅,𝑑 ∈ 𝑇, implies that either 𝑑 ∈ 𝐿 or π‘Ž ∈ [𝐿:𝑅 𝑇] where [𝐿:𝑅 𝑇] = {π‘Ÿ ∈ 𝑅:π‘Ÿπ‘‡ βŠ† 𝐿}[1]. Recently several generalization of the concept of prime submodules are studied in [2-5]. The concept semi-prime submodule which was first introduced in [6]. and extensively studied in [7]. is given as a proper submodule 𝐿 of an 𝑅-module 𝑇 is called semi- prime submodule, if wheneverπ‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘‘ ∈ 𝐿. [7]. characterized semi-prime submodules as follows: A proper submodule 𝐿 of an 𝑅-module 𝑇 is semi-prime if and only if whenever π‘Ž2𝑑 ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇, implies that π‘Žπ‘‘ ∈ 𝐿. The concept quasi-prime submodule which introduced and studied in [8]. is a strong form of a semi-prime submodule, where a proper submodule 𝐿 of an 𝑅- module 𝑇 is called a quasi- prime, if whenever π‘Žπ‘π‘‘ ∈ 𝐿, with π‘Ž,𝑏 ∈ 𝑅,𝑑 ∈ 𝑇, implies that either π‘Žπ‘‘ ∈ 𝐿 or 𝑏𝑑 ∈ 𝐿. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi:10.30526/32.3.2288 Approximaitly Semi-Prime Submodules and Some Related Concepts Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. Ali.shebl@st.tu.edu.iq dr.mohammadali2013@gmail.com Article history: Received 19 February 2019, Accepted 4 March 2019,Publish September 2019. mailto:Ali.shebl@st.tu.edu.iq mailto:dr.mohammadali2013@gmail.com 118 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Recently extensive research has been done on generalizations of semi-prime submodules see for example [9, 10]. The socle of an 𝑅-module 𝑇 (for short π‘ π‘œπ‘(𝑇)) is defined by the intersection of all essential submodules of 𝑇 [11]. where a non-zero submodule 𝑁 of an 𝑅- module 𝑇 is called essential if 𝑁 ∩ 𝐾 β‰  (0) for all non-zero submodule 𝐾 of 𝑇 [12]. Recall that an ideal 𝐼 of a ring 𝑅 is a semi-prime ideal of 𝑅 if π‘Ž2 ∈ 𝐼, implies that π‘Ž ∈ 𝐼. Equivalent 𝐼 = √𝐼 = {π‘Ž ∈ 𝑅: π‘Žπ‘› ∈ 𝐼 for some 𝑛 ∈ 𝑍+} [7]. Recall that a proper submodule 𝐿 of an 𝑅- module 𝑇 is called an approximaitly prime submodule of 𝑇, if whenever π‘Žπ‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇, implies that either 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇) or π‘Ž ∈ [𝐿 + π‘ π‘œπ‘(𝑇):𝑇][2]. 2. Approximaitly Semi-prime Submodules In this section, we introduce the definition of approximaitly semi-prime submodule and give it is basic properties, examples and characterizations. Definition (1) A proper submodule 𝐿 of an 𝑅-module 𝑇 is called an approximaitly semi-prime (for short app-semi-prime) submodule of 𝑇, if whenever π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇). An ideal 𝐼 of a ring 𝑅 is called an approximaitly semi-prime ideal of 𝑅 if 𝐼 is an approximaitly semi-prime submodule of 𝑅-module 𝑅. Remarks and Examples (2) 1) It is clear that every semi-prime submodule of an 𝑅-module 𝑇 is an app-semi-prime submodule while the convers is not true in general as the following example shows that. Consider the 𝑍-module 𝑍12 and 𝐿 = 〈0Μ…βŒͺ be a submodule of 𝑍12 . π‘ π‘œπ‘(𝑍12) = {0Μ…, 2Μ…, 4Μ…, 6Μ…, 8Μ…,10Μ…Μ…Μ…Μ… }. 𝐿 is not semi-prime in 𝑍12 because 2 2. 3Μ… ∈ 𝐿, but 2. 3Μ… = 6 βˆ‰ 𝐿. But 𝐿 is an app-semi-prime in 𝑍12 since whenever π‘Ž 2𝑑̅ ∈ 𝐿, for π‘Ž ∈ 𝑅, 𝑑̅ ∈ 𝑍12 , implies that π‘Žπ‘‘Μ… ∈ 𝐿 + π‘ π‘œπ‘(𝑍12) = {0Μ…, 2Μ…, 4Μ…, 6Μ…, 8Μ…,10Μ…Μ…Μ…Μ… }. 2) It is clear that every prime submodule of an 𝑅-module 𝑇 is an app-semi-prime submodule while the convers is not true in general as the following example shows that. Consider the 𝑍-module 𝑍4 and 𝐿 = 〈0Μ…βŒͺ be a submodule of 𝑍4 . 𝐿 is not prime but 𝐿 is an app- semi-prime in 𝑍4 because 2 2. 1Μ… ∈ 𝐿 but 2.1 βˆ‰ 𝐿, while 22. 1Μ… ∈ 𝐿, implies that 2. 1Μ… = 2 ∈ 𝐿 + π‘ π‘œπ‘(𝑍4) = 〈0Μ…βŒͺ + {0Μ…, 2Μ…} = {0Μ…, 2Μ…}. That is for all π‘Ž ∈ 𝑍, 𝑑̅ ∈ 𝑍4 with π‘Ž 2𝑑̅ ∈ 𝐿, implies that π‘Žπ‘‘Μ… ∈ 𝐿 + π‘ π‘œπ‘(𝑍4). 3) It is clear that every quasi-prime submodule of an 𝑅-module 𝑇 is an app-semi-prime submodule while the convers is not true in general as an example shows that. Consider the 𝑍-module 𝑍24 and the submodule 𝐿 = 〈6Μ…βŒͺ = {0Μ…, 6Μ…,12Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… }. 𝐿 is not quasi-prime in 𝑍24 because 2.3. 1Μ… ∈ 𝐿, but 2. 1Μ… βˆ‰ 𝐿 and 3. 1Μ… βˆ‰ 𝐿. But 𝐿 is an app-semi-prime in 𝑍24 since whenever π‘Ž2𝑑̅ ∈ 𝐿 for π‘Ž ∈ 𝑅, 𝑑̅ ∈ 𝑍24 , implies that π‘Žπ‘‘Μ… ∈ 𝐿 + π‘ π‘œπ‘(𝑍24) = {0Μ…, 6Μ…,12Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… } + {0Μ…, 2Μ…, 4Μ…, 6Μ…, 8Μ…,10Μ…Μ…Μ…Μ… ,12Μ…Μ…Μ…Μ… ,14Μ…Μ…Μ…Μ… ,16Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… ,20Μ…Μ…Μ…Μ… ,22Μ…Μ…Μ…Μ… } = {0Μ…, 2Μ…, 4Μ…, 6Μ…, 8Μ…,10Μ…Μ…Μ…Μ… ,12Μ…Μ…Μ…Μ… ,14Μ…Μ…Μ…Μ… ,16Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… ,20Μ…Μ…Μ…Μ… ,22Μ…Μ…Μ…Μ… }. 