Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 68 Hall and Joule's heating Influences on Peristaltic Transport of Bingham plastic Fluid with Variable Viscosity in an Inclined Tapered Asymmetric Channel Rasha Yousif Hassen Hayat A. Ali Department of Mathematics and Application of Computer, University of Technology, rashamath80@yahoo.com 100048@uotechnology.edu.iq Abstract This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taking into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation, these equations are simplified into a couple of non-linear ordinary differential equations that are solved by using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves. Keywords: Heat Transfer, Hall Effect, Joule's Heating, Bingham plastic Fluid, Tapered Channel. 1. Introduction Peristaltic transport is a successive sinusoidal waves movement of fluids along a flexible channel walls. It is naturally found in human living body such as urine movement from kidney to bladder, food swallowing process and blood flow in the small vessels [1- 3]. Moreover, the peristaltic transport of non- Newtonian fluid gained much attention in various modern industrial and biomedical phenomena like polymer industry and artificial hearts that their devices designed in a manner where the fluid flows without internal moving parts [4-6]. Inspired by this fact and since the modern industrial fluids are characterized by their variable viscosity, a few researchers indicate studies regarding the peristaltic transport of fluids having variable viscosity. Adnan and Abdulhadi [7] analyzed the effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip conditions. In the same year Adnan and Abdulhadi [8] investigated the peristaltic flow of the Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2554 Article history: Received 20, January, 2020, Accepted 26, February, 2020, Published in January 2021 mailto:rashamath80@yahoo.com mailto:100048@uotechnology.edu.iq mailto:100048@uotechnology.edu.iq 69 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Bingham plastic fluid in a curved channel. Hayat et al. [9] studied the effect of soret and dufour on the peristaltic transport of Bingham plastic fluid considering magnetic field. While Lakshminarayana et al. [10] investigated the heat transfer and the effect of slip condition and wall properties on the peristaltic transport of Bingham fluid. Ara et al. [11] explored the Jeffery- Hamel flow of Bingham plastic fluid in converging channel in the presence of external magnetic field. However, Salih [12] illustrated the influence of varying temperature and concentration on (MHD) peristaltic transport of Jeffery fluid with variable viscosity through porous channel. For more information see [7,13]. In this paper, the influence of Hall and Joule's heating on the peristaltic flow of Bingham plastic fluid passing through an inclined tapered asymmetric channel with variable viscosity is studied. A long wave number and low Reynolds number are taken into consideration to simplify the problem. Perturbation technique is used to solve and find the last shape of stream function. Finally, the effects of various parameters on axial velocity, temperature, stream function and heat transfer coefficients are discussed graphically. 