129 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Omar A. Abdulla Haibat K. Mohammadali Abstract Let 𝑅 be a commutative ring with identity. The aim of this paper is introduce the notion of a pseudo primary-2-absorbing submodule as generalization of 2-absorbing submodule and a pseudo-2-absorbing submodules. A proper submodule 𝐾 of an 𝑅-module π‘Š is called pseudo primary-2-absorbing if whenever π‘Ÿπ‘ π‘₯ ∈ 𝐾, for π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐾 + π‘ π‘œπ‘(π‘Š). Many basic properties, examples and characterizations of these concepts are given. Furthermore, characterizations of pseudo primary-2-absorbing submodules in some classes of modules are introduced. Moreover, the behavior of a pseudo primary-2-absorbing submodule under 𝑅-homomorphism is studied. Keywords: Primary submodules, pseudo-2-absorbing submodules, pseudo primary-2- absorbing submodules, multiplication modules, non-singular modules, socle of a modules. 1. Introduction and Basic Concepts Throughout this paper, we assume that all rings are commutative with identity and all 𝑅-modules are left unitary. Among the famous concepts of modules theory is prime submodules, where a proper submodule 𝐾 of an 𝑅-module π‘Š is said to be a prime submodule if whenever π‘Ÿπ‘₯ ∈ 𝐾 where π‘Ÿ ∈ 𝑅, π‘₯ ∈ π‘Š, implies that either π‘₯ ∈ π‘Š or π‘Ÿπ‘Š βŠ† 𝐾[1]. Primary submodule was introduced in [2]. as a generalization of a prime submodule, where a proper submodule 𝐾 of an 𝑅-module π‘Š is called a primary submodule if whenever π‘Ÿπ‘₯ ∈ 𝐾 for π‘Ÿ ∈ 𝑅, π‘₯ ∈ π‘Š, implies that either π‘₯ ∈ 𝐾 or π‘Ÿπ‘›π‘Š βŠ† 𝐾 for some 𝑛 ∈ 𝑍+. Recently many generalizations of prime submodules were introduced such as (app-prime, πœ‘-prime, Nearly- prime) submodules see[3 βˆ’ 5]. Darani and Soheilinia in[6]. introduced the concept of 2- absorbing submodule as a generalization of prime submodule, where a proper submodule 𝐾 of an 𝑅-module π‘Š is said to be 2-absorbing submodule if whenever π‘Ÿπ‘ π‘₯ ∈ 𝐾 for π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, implies that either π‘Ÿπ‘₯ ∈ 𝐾 or 𝑠π‘₯ ∈ 𝐾 or π‘Ÿπ‘ π‘Š βŠ† 𝐾. In recent decades several generalization of 2-absorbing submodules were introduced such as nearly 2-absorbing submodule, nearly quasi-2-absorbing submodule, pseudo-2-absorbing submodule and pseudo Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi:10.30526/32.3.2290 Pseudo Primary-2-Absorbing Submodules and Some Related Concepts Article history: Received 3 March 2019, Accepted 20 March 2019, Publish September 2019 Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. omar.aldoori87@gmail.com dr.mohammadali2013@gmail.com mailto:omar.aldoori87@gmail.com mailto:dr.mohammadali2013@gmail.com 130 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 quasi-2-absorbing submodule see[6 βˆ’ 9]. Badwi et, in [10]. introduced the concept of 2- absorbing primary ideal, where a proper ideal 𝐼 of a ring 𝑅 is called 2-absorbing primary, if whenever π‘Žπ‘π‘ ∈ 𝐼 for π‘Ž, 𝑏, 𝑐 ∈ 𝑅, implies that either π‘Žπ‘ ∈ 𝐼 or π‘Žπ‘ ∈ √𝐼 or 𝑏𝑐 ∈ √𝐼 where √𝐼 = {π‘Ÿ ∈ 𝑅: π‘Ÿπ‘› ∈ 𝐼, for some n ∈ 𝑍+}. This led us to introduce the concept of a pseudo primary-2-absorbing submodule, which is generalization of 2-absorbing submodule and pseudo- 2-absorbing submodule. Many basic properties, characterization and examples of this concept are given. The residual of submodule 𝐾 is denoted by [𝐾: π‘Š] is an ideal of 𝑅 defined by {π‘Ÿ ∈ 𝑅: π‘Ÿπ‘Š βŠ† 𝐾}[1]. The radical of a submodule 𝐾 of π‘Š denoted by π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) or π‘Ÿπ‘Žπ‘‘π‘Š(𝐾) is defined to be the intersection of all prime submodule of π‘Š containing 𝐾, if π‘Š has no prime submodules containing 𝐾, then we say π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) = π‘Š and π‘Š βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾)[2]. Socle of a module π‘Š defined by the intersection of all essential submodules of π‘Š, denoted by π‘ π‘œπ‘(π‘Š)[11]. Recall that an 𝑅-module π‘Š is multiplication, if every submodule 𝐿 of π‘Š is of the form 𝐿 = πΌπ‘Š for some ideal 𝐼 of a ring [12]. Recall that an 𝑅-module π‘Š is called faithful if π‘Žπ‘›π‘›(π‘Š) = (0). Recall that an 𝑅-module π‘Š is called non-singular if 𝑍(π‘Š) = π‘Š where (π‘Š) = {𝑦 ∈ π‘Š: 𝑦𝐼 = (0), for some essential ideal I of R} [11]. 