4) It is clear that every approximaitly prime submodule of an 𝑅-module 𝑇 is an app-semi- prime submodule, but the convers is not true. The following example shows that. The submodule 𝐿 = 6𝑍 of a 𝑍-module 𝑍 is an app-semi-prime submodule of 𝑍 (because 𝐿 is a semi-prime submodule of 𝑍 ), but 𝐿 is not an approximaitly prime submodule of 𝑍 because, if 2,3 ∈ 𝑍 such that 2.3 ∈ 6𝑍, but 3 βˆ‰ 6𝑍 + π‘ π‘œπ‘(𝑍) = 6𝑍 and 2 βˆ‰ [6𝑍 + π‘ π‘œπ‘(𝑍):𝑍] = 6𝑍, because π‘ π‘œπ‘(𝑍) = (0). The following results are characterizations of app-semi-prime submodules. 119 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (3) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐽𝑛𝐸 βŠ† 𝐿 where 𝐽 is an ideal of 𝑅, 𝐸 is a submodule of 𝑇 and 𝑛 ∈ 𝑍+, implies that 𝐽𝐸 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Proof ( β‡’ ) Suppose that 𝐽𝑛𝐸 βŠ† 𝐿, where 𝐽 is an ideal of 𝑅, 𝐸 is a submodule of 𝑇 and 𝑛 ∈ 𝑍+. Now, let 𝑑 ∈ 𝐽𝐸, then 𝑑 = π‘Ž1𝑑1 + π‘Ž2𝑑2 + β‹―+ π‘Žπ‘›π‘‘π‘›, where π‘Žπ‘– ∈ 𝐽, 𝑑𝑖 ∈ 𝐸, 𝑖 = 1,2,…,𝑛, that is π‘Žπ‘–π‘‘π‘– ∈ 𝐽𝐸 for each 𝑖 = 1,2,…,𝑛, it follows that π‘Ž 𝑛 𝑖𝑑𝑖 ∈ 𝐽 𝑛𝐸 βŠ† 𝐿, that is π‘Žπ‘›π‘–π‘‘π‘– ∈ 𝐿. But 𝐿 is an app-semi-prime submodule of 𝑇, implies that π‘Žπ‘–π‘‘π‘– ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for each 𝑖 = 1,2,…,𝑛, hence 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇), it follows that 𝐽𝐸 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). ( ⇐ ) Let π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that βŒ©π‘Žπ‘›βŒͺ𝑅𝑑 βŠ† 𝐿, that is βŒ©π‘ŽβŒͺ𝑛𝑅𝑑 βŠ† 𝐿. Thus by hypothesis we haveβŒ©π‘ŽβŒͺ𝑅𝑑 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), implies that π‘Žπ‘‘ ∈ βŒ©π‘ŽβŒͺ𝑅𝑑 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), thus π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇). Therefore 𝐿 is an app-semi-prime submodule of 𝑇. Corollary (4) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐽𝑛𝑇 βŠ† 𝐿 where 𝐽 is an ideal of 𝑅, 𝑛 ∈ 𝑍+, implies that 𝐽𝑇 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Proof It follows by Proposition (2.3). Corollary (5) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐽2𝐸 βŠ† 𝐿 where 𝐽 is an ideal of 𝑅 and 𝐸 is a submodule of 𝑇, implies that 𝐽𝐸 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Proposition (6) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 + π‘ π‘œπ‘(𝑇) is an app-semi-prime submodule of 𝑇 if and only if [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] is a semi-prime ideal of 𝑅 (hence an app-semi- prime). Proof ( β‡’ ) Let π‘Ÿ ∈ √[𝐿 + π‘ π‘œπ‘(𝑇):𝑇], implies that π‘Ÿπ‘› ∈ [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] for some 𝑛 ∈ 𝑍+, it follows that π‘Ÿπ‘›π‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), then π‘Ÿπ‘›π‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. But 𝐿 + π‘ π‘œπ‘(𝑇) is an app-semi-prime, implies that π‘Ÿπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) + π‘ π‘œπ‘(𝑇) = 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. That is π‘Ÿπ‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), implies that π‘Ÿ ∈ [𝐿 + π‘ π‘œπ‘(𝑇):𝑇]. Thus √[𝐿 + π‘ π‘œπ‘(𝑇):𝑇] βŠ† [𝐿 + π‘ π‘œπ‘(𝑇):𝑇], but [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] βŠ† √[𝐿 + π‘ π‘œπ‘(𝑇):𝑇], it follows that [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] = √[𝐿 + π‘ π‘œπ‘(𝑇):𝑇], hence [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] is a semi-prime ideal of 𝑅( hence [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] is an app-semi-prime). ( ⇐ ) Let π‘Žπ‘›π‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇), where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘›π‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), that is π‘Žπ‘› ∈ [𝐿 + π‘ π‘œπ‘(𝑇):𝑇]. Since [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] is a semi-prime ideal of 𝑅 then π‘Ž ∈ [𝐿 + π‘ π‘œπ‘(𝑇):𝑇], it follows that π‘Žπ‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), implies that π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. Therefore 𝐿 + π‘ π‘œπ‘(𝑇) is an app-semi-prime submodule of 𝑇. Proposition (7) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇 with π‘ π‘œπ‘(𝑇) βŠ† 𝐿. Then 𝐿 is an app-semi- prime submodule of 𝑇 if and only if [𝐿:𝑇 π‘Ž 𝑛] = [𝐿:𝑇 π‘Ž] for π‘Ž ∈ 𝑅 and some 𝑛 ∈ 𝑍 +. 120 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proof ( β‡’ ) Let 𝑑 ∈ [𝐿:𝑇 π‘Ž 𝑛], implies that π‘Žπ‘›π‘‘ ∈ 𝐿. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇). But π‘ π‘œπ‘(𝑇) βŠ† 𝐿, implies that 𝐿 + π‘ π‘œπ‘(𝑇) = 𝐿, thus π‘Žπ‘‘ ∈ 𝐿, it follows that 𝑑 ∈ [𝐿:𝑇 π‘Ž], hence [𝐿:𝑇 π‘Ž 𝑛] βŠ† [𝐿:𝑇 π‘Ž]. But [𝐿:𝑇 π‘Ž] βŠ† [𝐿:𝑇 π‘Ž 𝑛], so we get [𝐿:𝑇 π‘Ž 𝑛] = [𝐿:𝑇 π‘Ž]. ( ⇐ ) Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, it follows that 𝑑 ∈ [𝐿:𝑇 π‘Ž 𝑛] = [𝐿:𝑇 π‘Ž], implies that 𝑑 ∈ [𝐿:𝑇 π‘Ž], so π‘Žπ‘‘ ∈ 𝐿 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). That is π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇), hence 𝐿 is an app-semi-prime submodule of 𝑇. We recall the following Lemmas before we introduce the next results. Lemma (8) [11, Lemma 2.3.15]. Let 𝑇 be 𝑅-module and 𝐿,𝐾,𝐸 are submodules of 𝑇 with 𝐾 βŠ† 𝐸, then (𝐿 + 𝐾) ∩ 𝐸 = (𝐿 ∩ 𝐸) + (𝐾 ∩ 𝐸) = (𝐿 ∩ 𝐸) + 𝐾. Lemma (9) [13, Cor. 9.9]. Let 𝑇 be 𝑅-module and 𝐿 be a submodule of 𝑇, then π‘ π‘œπ‘(𝐿) = 𝐿 ∩ π‘ π‘œπ‘(𝑇). Proposition (10) Let 𝐿 and 𝐸 are proper submodules of an 𝑅-module 𝑇 withe 𝐿 ⊊ 𝐸 and 𝐿 is an app-semi- prime submodule of 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝐸. Proof Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝐸 ⊊ 𝑇 and 𝑛 ∈ 𝑍+. But 𝐿 is an app-semi-prime submodule of 𝑇, implies that π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇), but 𝑑 ∈ 𝐸, implies that π‘Žπ‘‘ ∈ 𝐸, then π‘Žπ‘‘ ∈ (𝐿 + π‘ π‘œπ‘(𝑇)) ∩ 𝐸, thus by Lemma(2.8) we have π‘Žπ‘‘ ∈ (𝐿 ∩ 𝐸) + (π‘ π‘œπ‘(𝑇) ∩ 𝐸) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇) ∩ 𝐸. So by Lemma (2.9) we have π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝐸). Thus 𝐿 is an app-semi-prime submodule of 𝐸. Proposition (11) Let 𝐿 and 𝐸 are proper submodules of an 𝑅-module 𝑇 withe 𝐿 ⊈ 𝐸 and π‘ π‘œπ‘(𝑇) βŠ† 𝐸. If 𝐿 is an app-semi-prime submodule of 𝑇. Then 𝐿 ∩ 𝐸 is an app-semi-prime submodule of 𝐸. Proof Since 𝐿 ⊈ 𝐸 then 𝐿 ∩ 𝐸 is a proper in 𝐸. Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿 ∩ 𝐸, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝐸 ⊊ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘›π‘‘ ∈ 𝐿. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇), it follows that π‘Žπ‘‘ ∈ (𝐿 + π‘ π‘œπ‘(𝑇)) ∩ 𝐸, so by Lemma (2.8) we have π‘Žπ‘‘ ∈ (𝐿 ∩ 𝐸) + (𝐸 ∩ π‘ π‘œπ‘(𝑇)). But by lemma (2.9) we have 𝐸 ∩ π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝐸). Hence π‘Žπ‘‘ ∈ (𝐿 ∩ 𝐸) + π‘ π‘œπ‘(𝐸). Thus 𝐿 ∩ 𝐸 is an app-semi-prime submodule of 𝐸. Remark (12) If 𝐿 and 𝐸 are two app-semi-prime submodules of an 𝑅-module 𝑇, then 𝐿 ∩ 𝐸 is not necessary an app-semi-prime submodule of 𝑇 as the following example shows that. Let = 𝑍⨁𝑍4 , 𝑅 = 𝑍, 𝐿 = 𝑍(1, 0Μ…), 𝐸 = 𝑍(1, 1Μ…), where 𝐿 and 𝐸 are app-semi-prime submodules of 𝑇. Then 𝐿 ∩ 𝐸 = {(0,0Μ…),(4, 0Μ…),(8, 0Μ…),……} is not an app-semi-prime submodule of 𝑇, since 22(1, 0Μ…) ∈ 𝐿 ∩ 𝐸, but 2(1, 0Μ…) βˆ‰ 𝐿 ∩ 𝐸 + π‘ π‘œπ‘(𝑇) where π‘ π‘œπ‘(𝑇) = (0). Proposition (13) Let 𝐿 and 𝐸 are two app-semi-prime submodules of an 𝑅-module 𝑇 with π‘ π‘œπ‘(𝑇) βŠ† 𝐿 or π‘ π‘œπ‘(𝑇) βŠ† 𝐸. Then 𝐿 ∩ 𝐸 is an app-semi-prime submodule of 𝑇. 121 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proof Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿 ∩ 𝐸, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘›π‘‘ ∈ 𝐿 and π‘Žπ‘›π‘‘ ∈ 𝐿. But 𝐿 and 𝐸 are app-semi-prime submodules of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) and π‘Žπ‘‘ ∈ 𝐸 + π‘ π‘œπ‘(𝑇), it follows that π‘Žπ‘‘ ∈ (𝐿 + π‘ π‘œπ‘(𝑇)) ∩ (𝐸 + π‘ π‘œπ‘(𝑇)). If π‘ π‘œπ‘(𝑇) βŠ† 𝐸, then π‘Žπ‘‘ ∈ (𝐿 + π‘ π‘œπ‘(𝑇)) ∩ 𝐸 and by Lemma (2.8) we have π‘Žπ‘‘ ∈ (𝐿 ∩ 𝐸) + π‘ π‘œπ‘(𝑇). Similarly if π‘ π‘œπ‘(𝑇) βŠ† 𝐿, we get π‘Žπ‘‘ ∈ (𝐿 ∩ 𝐸) + π‘ π‘œπ‘(𝑇). Hence 𝐿 ∩ 𝐸 is an app-semi-prime submodule of 𝑇. Remark (14) If 𝐿 and 𝐸 are submodules of an 𝑅-module 𝑇 with 𝐿 βŠ† 𝐸, and 𝐸 ia an app-semi-prime submodule of 𝑇, then 𝐿 is not an app-semi-prime submodule of 𝑇, the following example shows that. Let 𝐿 = 12𝑍 and 𝐸 = 6𝑍 are submodules of a 𝑍-module 𝑍, 𝐿 βŠ† 𝐸 and 𝐸 is an app-semi- prime submodule of Z, but 𝐿 = 12𝑍 is not an app-semi-prime submodule because 22.3 ∈ 12𝑍, but 2.3 βˆ‰ 12𝑍 + π‘ π‘œπ‘(𝑍). Recall that an 𝑅-module 𝑇 is multiplication if every submodule 𝐿 of 𝑇 is of the form 𝐿 = 𝐼𝑇 for some ideal 𝐼 of 𝑅. In particular 𝐿 = [𝐿:𝑅 𝑇]𝑇 [14]. Recall that for any submodules 𝐾 and 𝐹 of a multiplication 𝑅-module 𝑇 with 𝐾 = 𝐼𝑇 and 𝐹 = 𝐽𝑇 for some ideals 𝐼 and 𝐽 of 𝑅. The product 𝐾𝐹 = 𝐼𝑇.