2. Mathematical Modeling The peristaltic transport of an incompressible Bingham plastic fluid in a tapered inclined channel at an angle 𝛼 which is an asymmetric channel with a total width(2𝑑) is considered. Characterizing the flow by the existence of a strong transverse magnetic field 𝐡 = (0, 0, 𝛽0). A magnetic Reynolds number is taken small and the induced magnetic field is prescribed neglected. The flow is achieved by the peristaltic waves of length πœ† with different amplitude and phases moving with a constant speed 𝑐 along the channels walls. The geometry of the walls surfaces is described by π‘Œ1 = 𝐻1(οΏ½Μ…οΏ½, 𝑑) = 𝑑 + π‘š1οΏ½Μ…οΏ½ + π‘Ž1πΆπ‘œπ‘  ( 2πœ‹(οΏ½Μ…οΏ½βˆ’π‘π‘‘) πœ† ) (1) π‘Œ2 = 𝐻2(οΏ½Μ…οΏ½, 𝑑) = βˆ’π‘‘ βˆ’ π‘š1οΏ½Μ…οΏ½ βˆ’ π‘Ž2πΆπ‘œπ‘  (2πœ‹(οΏ½Μ…οΏ½ βˆ’ 𝑐𝑑)/πœ† + Ø) (2) Where π‘Œ1, π‘Œ2 are the upper and lower wall respectively, π‘š1 is the non-uniform parameter, π‘Ž1, π‘Ž2 are the wave amplitudes, 𝑑 is the time and (οΏ½Μ…οΏ½, οΏ½Μ…οΏ½) the rectangular coordinates in a fixed frame. Ø Is the phase different and Ø ∈ [0, πœ‹] such that when Ø = 0 corresponds to asymmetric channel with waves out of phase, and when Ø = πœ‹ , the waves are in phase. Further π‘Ž, 𝑏, 𝑑 π‘Žπ‘›π‘‘ βˆ… satisfy the necessary condition π‘Ž2 + 𝑏2 + 2π‘Žπ‘π‘‘ π‘π‘œπ‘ βˆ… ≀ (2𝑑)2 (3) By applying the generalized Ohm's law [2], we include the Hall current as follows �⃑� = 𝐽 Γ— �⃑⃑� (4) Such that 𝐽 = 𝜎[�⃑⃑� Γ— �⃑⃑� βˆ’ 1 𝑒𝑛 (𝐽 Γ— �⃑⃑�)] (5) 70 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Hence, �⃑� = ( βˆ’πœŽπ›½0 2(π‘ˆβˆ’π‘šπ‘‰) 1+π‘š2 , πœŽπ›½0 2(𝑉+π‘šπ‘ˆ) 1+π‘š2 , 0) (6) In which �⃑� is the magnetic force, 𝐽 assigns to the current density vector, �⃑⃑� = (π‘ˆ, 𝑉, 0) the velocity field, 𝜎 the electrical conductivity, 𝑛 the number density of electron, 𝑒 the electric charge, 𝛽0 the magnetic field strength and (π‘š = πœŽπ›½0 𝑒𝑛 ) the Hall parameter. The fluid satisfies Bingham plastic model and its extra stress tensor is given as follows [11]: 𝑆̅ = ( πœ‡(οΏ½Μ…οΏ½) + πœπ‘¦ 𝛾. ) οΏ½Μ…οΏ½1 For 𝜏 β‰₯ πœπ‘¦ 𝑆̅ = 0 For 𝜏 < πœπ‘¦ } (7) Such that οΏ½Μ…οΏ½1 = βˆ‡οΏ½βƒ‘βƒ‘οΏ½ + (βˆ‡οΏ½βƒ‘βƒ‘οΏ½) 𝑇 (8) And 𝛾. = √ π‘‘π‘Ÿπ‘Žπ‘(οΏ½Μ…οΏ½1) 2 2 (9) 𝑆̅ represents the extra stress tensor,𝛻 = (πœ•/πœ•οΏ½Μ…οΏ½, πœ•/πœ•οΏ½Μ…οΏ½, 0) the gradient vector, πœπ‘¦ the yield stress οΏ½Μ…οΏ½1is the first Rivlin- Erickson, and πœ‡(οΏ½Μ…οΏ½) is the dynamic variable viscosity. The fundamental equations of the flow can be written as below: 𝑑𝑖𝑣 οΏ½Μ…οΏ½ = 0 (10) 𝑋-component of momentum equation 𝜌 ( 𝑑�̅� 𝑑𝑑 + οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ ) = βˆ’ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + πœ•οΏ½Μ…οΏ½οΏ½Μ…οΏ½οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + πœ•οΏ½Μ…οΏ½οΏ½Μ…οΏ½οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ βˆ’ πœŽπ›½2( οΏ½Μ…οΏ½βˆ’π‘š οΏ½Μ…οΏ½) 1+π‘š2 + πœŒπ‘” Sin 𝛼 βˆ’ πœ‡ πœ… οΏ½Μ…οΏ½ (11) π‘Œ-component of momentum equation 𝜌 ( 𝑑�̅� 𝑑𝑑 + οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ ) = βˆ’ πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + πœ•οΏ½Μ…οΏ½οΏ½Μ…οΏ½οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + πœ•οΏ½Μ…οΏ½οΏ½Μ…οΏ½οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ βˆ’ πœŽπ›½2( οΏ½Μ…οΏ½+π‘š οΏ½Μ…οΏ½) 1+π‘š2 + πœŒπ‘” Cos 𝛼 βˆ’ πœ‡ πœ… οΏ½Μ…οΏ½ (12) And Energy equation with Joule heating effect is πœŒπ‘π‘ƒ ( πœ•π‘‡ πœ•οΏ½Μ…οΏ½ + οΏ½Μ…οΏ½ πœ•π‘‡ πœ•οΏ½Μ…οΏ½ + οΏ½Μ…οΏ½ πœ•π‘‡ πœ•οΏ½Μ…οΏ½ ) = 𝐾 ( πœ•2𝑇 πœ•οΏ½Μ…οΏ½2 + πœ•2𝑇 πœ•οΏ½Μ…οΏ½2 ) + (𝑆�̅̅��̅� βˆ’ 𝑆�̅̅��̅�) πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + 𝑆�̅̅��̅� ( πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ + πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ ) + πœŽπ›½0 2 (οΏ½Μ…οΏ½2+οΏ½Μ…οΏ½2) 1+π‘š2 (13) In which 𝜎, 𝐾, πœ…, οΏ½Μ…οΏ½, πœ‡ , 𝜌, 𝑐𝑃, 𝑔 are the electrical conductivity, the thermal conductivity, the porosity parameter, the dynamic viscosity, the density, the specific heat, and the gravity respectively. The corresponding boundary slip conditions are 71 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 οΏ½Μ…οΏ½ βˆ“ 𝛾𝑆�̅�𝑦 = 0 π‘Žπ‘‘ οΏ½Μ…οΏ½ = 𝐻1, 𝐻2 𝑇 βˆ“ 𝛽1 πœ•π‘‡ πœ•π‘¦ = 𝑇0 π‘Žπ‘‘ οΏ½Μ…οΏ½ = 𝐻1, 𝐻2 } (14) And the wall flexibility condition is [βˆ’πœ πœ•3 πœ•οΏ½Μ…οΏ½3 + π‘š2 πœ•3 πœ•οΏ½Μ…οΏ½πœ•π‘‘2 + 𝑑′ πœ•2 πœ•π‘‘πœ•οΏ½Μ…οΏ½ ] οΏ½Μ…οΏ½ = πœ•οΏ½Μ…οΏ½ πœ•οΏ½Μ…οΏ½ π‘Žπ‘‘ οΏ½Μ…οΏ½ = 𝐻1, 𝐻2 (15) Where 𝑇0, 𝜏, π‘š2, 𝑑 β€², 𝛾, 𝛽1 are the temperature at the upper and lower walls, the elastic tension, the mass per unit area and the coefficient of viscous damping, velocity slip coefficient, and temperature slip coefficient respectively. Dimensional analysis is used for normalizing the flow equations Eqs. (7) - (15) by using the following as bellows: π‘₯ = οΏ½Μ…οΏ½ πœ† , 𝑦 = οΏ½Μ…οΏ½ 𝑑 , 𝑒 = οΏ½Μ…οΏ½ 𝑐 , 𝑣 = οΏ½Μ…οΏ½ 𝑐 , β„Ž1 = 𝐻1 𝑑 , β„Ž2 = 𝐻2 𝑑 , 𝑝 = 𝑑2οΏ½Μ…οΏ½ πœ†πœ‡π‘ , 𝛿 = 𝑑 πœ† , π›Ύβˆ— = 𝛾 𝑑 , 𝛽1 βˆ— = 𝛽1 𝑑 , 𝑆 = 𝑑�̅�(οΏ½Μ…οΏ½) πœ‡π‘ , 𝑅𝑒 = πœŒπ‘π‘‘ πœ‡ , πœƒ = π‘‡βˆ’π‘‡0 𝑇0 , 𝐸1 = βˆ’πœπ‘‘3 πœ†3πœ‡π‘ , 𝐸2 = π‘š2𝑐𝑑 3 πœ†3πœ‡π‘ , 𝐸3 = 𝑑′𝑑3 πœ†2πœ‡ , π‘ƒπ‘Ÿ = πœ‡π‘π‘ƒ π‘˜ , 𝐻 = 𝛽0π‘‘βˆš 𝜎 πœ‡ , 𝐸𝑐 = 𝑐2 𝑐𝑃𝑇0 , π΅π‘Ÿ = πΈπ‘π‘ƒπ‘Ÿ , πΉπ‘Ÿ = 𝑐 βˆšπ‘”π‘‘ , 𝑑1 = π‘Ž1 𝑑 , 𝑑2 = π‘Ž2 𝑑 , π‘š1 βˆ— = π‘š1πœ† 𝑑 , 𝐡𝑛 = π‘‘πœπ‘¦ πœ‡π‘ , πœ‡(οΏ½Μ…οΏ½) = πœ‡(𝑦) πœ‡ (16) Where 𝛿 is the wave number, 𝐸1 the wall elastance parameter, 𝐸2 the mass per unit area parameter, 𝐸3the wall damping parameter, 𝑅𝑒 the Reynolds number, π‘ƒπ‘Ÿ the Prandtl number, 𝐻 Hartman number, 𝐸𝑐 Eckret number, π΅π‘Ÿ Brinkman number, πΉπ‘Ÿ Froude number, π‘š1 βˆ— the dimensionless non-uniform parameter, β„Ž1 the dimensionless lower wall surface, β„Ž2 upper wall surface, π‘₯, 𝑦 components of the dimensionless coordinates, 𝑒 axial velocity, 𝑣 transverse component of velocity, πœ– the fluid dimensionless viscosity parameter, 𝛾., 𝛽1 βˆ— the dimensionless velocity and thermal slip parameters respectively and 𝐡𝑛 Bingham number. Note that we omitted asterisks for simplicity Introducing the stream function πœ“(π‘₯, 𝑦, 𝑑) and make use of the following relation 𝑒 = πœ“π‘¦, 𝑣 = βˆ’π›Ώπœ“π‘₯ Applying Eq. (17) into Eqs. (9) – (16) and making use of Eq. (17), the continuity equation (11) vanishs identically, other flow equations take the following form 𝛿𝑅𝑒(πœ“π‘‘π‘¦ + πœ“π‘¦πœ“π‘₯𝑦 βˆ’ π›Ώπœ“π‘₯πœ“π‘₯𝑦) = βˆ’π‘ƒπ‘₯ + 𝛿 πœ•π‘†π‘₯π‘₯ πœ•π‘₯ + πœ•π‘†π‘₯𝑦 πœ•π‘¦ βˆ’ 𝐻2 (1+π‘š2) (πœ“π‘¦ + π›Ώπ‘šπœ“π‘₯) βˆ’ πœ“π‘¦ πœ… + 𝑅𝑒 (πΉπ‘Ÿ)2 𝑠𝑖𝑛𝛼 (17) 𝛿2𝑅𝑒(βˆ’π›Ώ2πœ“π‘‘π‘₯ βˆ’ 𝛿 2πœ“π‘¦πœ“π‘₯π‘₯ + 𝛿 3πœ“π‘₯πœ“π‘₯𝑦) = βˆ’π‘ƒπ‘¦ + 𝛿 πœ•π‘†π‘¦π‘¦ πœ•π‘¦ + 𝛿2 πœ•π‘†π‘¦π‘₯ πœ•π‘₯ βˆ’ 𝐻2𝛿 (1 + π‘š2) (βˆ’π›Ώπœ“π‘₯ + π‘šπœ“π‘¦) βˆ’ πœ“π‘¦ πœ… βˆ’ 𝛿𝑅𝑒 (πΉπ‘Ÿ)2 π‘π‘œπ‘ π›Ό (18) 72 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 π‘…π‘’π‘ƒπ‘Ÿ (𝛿 πœ•πœƒ πœ•π‘‘ + π›Ώπœ“π‘¦ πœ•πœƒ πœ•π‘₯ βˆ’ π›Ώπœ“π‘₯ πœ•πœƒ πœ•π‘¦ ) = 𝛿2 πœ•2πœƒ πœ•π‘₯2 + πœ•2πœƒ πœ•π‘¦2 + π΅π‘Ÿπ‘†π‘₯𝑦(πœ“π‘¦π‘¦ βˆ’ 𝛿 2πœ“π‘₯π‘₯) + 𝐻2π΅π‘Ÿ (1+π‘š2) ((πœ“π‘¦) 2 + 𝛿2(πœ“π‘₯) 2) + π›Ώπ΅π‘Ÿ(𝑆π‘₯π‘₯ βˆ’ 𝑆𝑦𝑦)πœ“π‘₯𝑦 … (19) Adopting the assumptions of peristaltic long wavelength and low Reynolds number, Eqs. (17)- (19) will