2. Pseudo Primary-2-Absorbing Submodules In this section we define the concept of a pseudo primary-2-absorbing submodule and give some basic results of these types of submodules and discuss on the relationships with class of 2-absorbing submodules and pseudo-2-absorbing submodules. Definition (1) A proper submodule 𝐾 of an 𝑅-module π‘Š is said to be a pseudo primary-2-absorbing submodule of π‘Š, if whenever π‘Ÿπ‘ π‘₯ ∈ 𝐾, for π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘  ∈ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. And a proper ideal 𝐼 of a ring 𝑅 is called a pseudo primary-2-absorbing ideal of 𝑅, if 𝐼 is pseudo primary-2-absorbing submodules of an 𝑅-module 𝑅. Remarks and Examples (2) 1. It is clear that every 2-absorbing submodule of an 𝑅-module π‘Š is a pseudo primary-2- absorbing submodule, while the converse is not true in general, the following example shows that: Let π‘Š = 𝑍12, 𝑅 = 𝑍 and 𝐾 = 〈0Μ…βŒͺ. 𝐾 is not 2-absorbing submodule since 2.3. 2Μ… ∈ 𝐾 where 2,3 ∈ 𝑍, 2Μ… ∈ 𝑍12, then 2. 2Μ… = 4Μ… βˆ‰ 𝐾 and 3. 2Μ… = 6Μ… βˆ‰ 𝐾 and 2.3 = 6 βˆ‰ [𝐾: 𝑍12] = 12𝑍. But 𝐾 is a pseudo primary-2-absorbing submodule of 𝑍12, since π‘ π‘œπ‘(𝑍12) = 〈2Μ…βŒͺ and π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) = 〈6Μ…βŒͺ for all π‘Ÿ, 𝑠 ∈ 𝑍, π‘₯ ∈ 𝑍12 with π‘Ÿπ‘ π‘₯ ∈ 〈0Μ…βŒͺ, implies that either π‘Ÿπ‘₯ ∈ 〈6Μ…βŒͺ + π‘ π‘œπ‘(𝑍12) = 〈2Μ…βŒͺ or 𝑠π‘₯ ∈ 〈6Μ…βŒͺ + π‘ π‘œπ‘(𝑍12) = 〈2Μ…βŒͺ or π‘Ÿπ‘  ∈ [〈0Μ…βŒͺ + π‘ π‘œπ‘(𝑍12): 𝑍12] = [〈2Μ…βŒͺ: 𝑍12] = 2𝑍. That is 2.3. 2Μ… ∈ 𝐾, implies that 2. 2Μ… = 4Μ… ∈ 〈6Μ…βŒͺ + 〈2Μ…βŒͺ = 〈2Μ…βŒͺ or 3. 2Μ… = 6Μ… ∈ 〈6Μ…βŒͺ + 〈2Μ…βŒͺ = 〈2Μ…βŒͺ or 2.3 = 6 ∈ [〈0Μ…βŒͺ + 〈2Μ…βŒͺ: 𝑍12] = 2𝑍. 2. It is clear that every pseudo-2-absorbing submodule of an 𝑅-module π‘Š is a pseudo primary-2-absorbing submodule, while the converse is not true in general, the following example shows that: Let π‘Š = 𝑍, 𝑅 = 𝑍 and 𝐾 = 8𝑍 where 𝐾 be a submodule of π‘Š. 𝐾 is not pseudo-2-absorbing submodule since 2.2.2 ∈ 8𝑍 but 2.2 βˆ‰ 8𝑍 + π‘ π‘œπ‘(𝑍) = 8𝑍 + (0) = 8𝑍 and 2.2 = 4 βˆ‰ [8𝑍 + π‘ π‘œπ‘(𝑍): 𝑍] = 8𝑍. But 𝐾 is a pseudo primary-2- absorbing submodule of π‘Š since 2.2.2 ∈ 8𝑍, then 2.2 = 4 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(8𝑍) + π‘ π‘œπ‘(𝑍) = 2𝑍 + (0) = 2𝑍. That is for all π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š with π‘Ÿπ‘ π‘₯ ∈ 𝐾, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) = 2𝑍 or 𝑠π‘₯ ∈ 2𝑍 or π‘Ÿπ‘  ∈ [8𝑍:𝑍 𝑍] = 8𝑍. 131 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 3. It is clear that every primary submodule of an 𝑅-module π‘Š is a pseudo primary-2- absorbing submodule, while the converse is not true in general, the following example shows that: Let π‘Š = 𝑍12, 𝑅 = 𝑍 and 𝐾 = 〈0Μ…βŒͺ is a submodule of π‘Š. 𝐾 is a pseudo primary-2-absorbing submodule of π‘Š but not primary submodule, since 3 ∈ 𝑍, 4Μ… ∈ 𝑍12 such that 3. 4Μ… ∈ 𝐾, but 4Μ… βˆ‰ 𝐾 = 〈0Μ…βŒͺ and 3 βˆ‰ √[〈0Μ…βŒͺ: 𝑍12] = √12𝑍 = 6𝑍. 4. It is clear that every prime submodule of an 𝑅-module π‘Š is a pseudo primary-2- absorbing submodule, while the converse is not true in general, the following example shows that: Let π‘Š = 𝑍, 𝑅 = 𝑍 and 𝐾 = 6𝑍 . 𝐾 is not prime submodule of π‘Š, since 2,3𝑍 with 2.3 ∈ 𝐾, but 3 βˆ‰ 𝐾 and 2 βˆ‰ [𝐾:𝑍 𝑍] = 6𝑍. But 𝐾 is a pseudo primary-2-absorbing submodule of π‘Š, since 2,3,1 ∈ 𝑍 with 2.3.1 ∈ 𝐾, implies that 2.3 ∈ [𝐾 + π‘ π‘œπ‘(π‘Š): π‘Š] = 6𝑍 because π‘ π‘œπ‘(π‘Š) = (0). 2.1 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) = 6𝑍 and 3.1 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) = 6𝑍. That is for all π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, with π‘Ÿπ‘ π‘₯ ∈ 𝐾, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘  ∈ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. The following results are characterizations of pseudo primary-2-absorbing submodules. Proposition (3) Let π‘Š be an 𝑅-module and 𝐾 is a proper submodule of π‘Š. Then 𝐾 is a pseudo primary- 2-absorbing submodule of π‘Š if and only if for each π‘Ÿ, 𝑠 ∈ 𝑅 with π‘Ÿπ‘  βˆ‰ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], [𝐾:π‘Š π‘Ÿπ‘ ] βŠ† [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š π‘Ÿ] βˆͺ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š 𝑠]. Proof: (⟹) Let π‘₯ ∈ [𝐾:π‘Š π‘Ÿπ‘ ], where π‘Ÿ, 𝑠 ∈ 𝑅 and π‘Ÿπ‘  βˆ‰ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], implies that π‘Ÿπ‘ π‘₯ ∈ 𝐾. But 𝐾 is a pseudo primary-2-absorbing submodule of π‘Š, and π‘Ÿπ‘  βˆ‰ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], then π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š). That is either π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š π‘Ÿ] or π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š 𝑠], thus π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š π‘Ÿ] βˆͺ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š 𝑠]. Hence [𝐾:π‘Š π‘Ÿπ‘ ] βŠ† [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾):π‘Š π‘Ÿ] βˆͺ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾):π‘Š 𝑠]. ( ⟸) Let π‘Ÿπ‘ π‘₯ ∈ 𝐾, where π‘₯ ∈ π‘Š and π‘Ÿ, 𝑠 ∈ 𝑅 with π‘Ÿπ‘  βˆ‰ [𝐾 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. It follows that π‘₯ ∈ [𝐾:π‘Š π‘Ÿπ‘ ], by hypothesis π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š