𝐽𝑇 = 𝐼𝐽𝑇 that is 𝐾𝐹 = 𝐼𝐹. In particular 𝐾𝑇 = 𝐼𝑇𝑇 = 𝐼𝑇 = 𝐾. Also for any 𝑑 ∈ 𝑇, we have 𝐾𝑑 = πΎβŒ©π‘‘βŒͺ = 𝐼𝑑 [15]. The following propositions are characterizations of app-semi-prime submodules in the class of multiplication modules. Proposition (15) Let 𝐿 be a proper submodule of a multiplication 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐾𝑛𝐹 βŠ† 𝐿 implies that 𝐾𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), where 𝐾,𝐹 are submodules of 𝑇, 𝑛 ∈ 𝑍+. Proof ( β‡’ ) Suppose that 𝐾𝑛𝐹 βŠ† 𝐿, where 𝐾,𝐹 are submodules of 𝑇, 𝑛 ∈ 𝑍+. Since 𝑇 is a multiplication then 𝐾 = 𝐼𝑇 and 𝐹 = 𝐽𝑇 for some ideals 𝐼, 𝐽 of 𝑅. Thus 𝐾𝑛𝐹 = (𝐼𝑇)𝑛𝐽𝑇 = 𝐼𝑛(𝐽𝑇) βŠ† 𝐿. But 𝐿 is an app-semi-prime, then by Proposition (2.3) we have 𝐼(𝐽𝑇) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). That is 𝐼𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), so 𝐾𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). ( ⇐ ) Suppose that 𝐼𝑛𝐹 βŠ† 𝐿, where 𝐼 is an ideal of 𝑅, 𝐹 is a submodule of 𝑇 and 𝑛 ∈ 𝑍+. Since 𝑇 is a multiplication then 𝐹 = 𝐽𝑇 for some ideal 𝐽 of 𝑅. That is 𝐼𝑛𝐽𝑇 βŠ† 𝐿 implies that 𝐾𝑛𝐹 βŠ† 𝐿 so by hypothesis 𝐾𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), thus 𝐼𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Hence by Proposition (2.3) 𝐿 is an app-semi-prime submodule of 𝑇. Proposition (16) Let 𝐿 be a proper submodule of a multiplication 𝑅-module 𝑇. Then the following statements are equivalent: 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) 𝑑𝑛 ∈ 𝐿 implies that 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for every 𝑑 ∈ 𝑇. 3) √𝐿 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). 4) 𝐹1𝐹2 ……𝐹𝑗 βŠ† 𝐿, implies that 𝐹1 ∩ 𝐹2 ∩ β€¦β€¦βˆ© 𝐹𝑗 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇) for every submodules 𝐹1,𝐹2,……,𝐹𝑗 of 𝑇 and 𝑗 ∈ 𝑍 +. 122 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proof (1) β‡’ (2) Let 𝑑𝑛 ∈ 𝐿 where 𝑑 ∈ 𝑇 and for some 𝑛 ∈ 𝑍+, then βŒ©π‘‘π‘›βŒͺ βŠ† 𝐿. But 𝑇 is a multiplication 𝑅-module, then βŒ©π‘‘βŒͺ = 𝐼𝑇 for some ideal 𝐼 of 𝑅, so βŒ©π‘‘π‘›βŒͺ = 𝐼𝑛𝑇 βŠ† 𝐿. Since 𝐿 is an app-semi-prime submodule of 𝑇, then by Corollary (2.4) we have 𝐼𝑇 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). That is βŒ©π‘‘βŒͺ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), implies that 𝑑 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). (2) β‡’ (3) Let 𝑑 ∈ √𝐿 , implies that 𝑑𝑛 ∈ 𝐿 for some 𝑛 ∈ 𝑍+, so by hypothesis 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇). Thus √𝐿 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). (3) β‡’ (4) Suppose that 𝐹1𝐹2 ……𝐹𝑗 βŠ† 𝐿 where 𝐹1,𝐹2,……,𝐹𝑗 are submodules of 𝑇 and 𝑗 ∈ 𝑍+. Let 𝑑 ∈ 𝐹1 ∩ 𝐹2 ∩ β€¦β€¦βˆ© 𝐹𝑗 then 𝑑 ∈ 𝐹𝑖 for each = 1,2,……,𝑗 , so 𝑑 𝑗 ∈ 𝐹1𝐹2 ……𝐹𝑗 βŠ† 𝐿, it follows that 𝑑𝑗 ∈ 𝐿, so 𝑑 ∈ √𝐿. But by hypothesis √𝐿 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), then 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇). Thus 𝐹1 ∩ 𝐹2 ∩ β€¦β€¦βˆ© 𝐹𝑗 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). (3) β‡’ (4) Let 𝐼𝑛𝐸 βŠ† 𝐿, where 𝐼 is an ideal of 𝑅, 𝐸 is a submodule of 𝑇, and 𝑛 ∈ 𝑍+. That is (𝐼𝑇)(𝐼𝑇)……(𝐼𝑇) βŠ† 𝐿, so by hypothesis (𝐼𝑇) ∩ (𝐼𝑇)β€¦β€¦βˆ© (𝐼𝑇) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Implies that 𝐼𝑇 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Thus by Corollary (2.4) 𝐿 is an app-semi-prime submodule of 𝑇. Remark (17) If 𝐿 is an app-semi-prime submodule of an 𝑅-module 𝑇, then [𝐿:𝑅 𝑇] is not necessary app-semi-prime ideal of 𝑅. The following example shows that. Consider the 𝑍-module 𝑍8 and a submodule 𝐿 = 〈0Μ…βŒͺ. 𝐿 is an app-semi-prime submodule since π‘ π‘œπ‘(𝑍8) = 〈2Μ…βŒͺ = {0Μ…, 2Μ…, 4Μ…, 6Μ…} and 2 2. 2Μ… ∈ 𝐿, implies that 2. 2Μ… = 4 ∈ 𝐿 + π‘ π‘œπ‘(𝑍8) = {0Μ…, 2Μ…, 4Μ…, 6Μ…}, where 2 ∈ 𝑍,2Μ… ∈ 𝑍8 . So for all π‘Ž ∈ 𝑅, 𝑑̅ ∈ 𝑍8 , such that π‘Ž 𝑛𝑑̅ ∈ 𝐿 for some 𝑛 ∈ 𝑍+, implies that π‘Žπ‘‘Μ… ∈ 𝐿 + π‘ π‘œπ‘(𝑍8). But [𝐿:𝑍 𝑇] = [〈0Μ…βŒͺ:𝑍 𝑍8] = 8𝑍 is not app-semi-prime ideal in 𝑍, since 22.2 ∈ 8𝑍 but 2.2 βˆ‰ 8𝑍 + π‘ π‘œπ‘(𝑍) = 8𝑍 + (0) = 8𝑍. Proposition (18) Let 𝐿 be an app-semi-prime submodule of an 𝑅-module 𝑇, with π‘ π‘œπ‘(𝑇) βŠ† 𝐿. Then [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. Proof Suppose that π‘Žπ‘›π‘  ∈ [𝐿:𝑅 𝑇], where π‘Ž,𝑠 ∈ 𝑅, 𝑛 ∈ 𝑍 +, then π‘Žπ‘›π‘  𝑇 βŠ† 𝐿. That is π‘Žπ‘›(𝑠 𝑇) βŠ† 𝐿, implies that π‘Žπ‘›(𝑠 𝑑) ∈ 𝐿 for all 𝑑 ∈ 𝑇. But 𝐿 is an app-semi-prime submodule of 𝑇, implies that π‘Ž(𝑠 𝑑) ∈ 𝐿 + π‘ π‘œπ‘(𝑇), that is π‘Žπ‘  𝑇 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). But π‘ π‘œπ‘(𝑇) βŠ† 𝐿, implies that 𝐿 + π‘ π‘œπ‘(𝑇) = 𝐿, thus π‘Žπ‘  𝑇 βŠ† 𝐿, it follows that π‘Žπ‘  ∈ [𝐿:𝑅 𝑇] βŠ† [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅). Therefore [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. We