be reduced into following form 𝑃π‘₯ = πœ•π‘†π‘₯𝑦 πœ•π‘¦ βˆ’ ( 𝐻2 (1+π‘š2) + 1 πœ… ) πœ“π‘¦ + 𝑅𝑒 (πΉπ‘Ÿ)2 𝑠𝑖𝑛𝛼, (20) 𝑃𝑦 = 0, (21) πœ•2πœƒ πœ•π‘¦2 = π΅π‘Ÿπ‘†π‘₯π‘¦πœ“π‘¦π‘¦ + 𝐻2π΅π‘Ÿ (1+π‘š2) (πœ“π‘¦) 2, (22) 𝑆π‘₯𝑦 = 𝑆𝑦π‘₯ = πœ‡(𝑦)πœ“π‘¦π‘¦ + 𝐡𝑛 (23) 𝑆π‘₯π‘₯ = 0, 𝑆𝑦𝑦 = 0, (24) And the dimensionless boundary conditions are 𝑒 βˆ“ 𝛾𝑆π‘₯𝑦 = 0 πœƒ βˆ“ 𝛽1 πœ•πœƒ πœ•π‘¦ = 0 (𝐸1 πœ•3 πœ•π‘₯3 + 𝐸2 πœ•3 πœ•π‘₯πœ•π‘‘2 + 𝐸3 πœ•2 πœ•π‘‘πœ•π‘₯ ) 𝑦 = πœ•π‘†π‘₯𝑦 πœ•π‘¦ βˆ’ 𝐻2πœ“π‘¦ 1+π‘š2 + 𝑅𝑒 (πΉπ‘Ÿ)2 𝑠𝑖𝑛𝛼] At 𝑦 = β„Ž1, β„Ž2, (25) Where β„Ž1 = βˆ’1 βˆ’ π‘š1π‘₯ βˆ’ 𝑑1 (πΆπ‘œπ‘ (π‘₯ βˆ’ 𝑑) + βˆ…) , β„Ž2 = 1 + π‘š1π‘₯ + 𝑑2(πΆπ‘œπ‘  2πœ‹(π‘₯ βˆ’ 𝑑)) Furthermore, heat transfer coefficient at lower wall is derived as 𝑍 = πœ•β„Ž1 πœ•π‘₯ πœƒπ‘¦(β„Ž1) (26) Through Eqs. (20) and (21), we obtain πœ•2𝑆π‘₯𝑦 πœ•π‘¦2 βˆ’ ( π΅π‘Ÿπ»2 (1+π‘š2) + 1 πœ… ) πœ“π‘¦π‘¦ = 0 (27) We toke the dimensionless approximate expression for πœ‡(𝑦)as πœ‡(𝑦) = π‘’βˆ’πœ–π‘¦ = 1 βˆ’ πœ–π‘¦, whereπœ– < 1, πœ– is non- dimensional viscosity parameter. 3. Solution Methodology By using the perturbation method for a small non- dimensional viscosity parameter πœ– and expanding the flow quantities in a power series of πœ– , we obtain πœ“ = πœ“0 + πœ– πœ“1 (28) 73 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 πœƒ = πœƒ0 + πœ– πœƒ1 (29) Substituting Eqs. (28), (29) into Eqs. (22) - (27) and then comparing the coefficients of same power of πœ– up to the first order, we obtain the following two systems 3.1. Zeroth order system The general form of zeroth- order system is: - πœ“0𝑦𝑦𝑦𝑦 βˆ’ ( 𝐻2 1+π‘š2 + 1 πœ… ) πœ“0𝑦𝑦 = 0 (30) πœƒ0𝑦𝑦 + π΅π‘Ÿ ( πœ•2πœ“0 πœ•π‘¦2 + 𝐡𝑛) πœ“0𝑦𝑦 + 𝐻2 1+π‘š2 π΅π‘Ÿπœ“0𝑦 2 = 0 (31) Now with the respect to the boundary conditions, we have: - πœ“0𝑦 βˆ“ 𝛾(πœ“0𝑦𝑦 + 𝐡𝑛) = 0 (32) πœƒ0 βˆ“ 𝛽1πœƒ0𝑦 = 0 (33) 𝐸1 πœ•3𝑦 πœ•π‘₯3 + 𝐸2 πœ•2𝑦 πœ•π‘₯πœ•π‘‘2 + 𝐸3 πœ•2𝑦 πœ•π‘‘πœ•π‘₯ = πœ“0𝑦𝑦𝑦 βˆ’ 𝐻2 1+π‘š2 πœ“0𝑦 + 𝑅𝑒 (πΉπ‘Ÿ)2 𝑠𝑖𝑛𝛼 (34) π‘Žπ‘‘ 𝑦 = β„Ž1, β„Ž2, 3.2. First order system The general form of first- order system is πœ“1𝑦𝑦𝑦𝑦 βˆ’ π‘¦πœ“0𝑦𝑦𝑦𝑦 βˆ’ 2πœ“0𝑦𝑦𝑦 βˆ’ ( 𝐻2 1+π‘š2 + 1 πœ… ) πœ“1𝑦𝑦 = 0 (35) πœ•2πœƒ πœ•π‘¦2 + π΅π‘Ÿ(πœ“1𝑦𝑦 βˆ’ πœ“0𝑦𝑦)πœ“1𝑦𝑦 + 𝐻2 1+π‘š2 π΅π‘Ÿπœ“1𝑦 2 =0 (36) With the respect to the boundary conditions πœ“1𝑦 βˆ“ 𝛾(πœ“1𝑦𝑦 βˆ’ π‘¦πœ“0𝑦𝑦) = 0 (37) πœƒ1 βˆ“ 𝛽1πœƒ1𝑦 = 0 (38) πœ“1𝑦𝑦𝑦 βˆ’ 𝐻2 1+π‘š2 πœ“1𝑦 = 0 (39) Solving the both system using Mathematica program, we get the closed form for πœ“, and πœƒ πœ“ = 1 π‘˜1 2 (𝑐1𝑒 π‘˜1𝑦 + 𝑐2𝑒 βˆ’π‘˜1𝑦) + 𝑐3 + 𝑦𝑐4 + πœ– 8π‘˜1 3 (𝐴1 + 𝐴2 + 8π‘˜1(𝐴3 + π‘˜1 2 (𝑐7 + 𝑦𝑐8)), πœƒ = βˆ’ π΅π‘Ÿ π‘˜1 2πœ… (𝐴4 + 𝐴5 + 𝐴6) + 𝑛1 + 𝑦𝑛2 βˆ’ πœ– 3840π‘˜16πœ… π΅π‘Ÿπ‘’βˆ’2π‘˜1𝑦( 𝐴7 + 𝐴8 + 𝐴9 + 𝐴10 βˆ’ 𝐴11) + 𝑛3 + 𝑦𝑛4, Where 74 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 𝐴1 = 𝑐1𝑒 π‘˜1𝑦(βˆ’3 βˆ’ 2π‘˜1𝑦 + 2π‘˜1 2 𝑦2) , 𝐴2 = 𝑐2𝑒 βˆ’π‘˜1𝑦(3 βˆ’ 2π‘˜1𝑦 βˆ’ 2π‘˜1 2 𝑦2), 𝐴3 = 𝑐5𝑒 π‘˜1𝑦 + 𝑐6𝑒 βˆ’π‘˜1𝑦, π‘˜1 = ( 𝐻2 1+π‘š2 + 1 πœ… ) 1/2 , 𝐴4 = (𝑐1𝑐2𝑦 2 βˆ’ 1 2 𝑐4 2π‘˜1 2 𝑦2 + 1 2 𝑐4 2π‘˜1 4 𝑦2πœ…), 𝐴5 = 𝑐2 2π‘’βˆ’2π‘˜1𝑦(βˆ’1+2π‘˜1 2πœ…) 4π‘˜1 2 + 𝑐1 2𝑒2π‘˜1𝑦(βˆ’1+2π‘˜1 2πœ…) 4π‘˜1 2 , 𝐴6 = 𝑐2𝑒 βˆ’π‘˜1𝑦(2𝑐4+π΅π‘›π‘˜1πœ…βˆ’2𝑐4π‘˜1 2πœ…) π‘˜1 + 𝑐1𝑒 π‘˜1𝑦(βˆ’2𝑐4+π΅π‘›π‘˜1πœ…+2𝑐4π‘˜1 2πœ…) π‘˜1 , 𝐴7 = (15𝑐2 2(βˆ’27 + 16π‘˜1 5 𝑦3πœ… + 8π‘˜1 6 𝑦4πœ… + 2π‘˜1 2 (2𝑦2 + 9πœ…) βˆ’ 8π‘˜1 3 (𝑦3 + 3π‘¦πœ…) βˆ’ 4π‘˜1 4 (𝑦4 + 4𝑦2πœ…)), 𝐴8 = 5(3𝑐1 2𝑒4π‘˜1𝑦(βˆ’27 βˆ’ 16π‘˜1 5 𝑦3πœ… + 8π‘˜1 6 𝑦4πœ… + 2π‘˜1 2 (2𝑦2 + 9πœ…) + 8π‘˜1 3 (𝑦3 + 3π‘¦πœ…) βˆ’ 4π‘˜1 4 (𝑦4 + 4𝑦2πœ…)), 𝐴9 = 