π‘Ÿ] βˆͺ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š 𝑠]. Hence π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š π‘Ÿ] or π‘₯ ∈ [π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š):π‘Š 𝑠]. Therefore π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐾) + π‘ π‘œπ‘(π‘Š), that is 𝐾 is a pseudo primary-2-absorbing submodule of π‘Š. Proposition (4) Let π‘Š be an 𝑅-module and 𝐿 be a proper submodule of π‘Š. Then 𝐿 is a pseudo primary- 2-absorbing submodule of π‘Š if and only if π‘Ÿπ‘ πΎ βŠ† 𝐿 for π‘Ÿ, 𝑠 ∈ 𝑅 and 𝐾 is a submodule of π‘Š, with π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], implies that π‘ŸπΎ βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Proof (⟹) Let 𝐿 be a pseudo primary-2-absorbing submodule of π‘Š, and π‘Ÿπ‘ πΎ βŠ† 𝐿, with π‘Ÿ, 𝑠 ∈ 𝑅 and 𝐾 is a submodule of π‘Š with π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Assume that π‘ŸπΎ ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and 𝑠𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), then π‘Ÿπ‘˜1 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘ π‘˜2 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) for some π‘˜1, π‘˜2 ∈ 𝐾. Now we have π‘Ÿπ‘ π‘˜1 ∈ 𝐿 and since 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š and π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] and π‘Ÿπ‘˜1 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), then π‘ π‘˜1 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Also, since π‘Ÿπ‘ π‘˜2 ∈ 𝐿 and 132 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] and π‘ π‘˜2 βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), then π‘Ÿπ‘˜2 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Again since π‘Ÿπ‘ (π‘˜1 + π‘˜2) ∈ 𝐿 and π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] we have π‘Ÿ(π‘˜1 + π‘˜2) ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠(π‘˜1 + π‘˜2) ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Suppose that π‘Ÿ(π‘˜1 + π‘˜2) = π‘Ÿπ‘˜1 + π‘Ÿπ‘˜2 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), but π‘Ÿπ‘˜2 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that π‘Ÿπ‘˜1 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) a contradiction. Suppose that 𝑠(π‘˜1 + π‘˜2) = π‘ π‘˜1 + π‘ π‘˜2 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), but π‘ π‘˜1 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), we have π‘ π‘˜2 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) a contradiction. Hence π‘ŸπΎ βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). ( ⟸) Let π‘Ÿπ‘ π‘₯ ∈ 𝐿, where π‘₯ ∈ π‘Š and π‘Ÿ, 𝑠 ∈ 𝑅 with π‘Ÿπ‘  βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. So π‘Ÿπ‘ (π‘₯) βŠ† 𝐿, it follows by hypothesis π‘Ÿ(π‘₯) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠(π‘₯) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). That is π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Hence 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. Proposition (5) Let π‘Š be an 𝑅-module and 𝐿 is a proper submodule of π‘Š. Then 𝐿 is a pseudo primary-2- absorbing submodule of π‘Š if and only if 𝐼𝐽𝐾 βŠ† 𝐿, where 𝐼, 𝐽 are ideals of 𝑅 and 𝐾 is a submodule of π‘Š, implies that either 𝐼𝐽 βŠ† [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] or 𝐼𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐽𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Proof (⟹)Assume that 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, and 𝐼𝐽𝐾 βŠ† 𝐿, where 𝐼, 𝐽 are ideals of 𝑅 and 𝐾 is a submodule of π‘Š and 𝐼𝐽 ⊈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. We must prove that 𝐼𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐽𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Suppose that 𝐼𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and 𝐽𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that there exists π‘Ÿ1 ∈ 𝐼 and π‘Ÿ2 ∈ 𝐽 such that π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘Ÿ2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Now π‘Ÿ1π‘Ÿ2𝐾 βŠ† 𝐿 with π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘Ÿ2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, implies that by Proposition(4) π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Since 𝐼𝐽 ⊈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], it follows that there exists 𝑠1 ∈ 𝐼, 𝑠2 ∈ 𝐽 such that 𝑠1𝑠2 βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Since 𝑠1𝑠2𝐾 βŠ† 𝐿, and 𝑠1𝑠2 βˆ‰ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], we have by Proposition (4) either 𝑠1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Now we discussed the following cases: Case one: Suppose that 𝑠1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) but 𝑠2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Since