need to introduce the following Lemma which appear in [14]. Lemma (19)[14, Coro. 2.14]. Let 𝑇 be a faithful multiplication 𝑅-module then π‘ π‘œπ‘(𝑅)𝑇 = π‘ π‘œπ‘(𝑇). Proposition (20) Let 𝑇 be a faithful multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 123 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proof ( β‡’ ) Suppose that 𝐿 is an app-semi-prime submodule of 𝑇, to prove that √[𝐿:𝑅 𝑇] βŠ† [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅) by proposition (2.16), we get [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. Let π‘Ž ∈ √[𝐿:𝑅 𝑇], implies that π‘Ž 𝑛 ∈ [𝐿:𝑅 𝑇] for some 𝑛 ∈ 𝑍 +, it follows that π‘Žπ‘›π‘‡ βŠ† 𝐿, that is π‘Žπ‘›π‘‘ ∈ 𝐿 for all 𝑑 ∈ 𝑇. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. That is π‘Žπ‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Since 𝑇 is a multiplication𝑅-module, so 𝐿 = [𝐿:𝑅 𝑇]𝑇, and since 𝑇 is faithful multiplication, so by Lemma (2.19) π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝑅)𝑇. thus π‘Žπ‘‡ βŠ† [𝐿:𝑅 𝑇]𝑇 + π‘ π‘œπ‘(𝑅)𝑇, it follows that π‘Ž ∈ [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅). Hence √[𝐿:𝑅 𝑇] βŠ† [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅), therefore [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. ( ⇐ ) Suppose that [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅, and let π‘Ž 𝑛𝑑 ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, it follows that π‘Žπ‘›π‘‡ βŠ† 𝐿, implies that π‘Žπ‘› ∈ [𝐿:𝑅 𝑇] so π‘Ž ∈ √[𝐿:𝑅 𝑇]. Since [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅 then by proposition (2.16) √[𝐿:𝑅 𝑇] βŠ† [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅), it follows that π‘Ž ∈ [𝐿:𝑅 𝑇] + π‘ π‘œπ‘(𝑅), so π‘Žπ‘‡ βŠ† [𝐿:𝑅 𝑇]𝑇 + π‘ π‘œπ‘(𝑅)𝑇. Since 𝑇 is faithful multiplication, then by lemma (2.19) we get π‘Žπ‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), hence π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. Thus 𝐿 is an app-semi-prime submodule of 𝑇. Recall that an 𝑅-module 𝑇 is a non-singular provided that 𝑍(𝑇) = 𝑇, where 𝑍(𝑇) = {π‘₯ ∈ 𝑇 ∢ π‘₯𝐼 = 0 for some essential ideal 𝐼 of 𝑅} [12]. We need the following Lemma which appears in [12]. before we introduced the next result. Lemma (21) [12, Coro. 1.26]. If 𝑇 is a non-singular 𝑅-module, then π‘ π‘œπ‘(𝑅)𝑇 = π‘ π‘œπ‘(𝑇). Proposition (22) Let 𝐿 be a proper submodule of non-singular multiplication 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. Proof Follows by similar steps of proposition (2.20) and used lemma (2.21), and proposition (2.16). We need the following Lemma which appear in [16]. before we introduce the next result. Lemma (23)[16, Coro. Of Theo. 9]. Let 𝑇 be a finitely generated multiplication 𝑅-module and 𝐼, 𝐽 are ideals of a ring 𝑅. Then 𝐼𝑇 βŠ† 𝐽𝑇 if and only if 𝐼 βŠ† 𝐽 + π‘Žπ‘›π‘›(𝑇). Proposition (24) Let 𝑇 be a faithful finitely generated multiplication 𝑅-module and 𝐽 be an app-semi- prime ideal of 𝑅. Then 𝐽𝑇 is an app-semi-prime submodule of 𝑇. Proof Let π‘Žπ‘›πΈ βŠ† 𝐽𝑇, where π‘Ž ∈ 𝑅 , 𝐸 be a submodule of 𝑇 and 𝑛 ∈ 𝑍+. Since 𝑇 is a multiplication, then 𝐸 = 𝐼𝑇 for some ideal 𝐼 of 𝑅. That is π‘Žπ‘›πΌπ‘‡ βŠ† 𝐽𝑇. But 𝑇 is a finitely generated, so by Lemma (2.23) we have π‘Žπ‘›πΌ βŠ† 𝐽 + π‘Žπ‘›π‘›(𝑇), but 𝑇 is faithful, then π‘Žπ‘›π‘›(𝑇) = (0), hence π‘Žπ‘›πΌ βŠ† 𝐽, but 𝐽 an app-semi-prime ideal of 𝑅, then by proposition (2.3) π‘ŽπΌ βŠ† 𝐽 + π‘ π‘œπ‘(𝑅). That is π‘ŽπΌπ‘‡ βŠ† 𝐽𝑇 + π‘ π‘œπ‘(𝑅)𝑇, then by Lemma (2.19) we get π‘ŽπΈ βŠ† 𝐽𝑇 + π‘ π‘œπ‘(𝑇). Hence 𝐽𝑇 is an app-semi-prime submodule of 𝑇. 124 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (25) Let 𝑇 be a finitely generated multiplication non-singular 𝑅-module and 𝐽 be an app-semi- prime ideal of 𝑅 with π‘Žπ‘›π‘›(𝑇) βŠ† 𝐽. Then 𝐽𝑇 is an app-semi-prime submodule of 𝑇. Proof Suppose that π‘Žπ‘›πΏ βŠ† 𝐽𝑇, where π‘Ž ∈ 𝑅 , 𝐿 be a submodule of 𝑇 and 𝑛 ∈ 𝑍+. Since 𝑇 is a multiplication, then 𝐿 = 𝐼𝑇 for some ideal 𝐼 of 𝑅. That is π‘Žπ‘›πΌπ‘‡ βŠ† 𝐽𝑇. But 𝑇 is a finitely generated, so by Lemma (2.23) we have π‘Žπ‘›πΌ βŠ† 𝐽 + π‘Žπ‘›π‘›(𝑇), but π‘Žπ‘›π‘›(𝑇) βŠ† 𝐽, implies that 𝐽 + π‘Žπ‘›π‘›(𝑇) = 𝐽, so π‘Žπ‘›πΌ βŠ† 𝐽, but 𝐽 an app-semi-prime ideal of 𝑅, we have π‘ŽπΌ βŠ† 𝐽 + π‘ π‘œπ‘(𝑅). That is π‘ŽπΌπ‘‡ βŠ† 𝐽𝑇 + π‘ π‘œπ‘(𝑅)𝑇, then by Lemma (2.19) we get π‘ŽπΏ βŠ† 𝐽𝑇 + π‘ π‘œπ‘(𝑇). Hence 𝐽𝑇 is an app-semi-prime submodule of 𝑇. Theorem (26) Let 𝑇 be a faithful finitely generated multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then the following statements are equivalent. 