192π‘˜1 2 (𝑐6 2(βˆ’1 + 2π‘˜1 2 πœ…) + 4𝑐6𝑒 π‘˜1π‘¦π‘˜1(𝑐5𝑒 π‘˜1π‘¦π‘˜1𝑦 2 + 𝑐8(2 βˆ’ 2π‘˜1 2 πœ…)) + 𝑒2π‘˜1𝑦(8𝑐5𝑐8𝑒 π‘˜1π‘¦π‘˜1(βˆ’1 + π‘˜1 2 πœ…) + 2𝑐8 2π‘˜1 4 𝑦2(βˆ’1 + π‘˜1 2 πœ…) + 𝑐5 2𝑒2π‘˜1𝑦(βˆ’1 + 2π‘˜1 2 πœ…))), 𝐴10 = 32𝑐1𝑒 2π‘˜1π‘¦π‘˜1(3𝑐5𝑒 2π‘˜1𝑦(2 + π‘˜1𝑦 βˆ’ 2π‘˜1 3π‘¦πœ… + 2π‘˜1 4 𝑦2πœ… βˆ’ π‘˜1 2 (𝑦2 + 3πœ…)) + π‘˜1(6𝑐8𝑒 π‘˜1𝑦(3 βˆ’ 6π‘˜1𝑦 + 2π‘˜1 2 𝑦2)(βˆ’1 + π‘˜1 2 πœ…) + 𝑐6π‘˜1𝑦 2(βˆ’15 + 2π‘˜1𝑦 + π‘˜1 2 (𝑦2 + 6πœ…))))), 𝐴11 = 4𝑐2π‘˜1(120𝑐6(2 βˆ’ π‘˜1𝑦 + 2π‘˜1 3 π‘¦πœ… + 2π‘˜1 4 𝑦2πœ… βˆ’ π‘˜1 2 (𝑦2 + 3πœ…)) + π‘’π‘˜1π‘¦π‘˜1(βˆ’240𝑐8(3 + 6π‘˜1𝑦 + 2π‘˜1 2 𝑦2)(βˆ’1 + π‘˜1 2 πœ…) + π‘’π‘˜1𝑦𝑦2(40𝑐5π‘˜1(βˆ’15 βˆ’ 2π‘˜1𝑦 + π‘˜1 2 (𝑦2 + 6πœ…)) + 𝑐1(375 βˆ’ 60π‘˜1 2 (𝑦2 + 4πœ…) + 4π‘˜1 4 (𝑦4 + 15𝑦2πœ…))), Where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑛1, 𝑛2, 𝑛3, 𝑛4,can be found using simple calculations. 4. Result and Discussions In this section we visualize graphically the influence of different inclusive parameters on velocity profile, temperature distribution, heat transfer coefficient and trapping phenomenon. 4.1. Velocity Profile Figures 1-3 elucidate the behavior of velocity profile against the following various important parameters (𝐸1, 𝐸2, 𝐸3 πœ…, π‘š, 𝐻, πœ™) and for fixed values of (πœ– = 0.04, Fr = 0.8, Re = 0.2, 𝛼 = Pi 2 , 𝛾 = 0.7, 𝑑 = 0.1, d1 = 0.4, d2 = 0.4, π‘₯ = 0.4, π‘š1 = 0.1) . Fig.1 (a) is plotted to describe the effect of wall elasticity parameters on velocity profile. One can conclude a significant increase upon enhancement of wall rigidity and tension parameters respectively 𝐸1, 𝐸2 whereas the velocity profile slightly rises as mass characterization parameter 𝐸3 increase. Similar observation is seen for enhanced values of permeability parameter πœ… and Hall number π‘š on velocity curve i.e. 𝑒(𝑦) is increasing and these results are shown in Figure 1(b) and Figure 2 (a). A reversed situation for the larger magnitude of both Hartman number 75 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 𝐻 and Bingham number 𝐡𝑛 are shown in Figure 2 (b) and Figure 3 (a). From Figure 3 (b), we notice that the velocity profile enhances for higher values of phase difference parameter πœ™. 1. (b) Figure 1:Velocity profile for different values of (a) Elasticity parameters 𝐸1, 𝐸2, 𝐸3 (b) permeability parameter πœ…. (a) (b) Figure 2: Velocity profile for different values of (a) Hall number π‘š (b) Hartman number 𝐻 , (a) (b) Figure 3: Velocity profile for different values of (a) Bingham number 𝐡𝑛 (b) Phase difference parameter πœ™. E1 0.1 , E2 0.2 , E3 0.3 E1 0.2 , E2 0.2 , E3 0.3 E1 0.1 ,E2 0.4 ,E3 0.3 E1 0.1 , E2 0.2 , E3 0.6 0.0 0.5 1.0 1.5 2.0 0 5 10 15 y u y 1.4 1.6 1.8 2 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20 y u y m 0.2 m 0.4 m 0.6 m 0.8 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20 y u y H 1.6 H 1.8 H 2 H 1.4 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20 y u y Bn 0.2 Bn 0.4 Bn 0.6 Bn 0.8 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20 y u y 6 4 3 2 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20 y u y 76 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 4.2. Temperature Distribution Figures 4-6 are plotted to elaborate parabolic behavior for temperature distribution against axial 𝑦 axis for different magnitudes of the parameters (π΅π‘Ÿ, πΉπ‘Ÿ, 𝐻, 𝛽1, π‘š, 𝐡𝑛). Figure 4(a) illustrates the impact of Brinkman number on πœƒ(𝑦) . It is seen that π΅π‘Ÿ react directly on temperature profile. However, in Figure 4(b) Froude number πΉπ‘Ÿ record quite opposite behavior compared to Brinkman number. The effect of Hartman number on temperature profile testified in Fig. 5(a). It is evident that the rise in Lorentz force produces a resistance for a larger value of Hartman number and consequently reduces the temperature profile. Figures. 