π‘Ÿ1𝑠2𝐾 βŠ† 𝐿 and 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š with 𝑠2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), implies that π‘Ÿ1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] by Proposition(4). Also since 𝑠1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) but π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Since (π‘Ÿ1 + 𝑠1)𝑠2𝐾 βŠ† 𝐿 and 𝑠2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š)and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) implies that by Proposition(4) (π‘Ÿ1 + 𝑠1)𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. That is (π‘Ÿ1 + 𝑠1)𝑠2 = π‘Ÿ1𝑠2 + 𝑠1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] and π‘Ÿ1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], implies that 𝑠1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] a contradiction. Case two: If 𝑠2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) but 𝑠1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) in similarly steps of Case one we get a contradiction. Case three: Assume that 𝑠1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) but 𝑠2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Now since 𝑠2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘Ÿ2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). We have π‘Ÿ1(π‘Ÿ2 + 𝑠2)𝐾 βŠ† 𝐿 and π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + 133 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 π‘ π‘œπ‘(π‘Š) and (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), by Proposition(4) π‘Ÿ1(π‘Ÿ2 + 𝑠2) = π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. But π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] and π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], it follows that π‘Ÿ1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Now, since 𝑠1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and π‘Ÿ1𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), implies that (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) since (π‘Ÿ1 + 𝑠1)π‘Ÿ2𝐾 βŠ† 𝐿 and π‘Ÿ2𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that (π‘Ÿ1 + 𝑠1)π‘Ÿ2 = π‘Ÿ1π‘Ÿ2 + 𝑠1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] by Proposition(4). Now, since π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] and π‘Ÿ1π‘Ÿ2 + 𝑠1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], implies that 𝑠1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] . Also , since (π‘Ÿ1 + 𝑠1)(π‘Ÿ2 + 𝑠2)𝐾 βŠ† 𝐿 and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) and (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that (π‘Ÿ1 + 𝑠1)(π‘Ÿ2 + 𝑠2) = π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 + 𝑠1π‘Ÿ2 + 𝑠1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] by Proposition(4). Again since π‘Ÿ1π‘Ÿ2, π‘Ÿ1𝑠2, 𝑠1π‘Ÿ2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š], we get that 𝑠1𝑠2 ∈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š] a contradiction. Thus we have either 𝐼𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐽𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). ( ⟸) Obvious. Proposition (6) Let 𝐿 be a proper submodule of an 𝑅-module π‘Š, with π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) is a prime submodule of π‘Š. Then 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. Proof Suppose that π‘Ÿπ‘ π‘₯ ∈ 𝐿, where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š and 𝑠π‘₯ βˆ‰ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). Since 𝐿 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿), then π‘Ÿ(𝑠π‘₯) ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿), but π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) is a prime submodule of π‘Š, then π‘Ÿπ‘Š βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). That is π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), for some π‘₯ ∈ π‘Š. Thus 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. Lemma (7)[11, Ex. 10, p. 29] Let 𝐿 be an essential submodule of an 𝑅-module π‘Š, then π‘ π‘œπ‘(𝐿) = π‘ π‘œπ‘(π‘Š). Proposition (8) Let 𝐿 and 𝐾 are proper submodules of an 𝑅-module π‘Š such that 𝐿 ⊊ 𝐾 and 𝐾 is an essential submodule of π‘Š. If 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, then 𝐿 is a pseudo primary-2-absorbing submodule of 𝐾. Proof Suppose that π‘Ÿπ‘ π‘₯ ∈ 𝐿, where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ 𝐾 βŠ† π‘Š. Since 𝐿 is a pseudo primary-2- absorbing submodule of π‘Š, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). But 𝐾 is an essential submodule of π‘Š, then by Lemma(7) π‘ π‘œπ‘(𝐾) = π‘ π‘œπ‘(π‘Š). Hence we have either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(𝐾) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(𝐾) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(𝐾). Thus 𝐿 is a pseudo primary-2-absorbing submodule of 𝐾. Before we introduce the next result we need to recall the following lemmas. Lemma (9)[13, Lemma(2.3.15)] Let 𝐿, 𝐾 and 𝐷 are submodules of an 𝑅-module π‘Š with 𝐾 βŠ† 𝐷, then (𝐿 + 𝐾) ∩ 𝐷 = (𝐿 ∩ 𝐷) + 𝐾 = (𝐿 ∩ 𝐷) + (𝐾 ∩ 𝐷). Lemma (10)[14, Coro(9.9)] Let 𝐾 be a submodule of an 𝑅-module π‘Š, then π‘ π‘œπ‘(𝐾) = 𝐾 ∩ π‘ π‘œπ‘(π‘Š). 