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 3) 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅. Proof (1) ⇐ (2) Follows by proposition (2.20). (2) β‡’ (3) Since [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅, and 𝐿 = [𝐿:𝑅 𝑇]𝑇 for 𝑇 is a multiplication, implies that 𝐿 = 𝐼𝑇 where [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. (3) β‡’ (2) Suppose that 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅. But 𝑇 is a faithful finitely generated multiplication, then by Lemma (2.23) 𝐼 = [𝐿:𝑅 𝑇], hence [𝐿:𝑅 𝑇] is an app- semi-prime ideal of 𝑅. Theorem (27) Let 𝑇 be non-singular finitely generated multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then the following statements are equivalent. 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 3) 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅 with π‘Žπ‘›π‘›(𝑇) βŠ† 𝐼. Proof (1) ⇐ (2) Follows by proposition (2.22). (2) β‡’ (3) Since [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅, and 𝐿 = [𝐿:𝑅 𝑇]𝑇 for 𝑇 is a multiplication, then 𝐿 = 𝐼𝑇 and 𝐼 = [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅 with [(0):𝑅 𝑇] = π‘Žπ‘›π‘›(𝑇) βŠ† [𝐿:𝑅 𝑇]. (3) β‡’ (2) Suppose that 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅 with π‘Žπ‘›π‘›(𝑇) βŠ† 𝐼. But 𝑇 is a multiplication, we have 𝐼 = [𝐿:𝑅 𝑇]𝑇 = 𝐼𝑇, that is [𝐿:𝑅 𝑇] = 𝐼 + π‘Žπ‘›π‘›(𝑇) = 𝐼, it follows that [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. Recall that an envelope of a submodule 𝐿 of an 𝑅-module denoted by 𝐸𝑇(𝐿) defined by 𝐸𝑇(𝐿) = {π‘Žπ‘‘:π‘Ž ∈ 𝑅,𝑑 ∈ 𝑇 such that π‘Ž 𝑛𝑑 ∈ 𝐿,𝑛 ∈ 𝑍+} and 𝐿 βŠ† 𝐸𝑇(𝐿) [17]. 125 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (28) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐸𝑇(𝐿) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Proof ( β‡’ ) Let ∈ 𝐸𝑇(𝐿) , implies that 𝑦 = π‘Žπ‘‘, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 such that π‘Ž 𝑛𝑑 ∈ 𝐿 for some 𝑛 ∈ 𝑍+. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇), that is 𝑦 ∈ 𝐿 + π‘ π‘œπ‘(𝑇) so 𝐸𝑇(𝐿) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). ( ⇐ ) Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+. Since π‘Žπ‘›π‘‘ ∈ 𝐿 then π‘Žπ‘‘ ∈ 𝐸𝑇(𝐿) βŠ† 𝐿 + π‘ π‘œπ‘(𝑇) by hypothesis. It follows that π‘Ÿπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇). Hence 𝐿 is an app- semi-prime submodule of 𝑇. Proposition (29) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇 with π‘ π‘œπ‘(𝑇) βŠ† 𝐿. Then 𝐿 is an app-semi- prime submodule of 𝑇 if and only if [𝐿:𝑅 𝑇] is a semi-prime ideal of 𝑅. Proof ( β‡’ ) Let π‘Ž ∈ √[𝐿:𝑅 𝑇], implies that π‘Ž 𝑛 ∈ [𝐿:𝑅 𝑇] for some 𝑛 ∈ 𝑍 +, it follows that π‘Žπ‘›π‘‡ βŠ† 𝐿, that is π‘Žπ‘›π‘‘ ∈ 𝐿 for all 𝑑 ∈ 𝑇. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. That is π‘Žπ‘‡ βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). Since π‘ π‘œπ‘(𝑇) βŠ† 𝐿 we get π‘Žπ‘‡ βŠ† 𝐿 since 𝐿 + π‘ π‘œπ‘(𝑇) = 𝐿. That is π‘Ž ∈ [𝐿:𝑅 𝑇], hence √[𝐿:𝑅 𝑇] βŠ† [𝐿:𝑅 𝑇]. But [𝐿:𝑅 𝑇] βŠ† √[𝐿:𝑅 𝑇], it follows that √[𝐿:𝑅 𝑇] = [𝐿:𝑅 𝑇], hence [𝐿:𝑅 𝑇] is a semi-prime ideal of 𝑅. ( ⇐ ) Suppose that π‘Žπ‘›π‘‘ ∈ 𝐿, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, it follows that π‘Žπ‘› ∈ [𝐿:𝑅 𝑇], implies that π‘Ž ∈ √[𝐿:𝑅 𝑇]. But [𝐿:𝑅 𝑇] is a semi-prime ideal of 𝑅, implies that √[𝐿:𝑅 𝑇] = [𝐿:𝑅 𝑇], hence π‘Ž ∈ [𝐿:𝑅 𝑇], it follows that π‘Žπ‘‡ βŠ† 𝐿 = 𝐿 + π‘ π‘œπ‘(𝑇). Thus π‘Žπ‘‘ ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for all 𝑑 ∈ 𝑇. Thus 𝐿 is an app-semi-prime submodule of 𝑇. Proposition (30) Let 𝑇 = 𝑇1 βŠ• 𝑇2 be an 𝑅-module, where 𝑇1 and 𝑇2 𝑅-modules, and 𝐿 = 𝐿1 βŠ• 𝐿2 be a submodule of 𝑇, where 𝐿1 is a submodule of 𝑇1 and 𝐿2 is a submodule of 𝑇2 with 𝐿 βŠ† π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝑇1) βŠ• π‘ π‘œπ‘(𝑇2). If 𝐿 is an app-semi-prime submodule of 𝑇, then 𝐿1 is an app- semi-prime submodule of 𝑇1 and 𝐿2 is an app-semi-prime submodule of 𝑇2. Proof Let π‘Žπ‘›π‘‘ ∈ 𝐿1, where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇1 and 𝑛 ∈ 𝑍 +, it follows that π‘Žπ‘›(𝑑,0) ∈ 𝐿. But 𝐿 is an app-semi-prime submodule of 𝑇, then π‘Ž(𝑑,0) ∈ 𝐿 + π‘ π‘œπ‘(𝑇). But 𝐿 βŠ† π‘ π‘œπ‘(𝑇), implies that 𝐿 + π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝑇), thus π‘Ž(𝑑,0) ∈ π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝑇1) βŠ• π‘ π‘œπ‘(𝑇2), it follows that π‘Žπ‘‘ ∈ π‘ π‘œπ‘(𝑇1) βŠ† 𝐿1 + π‘ π‘œπ‘(𝑇1). Thus 𝐿1 is an app-semi-prime submodule of 𝑇1. Similarly we can prove 𝐿2 is an app-semi-prime submodule of 𝑇2. Proposition (31) Let 𝑇 = 𝑇1 βŠ• 𝑇2 be an 𝑅-module, where each of 𝑇1 and 𝑇2 𝑅-module. Then the following statements are