5(b), 6(a), and 6(b) clarify an increment in temperature slip parameter 𝛽1 Hall number π‘š and Bingham number 𝐡𝑛 causing rise in the temperature distribution curve. (a) (b) Figure 4: Temperature profile πœƒ(𝑦)for different values of (a) Brinkman number π΅π‘Ÿ (b) Froude number πΉπ‘Ÿ. (b) Figure 5: Temperature profile πœƒ(𝑦)for different values of (a) Hartman number 𝐻 (b) temperature slip parameter 𝛽1. (a) (b) Br 0.3 Br 0.5 Br 0.7 Br 0.9 1.5 1.0 0.5 0.0 0.5 1.0 1.5 0 50 100 150 200 y y Fr 0.3 Fr 0.5 Fr 0.7 Fr 0.95 1.5 1.0 0.5 0.0 0.5 1.0 1.5 20 40 60 80 100 y y H 1 H 1.5 H 1.7 H 2 1.5 1.0 0.5 0.0 0.5 1.0 1.5 0 20 40 60 80 100 y y 1 0.3 1 0.5 1 0.7 1 0.9 1.5 1.0 0.5 0.0 0.5 1.0 1.5 0 20 40 60 80 y y 77 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Figure 6: Temperature profile πœƒ(𝑦)for different values of (a) Hall number π‘š (b) Bingham number 𝐡𝑛. 4.3. Heat Transfer Figures 7-8 elucide the impact of Brinkman number π΅π‘Ÿ , Froude number πΉπ‘Ÿ , phase difference parameter βˆ…, and permability parameter πœ… on the coefficient of heat transfer at the lower wall profile. These figures show an oscillatory behavior of 𝑍(π‘₯) via the flow of peristaltic waves along the channel wall. Figure 7(a) portrays the increasing function of heat transfer coffecient due to arise in π΅π‘Ÿ value. However Figure 7(b) depicts an oppsite reaction for πΉπ‘Ÿ. Figure 8(a) charactrizes a mixed behavior for 𝑍(π‘₯) for a higher value of βˆ… . We deduce from Figure 8(b) that for ascending magnitude of πœ…, the rate of heat transfer increases . (a) (b) Figure 7: Heat transfer coefficient Z(π‘₯)for different values of (a) Brinkman number π΅π‘Ÿ (b) Froude number πΉπ‘Ÿ. (a) (b) m 0.2 m 0.4 m 0.6 m 0.8 1.5 1.0 0.5 0.0 0.5 1.0 1.5 0 20 40 60 y y Bn 0.2 Bn 0.4 Bn 0.6 Bn 0.8 1.5 1.0 0.5 0.0 0.5 1.0 1.5 0 50 100 150 200 y y Br 0.2 Br 0.4 Br 0.6 Br 0.8 0.0 0.5 1.0 1.5 200 100 0 100 200 300 400 500 x Z x Fr 0.2 Fr 0.4 Fr 0.6 Fr 0.8 0.0 0.5 1.0 1.5 200 100 0 100 200 300 x Z x 78 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Figure 8: Heat transfer coefficient Z(π‘₯)for different values of (a) Phase difference parameter πœ™ (b) permeability parameterπœ…. 4.4. Trapping phenomenon A phenomenon in which an amount of fluid trapped in closed streamlines is called bolus. In this part of work, some results of the phenomenon of trapping are portrayed. Figures 9-15 highlight the impact of wall elasticity parameters 𝐸1, 𝐸2, 𝐸3 and for 𝐻, πœ…, π‘š, πœ–, πΉπ‘Ÿ, 𝐡𝑛 values. Graphical results show two asymmetric regions, the first region begins from (0.2 ≀ π‘₯ ≀ 0.7)while the second region (0.7 ≀ π‘₯ ≀ 1.2). One can observe an increment in size and number of trapped bolus, whereas the second region witnesses a less number of generated bolus. The effect of wall rigidity and tension parameters respectively 𝐸1, 𝐸2 and mass characterization parameter 𝐸3 on trapping phenomenon are shown in Figure 9. However, it is important to note that both parameters 𝐸1, 𝐸2 increase the trap bolus in magnitude and number while a higher value of 𝐸3 parameter