134 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (11) Let 𝐿 and 𝐾 be a proper submodules of an 𝑅-module π‘Š with 𝐿 ⊊ 𝐾 and π‘ π‘œπ‘(π‘Š) βŠ† 𝐾. If 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, then 𝐿 is a pseudo primary-2-absorbing submodule of 𝐾. Proof Let π‘Ÿπ‘ π‘₯ ∈ 𝐿, where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ 𝐾 βŠ† π‘Š. Since 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, implies that either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). That is either π‘Ÿπ‘₯ ∈ (π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š)) ∩ 𝐾 or 𝑠π‘₯ ∈ (π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š)) ∩ 𝐾 or π‘Ÿπ‘ π‘Š βŠ† (𝐿 + π‘ π‘œπ‘(π‘Š)) ∩ 𝐾. But by Lemma (9) (π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š)) ∩ 𝐾 = (π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) ∩ 𝐾) + (π‘ π‘œπ‘(π‘Š) ∩ 𝐾) = (π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) ∩ 𝐾) + π‘ π‘œπ‘(𝐾) by Lemma(10). Thus we have either π‘Ÿπ‘₯ ∈ ( π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) ∩ 𝐾) + π‘ π‘œπ‘(𝐾) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(𝐾) or 𝑠π‘₯ ∈ ( π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) ∩ 𝐾) + π‘ π‘œπ‘(𝐾) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(𝐾) or π‘Ÿπ‘ π‘Š βŠ† (𝐿 ∩ 𝐾) + (π‘ π‘œπ‘(π‘Š) ∩ 𝐾) = (𝐿 ∩ 𝐾) + π‘ π‘œπ‘(𝐾) βŠ† 𝐿 + π‘ π‘œπ‘(𝐾). Hence 𝐿 is a pseudo primary-2-absorbing submodule of 𝐾. Recall that for any submodules 𝐿, 𝐾 of a multiplication 𝑅-module π‘Š with 𝐿 = πΌπ‘Š, 𝐾 = π½π‘Š for some ideals 𝐼 and 𝐽 of 𝑅. The product 𝐿𝐾 = πΌπ‘Š. π½π‘Š = πΌπ½π‘Š. That is 𝐿𝐾 = 𝐼𝐾, in particular πΏπ‘Š = πΌπ‘Šπ‘Š = πΌπ‘Š = 𝐿. Also for any π‘₯ ∈ π‘Š we have 𝐿π‘₯ = 𝐼π‘₯[15]. The following result gives a characterization of pseudo primary-2-absorbing submodules in class of multiplication modules. Proposition (12) Let π‘Š be a multiplication 𝑅-module and 𝐿 is a proper submodule of π‘Š. Then 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š if and only if, whenever 𝐿1𝐿2𝐿3 βŠ† 𝐿 for 𝐿1, 𝐿2, 𝐿3 are submodules of π‘Š, implies that either 𝐿1𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐿2𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐿1𝐿2π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). Proof (⟹) Let 𝐿 be is a pseudo primary-2-absorbing submodule of π‘Š and 𝐿1𝐿2𝐿3 βŠ† 𝐿 for 𝐿1, 𝐿2, 𝐿3 are submodules of π‘Š, with 𝐿1𝐿2π‘Š ⊈ 𝐿 + π‘ π‘œπ‘(π‘Š). Since π‘Š is a multiplication, then 𝐿1 = 𝐼1π‘Š and 𝐿2 = 𝐼2π‘Š for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝑅. Clearly 𝐼1𝐼2𝐿3 βŠ† 𝐿 and 𝐼1𝐼2 ⊈ [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Since 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, implies that either 𝐼1𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐼2𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š), it follows that either 𝐿1𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐿2𝐿3 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š). (⟸) Assume that 𝐼1𝐼2𝐾 βŠ† 𝐿, where 𝐼1, 𝐼2 are ideals of 𝑅, and 𝐾 is a submodule of π‘Š. Since π‘Š is multiplication, then 𝐼1𝐼2𝐾 = 𝐿1𝐿2𝐾 βŠ† 𝐿, by hypothesis either 𝐿1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐿2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐿1𝐿2 βŠ† [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. That is either 𝐼1𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐼2𝐾 βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝐼1𝐼2 βŠ† [𝐿 + π‘ π‘œπ‘(π‘Š):𝑅 π‘Š]. Then by Proposition (5) 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. Lemma (13)[2]. Let 𝑓: π‘Š ⟢ οΏ½Μ…οΏ½ be an 𝑅-epimorphism and 𝐿 is a submodule of οΏ½Μ…οΏ½ with ker (𝑓) βŠ† 𝐿, then 𝑓(π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿)) = οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓(𝐿)). 