satisfy: 1) 𝐿1 is an app-semi-prime submodule of 𝑇1 such that 𝐿1 βŠ† π‘ π‘œπ‘(𝑇1) and 𝑇2 = π‘ π‘œπ‘(𝑇2) if and only if 𝐿1 βŠ• 𝑇2 is an app-semi-prime submodule of 𝑇. 2) 𝐿2 is an app-semi-prime submodule of 𝑇2 such that 𝐿2 βŠ† π‘ π‘œπ‘(𝑇2) and 𝑇1 = π‘ π‘œπ‘(𝑇1) if and only if 𝑇1 βŠ• 𝐿2 is an app-semi-prime submodule of 𝑇. 126 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proof 1) ( β‡’ ) Let π‘Žπ‘›(𝑑1, 𝑑2) ∈ 𝐿1 βŠ• 𝑇2, where π‘Ž ∈ 𝑅, (𝑑1, 𝑑2) ∈ 𝑇 and 𝑛 ∈ 𝑍 +, then π‘Žπ‘›π‘‘1 ∈ 𝐿1. But 𝐿1 is an app-semi-prime submodule of 𝑇1 and 𝐿1 βŠ† π‘ π‘œπ‘(𝑇1), then π‘Žπ‘‘1 ∈ 𝐿1 + π‘ π‘œπ‘(𝑇1) = π‘ π‘œπ‘(𝑇1). Now, we have 𝑇2 = π‘ π‘œπ‘(𝑇2) then π‘Ž(𝑑1, 𝑑2) ∈ π‘ π‘œπ‘(𝑇1) βŠ• π‘ π‘œπ‘(𝑇2) = π‘ π‘œπ‘(𝑇1 βŠ• 𝑇2) βŠ† 𝐿1 βŠ• 𝑇2 + π‘ π‘œπ‘(𝑇1 βŠ• 𝑇2). Thus 𝐿1 βŠ• 𝑇2 is an app-semi-prime submodule of 𝑇. ( ⇐ ) Suppose that π‘Žπ‘›π‘‘1 ∈ 𝐿1, where π‘Ž ∈ 𝑅, 𝑑1 ∈ 𝑇1 and 𝑛 ∈ 𝑍 +. Then for each 𝑑2 ∈ 𝑇2 π‘Žπ‘›(𝑑1, 𝑑2) ∈ 𝐿1 βŠ• 𝑇2, but 𝐿1 βŠ• 𝑇2 is an app-semi-prime submodule of 𝑇, so π‘Ž(𝑑1, 𝑑2) ∈ 𝐿1 βŠ• 𝑇2 + π‘ π‘œπ‘(𝑇1 βŠ• 𝑇2) = (𝐿1 βŠ• 𝑇2) + (π‘ π‘œπ‘(𝑇1) βŠ• π‘ π‘œπ‘(𝑇2)). Since 𝐿1 βŠ† π‘ π‘œπ‘(𝑇1) and 𝑇2 = π‘ π‘œπ‘(𝑇2), it follows that π‘Ž(𝑑1, 𝑑2) ∈ (𝐿1 βŠ• 𝑇2) + ((𝐿1 + π‘ π‘œπ‘(𝑇1)) βŠ• 𝑇2), implies that π‘Ž(𝑑1, 𝑑2) ∈ (𝐿1 + π‘ π‘œπ‘(𝑇1)) βŠ• 𝑇2 [because 𝐿1 βŠ• 𝑇2 βŠ† (𝐿1 + π‘ π‘œπ‘(𝑇1)) βŠ• 𝑇2 implies that (𝐿1 βŠ• 𝑇2) + ((𝐿1 + π‘ π‘œπ‘(𝑇1)) βŠ• 𝑇2) = (𝐿1 + π‘ π‘œπ‘(𝑇1)) βŠ• 𝑇2]. Thus π‘Žπ‘‘1 ∈ 𝐿1 + π‘ π‘œπ‘(𝑇1). Hence 𝐿1 is an app-semi-prime submodule of 𝑇1. 2) Similarly we can prove (2). Proposition (32) Let 𝑓:𝑇 β†’ 𝑇′ be an 𝑅-epimorphism and 𝐿 is an app-semi-prime submodule of 𝑇′. Then π‘“βˆ’1(𝐿) is an app-semi-prime submodule of 𝑇. Proof It is clear that π‘“βˆ’1(𝐿) is a proper submodule of 𝑇. Now, let π‘Žπ‘›π‘‘ ∈ π‘“βˆ’1(𝐿), where π‘Ž ∈ 𝑅, 𝑑 ∈ 𝑇 and 𝑛 ∈ 𝑍+, implies that π‘Žπ‘›π‘“(𝑑) ∈ 𝐿. But L is an app-semi-prime submodule of 𝑇′, implies that π‘Žπ‘“(𝑑) ∈ 𝐿 + π‘ π‘œπ‘(𝑇′), it follows that π‘Žπ‘‘ ∈ π‘“βˆ’1(𝐿) + π‘“βˆ’1(π‘ π‘œπ‘(𝑇′)) βŠ† π‘“βˆ’1(𝐿) + π‘ π‘œπ‘(𝑇). Thus π‘Žπ‘‘ ∈ π‘“βˆ’1(𝐿) + π‘ π‘œπ‘(𝑇). Therefore π‘“βˆ’1(𝐿) is an app-semi-prime submodule of 𝑇. Proposition (33) Let 𝑓:𝑇 β†’ 𝑇′ be an 𝑅-epimorphism and 𝐾 be an app-semi-prime submodule of 𝑇 with πΎπ‘’π‘Ÿ 𝑓 βŠ† 𝐾. Then 𝑓(𝐾) is an app-quasi-prime submodule of 𝑇′. Proof 𝑓(𝐾) is a proper submodule of 𝑇′. If not, 𝑓(𝐾) = 𝑇′, that is 𝑑 ∈ 𝑇, then 𝑓(𝑑) ∈ 𝑇′ = 𝑓(𝐾), implies that 𝑓(𝑑) = 𝑓(π‘˜) for some π‘˜ ∈ 𝐾, that is 𝑓(𝑑 βˆ’ π‘˜) = 0, thus 𝑑 βˆ’ π‘˜ ∈ πΎπ‘’π‘Ÿ 𝑓 βŠ† 𝐾, it follows that 𝑑 ∈ 𝐾, that is 𝑇 βŠ† 𝐾, but 𝐾 βŠ† 𝑇, so 𝑇 = 𝐾 contradiction. Now let π‘Žπ‘›π‘‘β€² ∈ 𝑓(𝐾), where π‘Ž ∈ 𝑅, 𝑑′ ∈ 𝑇′ and 𝑛 ∈ 𝑍+. But 𝑓 is an epimorphism, then 𝑓(𝑑) = 𝑑′ for some 𝑑 ∈ 𝑇. That is π‘Žπ‘›π‘“(𝑑) ∈ 𝑓(𝐾), implies that π‘Žπ‘›π‘“(𝑑) = 𝑓(π‘˜) for some π‘˜ ∈ 𝐾. That is 𝑓(π‘Žπ‘›π‘‘ βˆ’ π‘˜) = 0, it follows that π‘Žπ‘›π‘‘ βˆ’ π‘˜ ∈ πΎπ‘’π‘Ÿ 𝑓 βŠ† 𝐾, hence π‘Žπ‘›π‘‘ ∈ 𝐾. But 𝐾 is an app-semi-prime submodule of 𝑇, then π‘Žπ‘‘ ∈ 𝐾 + π‘ π‘œπ‘(𝑇). Thus (𝑑) ∈ 𝑓(𝐾) + 𝑓(π‘ π‘œπ‘(𝑇)) βŠ† 𝑓(𝐾) +π‘ π‘œπ‘(𝑇′). That is π‘Žπ‘‘β€² ∈ 𝑓(𝐾) + π‘ π‘œπ‘(𝑇′). Hence 𝑓(𝐾) is an app-semi-prime submodule of 𝑇′. 3. Conclusion In this paper we define the concept of approximaitly semi-prime (for short app-semi- prime) submodules, and we introduced several properties, characterizations of it. Also, we investigate the relationships of app-semi-prime submodules with prime submodules, semi- 127 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 prime submodules, quasi-prime submodules and approximaitly prime submodules, we proved that app-semi-prime submodules are generalizations of above concepts, and we illistright the convers by examples. Also, we show by example that the resudule of an app-semi-prime submodule is not necessary app-semi-prime ideal of 𝑅, but we prove under certain conditions they are equivalents. A mange the main results we get are the following. 1) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇. Then 𝐿 + π‘ π‘œπ‘(𝑇) is an app-semi-prime submodule of 𝑇 if and only if [𝐿 + π‘ π‘œπ‘(𝑇):𝑇] is a semi-prime ideal of 𝑅 (hence an app-semi- prime). 2) Let 𝐿 be a proper submodule of an 𝑅-module 𝑇 with π‘ π‘œπ‘(𝑇) βŠ† 𝐿. Then 𝐿 is an app-semi- prime submodule of 𝑇 if and only if [𝐿:𝑇 π‘Ž 𝑛] = [𝐿:𝑇 π‘Ž] for π‘Ž ∈ 𝑅 and some 𝑛 ∈ 𝑍 +. 3) Let 𝐿 and 𝐸 are two app-semi-prime submodules of an 𝑅-module 𝑇 with π‘ π‘œπ‘(𝑇) βŠ† 𝐿 or π‘ π‘œπ‘(𝑇) βŠ† 𝐸. Then 𝐿 ∩ 𝐸 is an app-semi-prime submodule of 𝑇. 4) Let 𝐿 be a proper submodule of a multiplication 𝑅-module 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if 𝐾𝑛𝐹 βŠ† 𝐿 implies that 𝐾𝐹 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇), where 𝐾,𝐹 are submodules of 𝑇, 𝑛 ∈ 𝑍+. 