that reduces the size of bolus but in the right side, its number reduces. Figure 10 reveals that ascending value of Hartman number 𝐻 is due to increases in Lorentz force which resists the fluid flow as a result decreases the size of trapping bolus. Opposite to this result, permeability parameter πœ… directly acts on trapping bolus in size and number; see Figure 11. The variation of Hall number π‘š and dimensionless viscosity parameter πœ– on trapped bolus are reflected in Figures 12 and 13. One can observe the increasing function for them on trapped bolus size. In Figure 14, we demonstrate that a larger value of Froude number πΉπ‘Ÿ reduces both the size and circulation of bolus. Figure 15 interprets the independence of trapping bolus of variation of Bingham parameter 𝐡𝑛. (a) " 6 4 3 2 0.0 0.5 1.0 1.5 40 20 0 20 40 x Z x x 0.2 0.4 0.6 0.9 0.0 0.5 1.0 1.5 4 2 0 2 4 x Z x 79 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 (b) (c) Figure 9: Streamlines for variation of parameters (a) wall rigidity 𝐸1 (b) wall tension 𝐸2 (c) mass characterization 𝐸3 with πœ– = 0.02, πœ… = 0.2, π‘š = 0.2, πΉπ‘Ÿ = 0.8, 𝐻 = 1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) 80 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Figure 10 Streamlines for variation of Hartman number 𝐻 with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 πœ– = 0.02, πœ… = 0.2, π‘š = 0.2, πΉπ‘Ÿ = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) Figure 11 Streamlines for variation of permeability parameter πœ… with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 πœ– = 0.02, 𝐻 = 0.2, π‘š = 0.2, πΉπ‘Ÿ = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) 81 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Figure 12 Streamlines for variation of Hall number π‘š with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 πœ– = 0.02, 𝐻 = 0.2, πœ… = 0.2, πΉπ‘Ÿ = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) Figure 13 Streamlines for variation of non- dimensional viscosity parameter πœ– with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 π‘š = 0.2, 𝐻 = 0.2, πœ… = 0.2, πΉπ‘Ÿ = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) 82 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Figure 14 Streamlines for variation of Froude number πΉπ‘Ÿ with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 π‘š = 0.2, 𝐻 = 0.2, πœ… = 0.2, πœ– = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, 𝐡𝑛 = 0.5 . (a) (b) Figure 15 Streamlines for variation of Bingham number 𝐡𝑛 with 𝐸1 = 0.4, 𝐸2 = 0.2, 𝐸3 = 0.3 π‘š = 0.2, 𝐻 = 0.2, πœ… = 0.2, πœ– = 0.8, 𝑑1 = 0.1, 𝑅𝑒 = 0.2, 𝛼 = 𝑃𝑖 6 , 𝛾 = 0.7, πœ™ = 𝑃𝑖 4 , 𝑑 = 0.1, π‘š1 = 0.5, πΉπ‘Ÿ = 0.5 . 83 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 5. Conclusions The peristaltic transport of non- Newtonian Bingham plastic fluid with variable viscosity in an inclined tapered asymmetric channel is performed, taking into account Hall and Joule's heating influences. Adopting assumptions of long wavelength and low Reynolds number the problem is modeled and reduced into a pair of nonlinear differential equations which are solved approximately by using a perturbation method. A parametric analysis is permitted through various graphs that made us outcome with some following important observations 1. The velocity profile is an increasing function of π‘š, βˆ…, πœ…, and wall elasticity parameters whereas it decreases with arise up of 𝐻,and 𝐡𝑛 parameters. 