135 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (14) Let 𝑓: π‘Š ⟢ οΏ½Μ…οΏ½ be an 𝑅-epimorphism and οΏ½Μ…οΏ½ is a pseudo primary-2-absorbing submodule of οΏ½Μ…οΏ½. Then 𝑓 βˆ’1(οΏ½Μ…οΏ½) is a pseudo primary-2-absorbing submodule of π‘Š. Proof Let ∈ 𝑓 βˆ’1(οΏ½Μ…οΏ½) , where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, implies that π‘Ÿπ‘ π‘“(π‘₯) ∈ οΏ½Μ…οΏ½. Since οΏ½Μ…οΏ½ is a pseudo primary-2-absorbing submodule of οΏ½Μ…οΏ½, it follows that either π‘Ÿπ‘“(π‘₯) ∈ οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(οΏ½Μ…οΏ½) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or 𝑠𝑓(π‘₯) ∈ οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(οΏ½Μ…οΏ½) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or π‘ π‘ŸοΏ½Μ…οΏ½ βŠ† οΏ½Μ…οΏ½ + π‘ π‘œπ‘(οΏ½Μ…οΏ½).Thus either π‘Ÿπ‘₯ ∈ 𝑓 βˆ’1(οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(οΏ½Μ…οΏ½)) + 𝑓 βˆ’1(π‘ π‘œπ‘(οΏ½Μ…οΏ½)) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓 βˆ’1(οΏ½Μ…οΏ½)) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ 𝑓 βˆ’1(οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(οΏ½Μ…οΏ½)) + 𝑓 βˆ’1(π‘ π‘œπ‘(οΏ½Μ…οΏ½)) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓 βˆ’1(οΏ½Μ…οΏ½)) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝑓 βˆ’1(οΏ½Μ…οΏ½) + π‘ π‘œπ‘(π‘Š). Hence 𝑓 βˆ’1(οΏ½Μ…οΏ½) be a pseudo primary-2-absorbing submodule of π‘Š. Proposition (15) Let 𝑓: π‘Š ⟢ οΏ½Μ…οΏ½ be an 𝑅-epimorphism and 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š with ker (𝑓) βŠ† 𝐿 . Then 𝑓(𝐿) is a pseudo primary-2-absorbing submodule of οΏ½Μ…οΏ½. Proof Let π‘Ÿπ‘ οΏ½Μ…οΏ½ ∈ 𝑓(𝐿), where π‘Ÿ, 𝑠 ∈ 𝑅, οΏ½Μ…οΏ½ ∈ οΏ½Μ…οΏ½. Since 𝑓 is onto, then 𝑓(π‘₯) = οΏ½Μ…οΏ½ for someπ‘₯ ∈ π‘Š. Thus π‘Ÿπ‘ π‘“(π‘₯) ∈ 𝑓(𝐿), implies that π‘Ÿπ‘ π‘“(π‘₯) = 𝑓(𝑙) for some 𝑙 ∈ 𝐿, it follows that 𝑓(π‘Ÿπ‘ π‘₯ βˆ’ 𝑙) = 0, implies that π‘Ÿπ‘ π‘₯ βˆ’ 𝑙 ∈ ker (𝑓) βŠ† 𝐿, then π‘Ÿπ‘ π‘₯ ∈ 𝐿. But 𝐿 be a pseudo primary-2-absorbing submodule of π‘Š, then either π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š), it follows that by Lemma(13) either π‘Ÿπ‘“(π‘₯) ∈ 𝑓(π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿)) + 𝑓(π‘ π‘œπ‘(π‘Š)) βŠ† οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓(𝐿)) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or 𝑠𝑓(π‘₯) ∈ 𝑓(π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿)) + 𝑓(π‘ π‘œπ‘(π‘Š)) βŠ† οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓(𝐿)) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or π‘Ÿπ‘ π‘“(π‘Š) βŠ† 𝑓(𝐿) + 𝑓(π‘ π‘œπ‘(π‘Š)) βŠ† 𝑓(𝐿) + π‘ π‘œπ‘(οΏ½Μ…οΏ½). That is either π‘ŸοΏ½Μ…οΏ½ ∈ οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓(𝐿)) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or 𝑠�̅� ∈ οΏ½Μ…οΏ½ βˆ’ π‘Ÿπ‘Žπ‘‘(𝑓(𝐿)) + π‘ π‘œπ‘(οΏ½Μ…οΏ½) or π‘Ÿπ‘ οΏ½Μ…οΏ½ βŠ† 𝑓(𝐿) + π‘ π‘œπ‘(οΏ½Μ…οΏ½). Hence 𝑓(𝐿) is a pseudo primary-2-absorbing submodule of οΏ½Μ…οΏ½. Lemma (16)[12, Theo(2.12)]. Let 𝑅 be a commutative ring with identity, 𝐿 be a proper submodule of a multiplication 𝑅-module π‘Š and 𝐴 = [𝐿:𝑅 π‘Š]. Thenπ‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) = √𝐴. π‘Š = √[𝐿:𝑅 π‘Š]. π‘Š. Lemma (17)[12, Coro(2.14)]. Let π‘Š be faithful multiplication 𝑅-module, then π‘ π‘œπ‘(𝑅)π‘Š = π‘ π‘œπ‘(π‘Š). Proposition (18) Let π‘Š be a faithful multiplication 𝑅-module and 𝐿 is a proper submodule of π‘Š. Then 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š if and only if [𝐿:𝑅 π‘Š] is a pseudo primary-2- absorbing ideal of 𝑅. Proof (⟹) Let 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, and π‘Ÿ. 𝑠. 𝑑 ∈ [𝐿:𝑅 π‘Š] for π‘Ÿ,𝑠,𝑑 ∈ 𝑅, implies that π‘Ÿπ‘ π‘‘π‘Š βŠ† 𝐿, that is π‘Ÿπ‘ π‘‘(π‘₯) ∈ 𝐿 for all π‘₯ ∈ π‘Š. But π‘Š is a multiplication 𝑅-module, then (π‘₯) = πΌπ‘Š for some ideal 𝐼 of 𝑅. That is π‘Ÿπ‘ (π‘‘πΌπ‘Š) βŠ† 𝐿. Since 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š, then by Proposition (4) either π‘Ÿ(π‘‘πΌπ‘Š) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠(π‘‘πΌπ‘Š) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š) by Lemma (16) π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) = √[𝐿:𝑅 π‘Š]. π‘Š and by Lemma (17) π‘ π‘œπ‘(𝑅)π‘Š = π‘ π‘œπ‘(π‘Š). Hence we get either π‘Ÿ(π‘‘πΌπ‘Š) βŠ† √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or 𝑠(π‘‘πΌπ‘Š) βŠ† √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or 136 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 π‘Ÿπ‘ π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. That is either π‘Ÿπ‘‘π‘₯ ∈ √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or 𝑠𝑑π‘₯ ∈ √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š for all π‘₯ ∈ π‘Š or π‘Ÿπ‘ π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. It follows that either π‘Ÿπ‘‘π‘Š βŠ† √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘ π‘‘π‘Š βŠ† √[𝐿:𝑅 π‘Š]. π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘Ÿπ‘ π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. Hence either π‘Ÿπ‘‘ ∈ √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or 𝑠𝑑 ∈ √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or π‘Ÿπ‘  ∈ [𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅). Therefore [𝐿:𝑅 π‘Š] is pseudo primary-2-absorbing ideal of 𝑅. (⟸) Assume that [𝐿:𝑅 π‘Š] is pseudo primary-2-absorbing ideal of 𝑅, and π‘Ÿπ‘ π‘₯ ∈ 𝐿, for π‘Ÿ,𝑠 ∈ 𝑅, π‘₯ ∈ π‘Š, that is π‘Ÿπ‘ (π‘₯) βŠ† 𝐿. Since π‘Š is a multiplication 𝑅-module