5) Let 𝐿 be a proper submodule of a multiplication 𝑅-module 𝑇. Then the following statements are equivalent: 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) 𝑑𝑛 ∈ 𝐿 implies that 𝑑 ∈ 𝐿 + π‘ π‘œπ‘(𝑇) for every 𝑑 ∈ 𝑇. 3) √𝐿 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇). 4) 𝐹1𝐹2 ……𝐹𝑗 βŠ† 𝐿, implies that 𝐹1 ∩ 𝐹2 ∩ β€¦β€¦βˆ© 𝐹𝑗 βŠ† 𝐿 + π‘ π‘œπ‘(𝑇) for every submodules 𝐹1,𝐹2,……,𝐹𝑗 of 𝑇 and 𝑗 ∈ 𝑍 +. 6) Let 𝑇 be a faithful multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then 𝐿 is an app-semi-prime submodule of 𝑇 if and only if [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 7) Let 𝑇 be a faithful finitely generated multiplication 𝑅-module and 𝐽 be an app-semi-prime ideal of 𝑅. Then 𝐽𝑇 is an app-semi-prime submodule of 𝑇. 8) Let 𝑇 be a faithful finitely generated multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then the following statements are equivalent. 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 3) 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅. 9) Let 𝑇 be non-singular finitely generated multiplication 𝑅-module and 𝐿 be a proper submodule of 𝑇. Then the following statements are equivalent. 1) 𝐿 is an app-semi-prime submodule of 𝑇. 2) [𝐿:𝑅 𝑇] is an app-semi-prime ideal of 𝑅. 3) 𝐿 = 𝐼𝑇 for some app-semi-prime ideal 𝐼 of 𝑅 with π‘Žπ‘›π‘›(𝑇) βŠ† 𝐼. 10) Let 𝑇 = 𝑇1 βŠ• 𝑇2 be an 𝑅-module, where 𝑇1 and 𝑇2 𝑅-modules, and 𝐿 = 𝐿1 βŠ• 𝐿2 be a submodule of 𝑇, where 𝐿1 is a submodule of 𝑇1 and 𝐿2 is a submodule of 𝑇2 with 𝐿 βŠ† π‘ π‘œπ‘(𝑇) = π‘ π‘œπ‘(𝑇1) βŠ• π‘ π‘œπ‘(𝑇2). If 𝐿 is an app-semi-prime submodule of 𝑇, then 𝐿1 is an app- semi-prime submodule of 𝑇1 and 𝐿2 is an app-semi-prime submodule of 𝑇2. 11) Let 𝑇 = 𝑇1 βŠ• 𝑇2 be an 𝑅-module, where each of 𝑇1 and 𝑇2 𝑅-module. Then the following statements are satisfy: 1) 𝐿1 is an app-semi-prime submodule of 𝑇1 such that 𝐿1 βŠ† π‘ π‘œπ‘(𝑇1) and 𝑇2 = π‘ π‘œπ‘(𝑇2) if and only if 𝐿1 βŠ• 𝑇2 is an app-semi-prime submodule of 𝑇. 128 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 2) 𝐿2 is an app-semi-prime submodule of 𝑇2 such that 𝐿2 βŠ† π‘ π‘œπ‘(𝑇2) and 𝑇1 = π‘ π‘œπ‘(𝑇1) if and only if 𝑇1 βŠ• 𝐿2 is an app-semi-prime submodule of 𝑇. 12) Let 𝑓:𝑇 β†’ 𝑇′ be an 𝑅-epimorphism and 𝐿 is an app-semi-prime submodule of 𝑇′. Then π‘“βˆ’1(𝐿) is an app-semi-prime submodule of 𝑇. 13) Let 𝑓:𝑇 β†’ 𝑇′ be an 𝑅-epimorphism and 𝐾 be an app-semi-prime submodule of 𝑇 with πΎπ‘’π‘Ÿ 𝑓 βŠ† 𝐾. Then 𝑓(𝐾) is an app-quasi-prime submodule of 𝑇′. References 1. Lu, C.P. Prime Submodules of Modules. Comm. Math. University Sancti Pauli.1984, 33, 61-69. 2. Haibat, K.M.; Ali, S.h.A. Approximaitly Prime submodules and Some Related concepts. Ibn AL-Haitham Journal for Pure and Applied Science.2019, 32, 2, 103-113. 3. Haibat, K.M.; Saif, A.H.WE-Prime submodules and WE-semi-prime submodules. Ibn- Al-Haitham Journal for Pure and Applied Science.2018, 31, 3, 109-117. 4. Haibat, K.M.; Wissam, A.H. WN-2-Absorbing and WES- 2-Absorbing submodules. Ibn AL-Haitham Journal for Pure and Applied Science.2018, 31, 3, 118-125. 5. Haibat, K.M.; Omer, A.A. Pseudo Quasi2-Absorbing submodules and Some Related concepts. Ibn AL-Haitham Journal for Pure and Applied Science.2019, 32, 2. 6. Dauns, J. Prime Modules. Journal reine Angew, Math.1978, 2, 156-181. 7. Athab, E.A. Prime and Semi prime Submodules, Ph.D. thesis; College of Science, University of Baghdad,1996. 8. Abdul – Razak, H.M. Quasi-Prime Modules and Quasi-Prime Submodules. M.Sc. Thesis, University of Baghdad,1999. 9. Farzalipour, F. On Almost Semi-prime Submodules. Hindawi Algebra.2014, 752858, 1-6. 10. Nuhad, S.A.; Al-Hakeem, M.B. Nearly Semi-prime submodules. Iraqi Journal of Science.2015, 56, 4B, 3210-3214. 11. Kasch, F. Modules and Rings. London Math. Soc. Monographs (17), New York, 1982. 12. Gooderal, K.R. Ring Theory, Nonsingular Ring and Modules; Marcel. Dekker, New York,1976. 13. Anderson, F.W.; Fuller, K.R. Rings and Categories of Modules; Springer-Verlag, New York,1992. 14. Abd El-Bast, Z.; Smith, P.F. Multiplication Modules. Comm. Algebra.1988, 16, 4, 755- 779. 15. Soheilnia, F.; Yousefian, A. 2-Absorbing and weakly 2-Absorbing Submodules. Thai Journal of Math.2011, 3, 577-584. 16. Smith, P.F. Some Remarks on Multiplication Module. Arch. Math.1988, 50, 223-225. 17. Hamid, A.T.; Rezva, V. Semi-Radical of Submodules in Modules. International Journal of Engeneering Science.2008, 19, 1, 21-27.