2. It is observed from the figures that the Froude number is oppositely affected by the temperature distribution profile. 3. Hartman number𝐻 impact on temperature profile totally revers Hall number π‘š effect i.e. the first one shows a reduction behavior while Hall number enhances it. 4. The absolute heat transfer shows an oscillatory behavior along the length of peristaltic wave as well as it depicts a mixed behavior for a larger value of phase difference parameter πœ™. 5. The trapping phenomenon is divided into two asymmetric regions, and from the figures one can notice that the trapped bolus increases in size and circulation as 𝐸1, 𝐸2 increase whereas it decreases for a higher magnitude of 𝐸3. 6. The trapped bolus remains unchanged in size when Bingham number 𝐡𝑛 enhances. References 1. Mirsa,J.C.; Mallick, B.; Sinha, A. heat and mass transfer in asymmetric channel during peristaltic transport on MHD fluid having temperature-dependent properties, Alexandria Eng. 2018,57, 391-406. 2. Hayat,T.; Igbal Rija; Tanveer Anum; Alsaedi,A. Influence of convective conditions in radiative peristaltic flow of pseudo plastic nano fluid in a tapered asymmetric channel, J. Magn. Magn. Mater. 2016,408. 3. Adnan, F.A.; Abdualhadi, A.M. Effect of a magnetic field on a peristaltic transport of Bingham plastic fluid in asymmetrical channel. Sci. int. (Lhore).2019, 31, 1, 29-40. 4. Ali Nasir; Asghar Zaheer. Mixed convective heat transfer analysis for the peristaltic transport of visco plastic fluid: perturbation and numerical study, Aip Advances.2019, 9, 095001-1-9, 095001-10. 5. Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine, Computer methods and programming in Biomedicine 135. 2016, 89-100. 6. Hayat, A.Ali; Ahmed, M. Abdulhadi. Analysis of Heat Transfer on Peristaltic Transport of Powell- Eyring Fluid in an Inclined Tapered Symmetric Channel with Hall and Ohm's Heating Influences, Journal of AL-Qadisiyah for computer science and mathematics.2018,10 ,2. 84 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 7. Farah Alaa Adnan; Ahmad, M. Abdul Hadi. Effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip conditions, Iraqi J. of Science. 2019, 60,7, 1551-1574. 8. Farah Alaa Adnan; Ahmad, M. Abdul Hadi, peristaltic flow of the Bingham plastic fluid in a curved channel, Ibn Al-Haitham J. pure & Appl. Sci. 2019, 32 ,3. 9. Hayat, T; Farooq, S.; Mustafa, M.; Ahmed, B.; Ahmed, B. peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects, Results in physics. 2017, 7, 2000-2011. 10. Lakshminarayana, P.; Sreenadh, S.; Sucharitha, G. The influence of slip, wall properties on the peristaltic transport of conducting Bingham fluid with heat transfer, Procedia Eng. 2015, 127 1087-1094. 11. Ara, A.; Khan, N.A.; Sultan, F.; Ullah, S. Numerical Simulation of Jeffery- Hamel flow of Bingham Plastic fluid and Heat Transfer in the Presence of Magnetic Field, Appl. Compute. Math. 2019, 18,2, 135-148. 12. Dheia Gaze Salih, Influences of varying temperature and concentration on (MHD) peristaltic transport of Jeffery fluid with variable viscosity through porous channel, DOI: 10.29304/jqcm.2019,11,3,586. 13. Ahmad, T.S.; Abdulhadi, A.M. peristaltic transport of MHD flow and heat transfer in a tapered asymmetric channel through porous medium: effect of variable viscosity, velocity- non slip and temperature jump, Int. j. of advance sci. tech. research.2017, 7, 2, 53-69.