then (π‘₯) = πΌπ‘Š for some ideal 𝐼 of 𝑅. Thus π‘Ÿπ‘ πΌπ‘Š βŠ† 𝐿, implies that π‘Ÿπ‘ πΌ βŠ† [𝐿:𝑅 π‘Š]. By hypothesis and Proposition (4) either π‘ŸπΌ βŠ† √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or 𝑠𝐼 βŠ† √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or π‘Ÿπ‘  ∈ [𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅). That is either π‘ŸπΌπ‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘ πΌπ‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘Ÿπ‘ π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. Thus by Lemma (16) and Lemma (17) we get π‘Ÿπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑠π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Ÿπ‘ π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). Hence 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. We need to recall the following lemma before we introduce the next result. Lemma (19)[11, Coro(1.26)]. If π‘Š is a non-singular 𝑅-modules, then π‘ π‘œπ‘(𝑅)π‘Š = π‘ π‘œπ‘(π‘Š). Proposition (20) Let π‘Š be a non-singular multiplication 𝑅-module and 𝐿 is a proper submodule of π‘Š. Then 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š if and only if [𝐿:𝑅 π‘Š] is a pseudo primary-2-absorbing ideal of 𝑅. Proof (⟸) Let [𝐿:𝑅 π‘Š] is a pseudo primary-2-absorbing ideal of 𝑅, and π‘Žπ‘π‘¦ ∈ 𝐿, for π‘Ž,𝑏 ∈ 𝑅, 𝑦 ∈ π‘Š, that is π‘Žπ‘(𝑦) βŠ† 𝐿, it follows that π‘Žπ‘π½π‘Š βŠ† 𝐿 for π‘Š is a multiplication 𝑅-module. Hence π‘Žπ‘π½ βŠ† [𝐿:𝑅 π‘Š], implies that by Proposition (4) either π‘Žπ½ βŠ† √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or 𝑏𝐽 βŠ† √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or π‘Žπ‘ ∈ [[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅): 𝑅] = [𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅). Thus either π‘Žπ½π‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘π½π‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘Žπ‘π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. Hence by Lemma (16) and Lemma (19), we have either π‘Žπ‘¦ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑏𝑦 ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Žπ‘π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). Therefore 𝐿 is a pseudo primary-2-absorbing submodule of π‘Š. (⟹) Let it be π‘Žπ‘π‘ ∈ [𝐿:𝑅 π‘Š] where π‘Ž,𝑏,𝑐 ∈ 𝑅, then π‘Žπ‘π‘π‘Š βŠ† 𝐿, so π‘Žπ‘π‘π‘¦ ∈ 𝐿 for all 𝑦 ∈ π‘Š. Since π‘Š is a multiplication𝑅-module, then (𝑦) = π½π‘Š, thus π‘Žπ‘π‘(𝑦) βŠ† 𝐿, it follows that π‘Žπ‘(π‘π½π‘Š) βŠ† 𝐿, implies that by hypothesis and by Proposition(4) either π‘Ž(π‘π½π‘Š) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or 𝑏(π‘π½π‘Š) βŠ† π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(𝐿) + π‘ π‘œπ‘(π‘Š) or π‘Žπ‘π‘Š βŠ† 𝐿 + π‘ π‘œπ‘(π‘Š). It follows that by Lemma (16) and by Lemma (19) and π‘Š is multiplication either π‘Žπ‘π‘¦ ∈ √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or 𝑏𝑐𝑦 ∈ √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š for all 𝑦 ∈ π‘Š or π‘Žπ‘π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. Hence either π‘Žπ‘π‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘π‘π‘Š βŠ† √[𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘Žπ‘π‘Š βŠ† [𝐿:𝑅 π‘Š]π‘Š + π‘ π‘œπ‘(𝑅)π‘Š. That is either π‘Žπ‘ ∈ √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or 𝑏𝑐 ∈ √[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) or π‘Žπ‘ ∈ [𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅) = [[𝐿:𝑅 π‘Š] + π‘ π‘œπ‘(𝑅): 𝑅]. That is [𝐿:𝑅 π‘Š] is a pseudo primary-2-absorbing ideal of 𝑅. We need to recall the following results before we introduce the next propositions. 137 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Lemma (21)[16, Coro of Theo. 9] Let 𝐼1 and 𝐼2 are ideals of a ring 𝑅 and π‘Š is a finitely generated multiplication 𝑅- module. Then 𝐼1π‘Š βŠ† 𝐼2π‘Š if and only if 𝐼1 βŠ† 𝐼2 + π‘Žπ‘›π‘›π‘… (π‘Š). Lemma (22)[17, Pro. (2.4)]. Let π‘Š be a multiplication 𝑅-module and 𝐼 is an ideal of 𝑅 such that π‘Žπ‘›π‘›π‘… (π‘Š) βŠ† 𝐼, then π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(πΌπ‘Š) = βˆšπΌπ‘Š. Proposition (23) Let π‘Š be a faithful finitely generated multiplication 𝑅-module and 𝐼 is a pseudo primary- 2-absorbing ideal of 𝑅 and πΌπ‘Š β‰  π‘Š. Then πΌπ‘Š is a pseudo primary-2-absorbing submodule of π‘Š. Proof Let π‘Žπ‘π‘₯ ∈ πΌπ‘Š for π‘Ž,𝑏 ∈ 𝑅, π‘₯ ∈ π‘Š, then π‘Žπ‘(π‘₯) βŠ† πΌπ‘Š, implies that π‘Žπ‘π½π‘Š βŠ† πΌπ‘Š for some ideal 𝐽 of 𝑅 since π‘Š is a multiplication. Hence by Lemma(21) π‘Žπ‘π½ βŠ† 𝐼 + π‘Žπ‘›π‘›π‘… (π‘Š), but π‘Š is a faithful. It follows that π‘Žπ‘›π‘›π‘… (π‘Š) = (0), that is π‘Žπ‘π½ βŠ† 𝐼. Since 𝐼 is a pseudo primary-2- absorbing ideal of 𝑅, then by Proposition (4) either π‘Žπ½ βŠ† √𝐼 + π‘ π‘œπ‘(𝑅) or 𝑏𝐽 βŠ† √𝐼 + π‘ π‘œπ‘(𝑅) or π‘Žπ‘ ∈ [𝐼 + π‘ π‘œπ‘(𝑅): 𝑅] = 𝐼 + π‘ π‘œπ‘(𝑅). It follows that π‘Žπ½π‘Š βŠ† βˆšπΌπ‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘π½π‘Š βŠ† βˆšπΌπ‘Š + π‘ π‘œπ‘(𝑅)π‘Š or π‘Žπ‘π‘Š βŠ† πΌπ‘Š + π‘ π‘œπ‘(𝑅)π‘Š. But by Lemma (17)π‘ π‘œπ‘(𝑅)π‘Š = π‘ π‘œπ‘(π‘Š) and by Lemma (22) βˆšπΌπ‘Š =. π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(πΌπ‘Š). Thus either π‘Žπ‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(πΌπ‘Š) + π‘ π‘œπ‘(π‘Š) or 𝑏π‘₯ ∈ π‘Š βˆ’ π‘Ÿπ‘Žπ‘‘(πΌπ‘Š) + π‘ π‘œπ‘(π‘Š) or π‘Žπ‘π‘Š βŠ† πΌπ‘Š + π‘ π‘œπ‘(π‘Š). Hence πΌπ‘Š is a pseudo primary-2- absorbing submodule of π‘Š. Proposition (24) Let π‘Š be a faithful finitely generated multiplication 𝑅-module and 𝐾 be a proper submodule of π‘Š. Then the following statements are equivalent . 1. K is a pseudo primary-2-absorbing submodule of π‘Š. 2. [K:𝑅 W] is a pseudo primary-2-absorbing ideal of 𝑅. 3. K = JW for some pseudo primary-2-absorbing ideal of 𝑅. Proof (1) ⇔ (2) By Proposition (18). (2) β‡’ (3) Since [K:𝑅 W] is a pseudo primary-2-absorbing ideal of 𝑅 with π‘Žπ‘›π‘›π‘… (π‘Š) = [0: W] βŠ† [K:𝑅 W] and K = [K:𝑅 W]W, implies that K = IW where I = [K:𝑅 W] is a pseudo primary-2-absorbing ideal of 𝑅. (3) ⟹ (2) Suppose that 𝐾 = π½π‘Š for some a pseudo primary-2-absorbing ideal 𝐽 of 𝑅. Since π‘Š is multiplication, then K = [K:𝑅 W]W = IW. Since π‘Š is faithful finitely generated multiplication then we have [K:𝑅 W] = J. Thus [K:𝑅 W] is a pseudo primary-2-absorbing ideal of 𝑅. Proposition (25) Let π‘Š be a finitely generated multiplication non-singular 𝑅-module and 𝐼 be a pseudo primary-2-absorbing ideal of 𝑅 with π‘Žπ‘›π‘›π‘… (π‘Š) βŠ† 𝐼. Then πΌπ‘Š is a pseudo primary-2- absorbing submodule of π‘Š. Proof Similarly as in Proposition (23) and using Lemma (19). 138 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 Proposition (26) Let π‘Š be a finitely generated multiplication non-singular 𝑅-module and 𝐾 be a proper submodule of π‘Š. Then the following statements are equivalent. 1. K is a pseudo primary-2-absorbing submodule of π‘Š. 2. [K:𝑅 W] is a pseudo primary-2-absorbing ideal of 𝑅. 3. K = JW for some pseudo primary-2-absorbing ideal of 𝑅, with π‘Žπ‘›π‘›π‘… (π‘Š) βŠ† 𝐽. Proof Similarly as in Proposition (24), by using Proposition (20). 3. Conclusion In this article we introduce new generalization of (prime, primary, 2-absorbing, pseudo- 2-absorbing) submodules called pseudo primary-2-absorbing submodules and we explain the converse implication of above by examples. Many characterizations of this generalization are introduced. Relationships of this generalization with other classes of modules are given. References 1. Lu, C.P. Prime Submodules of Modules, Commutative Mathematics, University spatula. 1981, 33, 61-69. 2. Lu, C.P. M-radical of Submodules in Modules, Math. Japan.1989, 34, 211-219. 3. Haibt, K. M; Ali, Sh. A. Approximaitly Prime Submodules and Related Concepts, Ibn- Al-Haithem Journal for Pure and Apple.Sci. 2019, 32, 2,114-122. 4. Al-Mothafar, N.S.; Abdula-Al-Kalik, A.J. Ο†-Prime submodules, Ibn-Al-Haithem Journal, for Pure and Apple. Sci.2016, 29, 2, 282-291. 5. Al-Mothafar, N.S.; Abdula-Al-Kalik, A.J. Nearly Prime submodules, international Journal of Advanced Scientific and Technical Research.2015, 6, 3, 166-173. 6. Reem, T.A.; Shwkea, M.R. Nearly 2-Absorbing Submodules and Related Concepts, Tikrit Journal, for Pure.Sci.2018, 23, 9, 104-112. 7. Haibat, K.M.; Khalaf, H.A. Nearly Quasi2-Absorbing submodules, Tikrit Journal, for Pure.Sci.2018, 23, 9, 99-102. 8. Haibat, K.M.; Omar, A.A. Pseudo-2-Absorbing and Pseudo Semi-2-Absorbing Submodules, Second International Conference of Math. In Erbil. Sci. (Accepted in AIP Journal Indexed in Scopus,2019. 9. Haibat, K.M.; Omar, A.A. Pseudo Quasi-2-Absorbing Submodules and Some Related Concepts, Ibn-Al-Haitham Journal, for Pure and Apple. Sci.2018, 32, 2, 114-122. 10. Badwi, A.; Tekir, U.; Yetkin, E. On 2-Absorbing Primary Ideals In Commutative Rings, Bull.Korean Math. Sci.2014, 51, 4, 1163-1173. 11. Goodearl, K.R. Ring Theory Non-Singular Rings and Modules, Marcel Dekker, Inc. New York and Basel.1976, 206. 12. El-Bast, Z.A.; Smith, P.F. Multiplication Modules, Comm. In Algebra.1988, 16, 4, 755- 779. 13. Kasch, F. Modules and Rings, London Mathematical society Monographs, New York, Academic press.1982, 370. 14. Anderson, E.W.; Fuller, K.R. Rings and Categores of Modules, springer- velage New York.1992, 376. 15. Darani, A.Y.; Soheilniai, F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal Math.2011, 9, 577-584. 139 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (3) 2019 16. Smith, P.F. Some Remarks on Multiplication Modules, Arch. Math.1988, 50, 223-225. 17. Ahmed, A.A. On Submodules of Multiplication Modules, M.Sc. Thesis, Baghdad University,1992.