Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 30 ๐œถ๐’ˆแปŠ-open sets and ๐œถ๐’ˆแปŠ-functions Sufyan G. Saeed Rana B. Esmaeel Department of Mathematics, Ibn Al-Haitham,College of Education University of Baghdad, Iraq Sufsuf201030@gmail.com, ranamumosa@yahoo.com Abstract. The objective of this paper is to show modern class of open sets which is an ๐›ผ๐‘”แปŠ-open. Some functions via this concept and the relationships among continuous function strongly ๐›ผ๐‘”แปŠ- continuous function ๐›ผ๐‘”แปŠ-irresolute function ๐›ผ๐‘”แปŠ-continuous function are studied. Keywords. ๐›ผ๐‘”แปŠ-closed set, ๐›ผ๐‘”แปŠ๐‘‚-functions, ๐›ผ๐‘”แปŠ๐ถ-functions, ๐›ผ๐‘”แปŠ-continuous function, Strongly ๐›ผ๐‘”แปŠ-continuous function, ๐›ผ๐‘”แปŠ-irresolute function, ideal. 1. Introduction. An ฮฑ-open was studied in 1965 by O. Njastad, a subset ร‡ is ฮฑ-open set if ร‡ โŠ† ๐‘–๐‘›๐‘ก(๐‘๐‘™(๐‘–๐‘›๐‘ก(ร‡)))[1,2]. The notion of ideal was studied by Kuratowski[3,4],that แปŠ is an ideal on ำผ, where แปŠ is a collection of all subsets of ำผ an ideal have two properties (if ร‡, ร โˆˆ แปŠ, then ร‡ โˆช ร โˆˆ แปŠ) and (if ร‡ โˆˆ แปŠ and ร โŠ† ร‡, then ร โˆˆ แปŠ. There are many types for the ideal[5-7] i. แปŠ{โˆ…}: the trivial ideal where แปŠ={โˆ…}. ii. แปŠ๐‘›: the ideal of all nowhere dense sets แปŠ๐‘› ={ร‡ โŠ† ำผ: ๐‘–๐‘›๐‘ก(๐‘๐‘™(ร‡)) = {โˆ…}}. iii.แปŠแถ‚: the ideal of all finite subsets of ำผ แปŠแถ‚ = { ร‡ โŠ† ำผ: ร‡ is a finite set}. The collection of all ฮฑ-open sets is denoted by" แฟ–๐›ผ " and the collection of all ฮฑ-closed is denoted by" ษŸ๐›ผ ". In this paper, we introduce ๐›ผ๐‘”แปŠ-closed set, and the complement of ๐›ผ๐‘”แปŠ-open set. More functions have been introduced via these concepts, such as ๐›ผ๐‘”แปŠ-open, ๐›ผ๐‘”แปŠ โˆ—-open, ๐›ผ๐‘”แปŠ โˆ—โˆ—-open, ๐›ผ๐‘”แปŠ-continuous, ๐›ผ๐‘”แปŠ-irresolute and Strongly ๐›ผ๐‘”แปŠ-function. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2555 Article history: Received 9,February,2020, Accepted 15,March,2020, Published in January 2021 mailto:Sufsuf201030@gmail.com mailto:ranamumosa@yahoo.com 31 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 2- On ๐œถ๐’ˆแปŠ-closed set Definition 1: In ideal topological space (ำผ, แฟ–, แปŠ), Let ร‡ โŠ† ำผ. ร‡ is said แปŠ-๐›ผ-g-closed set denoted by "๐›ผ๐‘”แปŠ-closed" ,if ร‡-ฦ  โˆˆ แปŠ then, ๐‘๐‘™(ร‡)-ฦ  โˆˆ แปŠ where ฦ  โŠ† ำผ and ฦ  is an ฮฑ-open sets. Now, ร‡๐‘ is แปŠ-๐›ผ-g-open sets denoted by "๐›ผ๐‘”แปŠ-open". The collection of all ๐›ผ๐‘”แปŠ-closed sets, where ร‡๐‘ โˆˆ ำผ, is denoted by "๐›ผ๐‘”แปŠ๐ถ(ำผ). The collection of all ๐›ผ๐‘”แปŠ-open sets "๐›ผ๐‘”แปŠ๐‘‚(ำผ)". Example 2: Consider the space (ำผ, แฟ–, แปŠ) where ำผ={โฑณ,โฑฑ}, แฟ–={ำผ,โˆ…,{โฑณ}} and แปŠ={โˆ…,{โฑฑ}}.Then แฟ–๐›ผ ={ำผ,โˆ…,{โฑณ}} and ษŸ๐›ผ ={ำผ,โˆ…,{โฑฑ}}, so ๐›ผ๐‘”แปŠ๐ถ(ำผ) = ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = {ำผ,โˆ…,{โฑณ},{โฑฑ}}. Example 3: Consider the space (ำผ, แฟ–, แปŠ) where ำผ={โฑณ,โฑฑ,โฑฌ}, แฟ–={ำผ,โˆ…,{โฑณ}} and แปŠ={โˆ…,{โฑฑ}}. Then แฟ–๐›ผ ={ำผ,โˆ…,{โฑณ},{โฑณ,โฑฑ},{โฑณ,โฑฌ}} ษŸ๐›ผ ={ำผ,โˆ…,{โฑฑ,โฑฌ},{โฑฌ,},{โฑฑ}}, so ๐›ผ๐‘”แปŠ๐ถ(ำผ)={ำผ,โˆ…,{โฑฑ,โฑฌ},{โฑฌ},{โฑณ,โฑฌ}} ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = {ำผ,โˆ…,{โฑณ},{โฑณ,โฑฑ},{โฑฑ}}. Remark 4: i. For each closed set in (ำผ , แฟ–) is an ๐›ผ๐‘”แปŠ-closed in (ำผ, แฟ–, แปŠ). ii. For each open set in (ำผ , แฟ–) is an ๐›ผ๐‘”แปŠ-open in (ำผ, แฟ–, แปŠ). Proof: i. Let ร‡ is any closed set in (ำผ, แฟ–, แปŠ) and ฦ  be an ฮฑ-open set such that ร‡-ฦ  โˆˆ แปŠ since ๐‘๐‘™(ร‡) = ร‡ this implies that ร‡ is an ๐›ผ๐‘”แปŠ-closed set. ii. Let ฦ  โˆˆ ำผ, then ฦ ๐‘ is a closed set this implies that ฦ ๐‘ is an ๐›ผ๐‘”แปŠ-closed set, so ฦ  is an ๐›ผ๐‘”แปŠ-open set. The reverse way of Remark 2.4 is wrong in general see Example 2.2. Remark 5: A space (ำผ, แฟ–, แปŠ): i. If แปŠ = าŽ(ำผ) then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = าŽ(ำผ). ii. If แฟ– = ๐ท then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = าŽ(ำผ). Remark 6: For any space (ำผ, แฟ–, แปŠ), then the two idea ๐›ผ๐‘”แปŠ-closed set and ๐›ผ๐‘” โˆ—-closed set are the same, if แปŠ={โˆ…}. The following example display that the two notion ๐›ผ๐‘”แปŠ-closed set and ๐›ผ๐‘” โˆ—-closed set are separate, in general. Example 7: i. The set {โฑณ} in Example 2.2 is an ๐›ผ๐‘”แปŠ-closed set but not ๐›ผ๐‘” โˆ—-closed set, and {โฑฑ} is an ๐›ผ๐‘”แปŠ-open set, but not ๐›ผ๐‘” โˆ—-open set. ii. For a space (ำผ, แฟ–, แปŠ), where ำผ={แนŸ,ศฟ,โฑณ,โฑฑ}, แฟ– = {ำผ,โˆ…,{แนŸ,ศฟ},{โฑณ,โฑฑ}} and แปŠ={โˆ…,แนŸ}. Then แฟ–๐›ผ = แฟ–, leads to ๐›ผ๐‘”โˆ—๐ถ(ำผ) = าŽ(ำผ) and ๐›ผ๐‘”โˆ—๐‘‚(ำผ) = าŽ(ำผ). It seems obvious that the set {แนŸ} is ๐›ผ๐‘”โˆ—- closed set but not ๐›ผ๐‘”แปŠ-closed. Remark 8: For any set ำผ, let ำฝ โˆˆ ำผ and แฟ– = {ำผ,โˆ…,{ำฝ}}, แปŠ=แปŠ๐‘›={ร‡ โŠ† ำผ: ๐‘–๐‘›๐‘ก(๐‘๐‘™(ร‡))={โˆ…}} then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = าŽ(ำผ). Proof: Let แปŠ๐‘› = { ร‡ โŠ† ำผ: ๐‘–๐‘›๐‘ก(๐‘๐‘™(ร‡)) = {โˆ…}}, ำผ be any set and แฟ– = {ำผ, โˆ…, {ำฝ}} such that ำฝ โˆˆ ำผ, แฟ–๐›ผ ={ฦ  โŠ† ำผ; ำฝ โˆˆ ฦ } โˆช {โˆ…}, for any set ร‡ โŠ† ำผ, and ฦ  is ฮฑ-open set, ๐‘–๐‘“ ร‡-ฦ  โˆˆ แปŠ๐‘› this implies ำฝ โˆ‰ (ร‡-ฦ ), so 32 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 ๐‘๐‘™(ร‡-ฦ ) = ำผ/{ำฝ}, then ๐‘–๐‘›๐‘ก(๐‘๐‘™(ร‡-ฦ )) = โˆ…, then ำฝ โˆ‰ ร‡ and ำฝ โˆˆ ฦ , since ำฝ โˆ‰ ร‡ this implies ๐‘๐‘™(ร‡) = ำผ/{ำฝ}, thus (ำผ/{ำฝ}-ฦ )โˆˆ แปŠ๐‘›,if ำฝ โˆˆ ร‡ and ำฝ โˆˆ ฦ  then ำฝ โˆ‰ (๐‘๐‘™(ร‡)-ฦ ), so ๐‘๐‘™(ร‡)-ฦ  โˆˆ แปŠ๐‘›, hence ๐›ผ๐‘”แปŠ๐ถ(ำผ) = าŽ(ำผ). Theorem 9: Let ร‡ and ร are two ๐›ผ๐‘”แปŠ-closed sets then ร‡ โˆช ร is an ๐›ผ๐‘”แปŠ-closed. Proof: Let ร‡ and ร are two ๐›ผ๐‘”แปŠ-closed set in (ำผ, แฟ–, แปŠ) and ฦ  โˆˆ แฟ–๐›ผ subset of ำผ, where (ร‡ โˆช ร)- ฦ  โˆˆ แปŠ, then ร-ฦ  โˆˆ แปŠ and ร‡-ฦ  โˆˆ แปŠ, so ๐‘๐‘™(ร)-ฦ  โˆˆ แปŠ and ๐‘๐‘™(ร‡)-ฦ  โˆˆ แปŠ therefore, (๐‘๐‘™(ร‡)-ฦ ) โˆช ( ๐‘๐‘™(ร)-ฦ ) โˆˆ แปŠ, ๐‘ ๐‘œ ๐‘๐‘™(ร‡ โˆช ร)-ฦ  โˆˆ แปŠ.Hence ร‡ โˆช ร is an ๐›ผ๐‘”แปŠ-closed sets. Corollary 10: Let ร‡ and ร are two ๐›ผ๐‘”แปŠ-open sets then ร‡ โˆฉ ร is an ๐›ผ๐‘”แปŠ-open. Proof: Let ร‡ and ร are two ๐›ผ๐‘”แปŠ-open sets in ำผ then ร‡ ๐‘ , ร๐‘ are two ๐›ผ๐‘”แปŠ-closed sets therefore, ร‡๐‘ โˆช ร๐‘ is an ๐›ผ๐‘”แปŠ-closed set by theorem 2.9. Hence(ร‡ โˆฉ ร) ๐‘ is an ๐›ผ๐‘”แปŠ-closed set so ร‡ โˆฉ ร is an ๐›ผ๐‘”แปŠ-open set. Remark 11: i. The union of any collection of ๐›ผ๐‘”แปŠ-closed sets is not necessarily ๐›ผ๐‘”แปŠ-closed. ii. The intersection of collection of ๐›ผ๐‘”แปŠ-open sets is not necessarily ๐›ผ๐‘”แปŠ-open. For example: Consider a space (ำผ, แฟ–, แปŠ), when ำผ = ฦ, the set of all natural numbers, แฟ– = แฟ– cof, is a topology of all sets that complement is a finite set and แปŠ=แปŠแปŠแถ‚ ={ฦ  โŠ† ฦ, ฦ  is a finite set}, แฟ–๐›ผ ={ฦ  โŠ† ฦ, ฦ  is an infinite set}โˆช{โˆ…}. Clearly, {ล‹} is an ๐›ผ๐‘”แปŠ-closed set, โˆ€ ล‹ โˆˆ ฤ˜ +, where ฤ˜+ is the positive even numbers, but โˆช{{ล‹}:ล‹โˆˆ ฤ˜+}=ฤ˜+ which is not ๐›ผ๐‘”แปŠ-closed set. Similarly; ร‡๐‘›=ฦ-{ล‹} is an of ๐›ผ๐‘”แปŠ-open set, โˆ€ ล‹ โˆˆ ฤ˜+ but โˆฉ{ร‡๐‘›: ล‹ โˆˆ ฤ˜ +}=แป˜+, where แป˜+ is the positive odd number ,แป˜+ is not ๐›ผ๐‘”แปŠ-closed set. Theorem 12: In (ำผ, แฟ–, แปŠ), let ร‡ โŠ† ำผ. ร‡ is an ๐›ผ๐‘”แปŠ-open set if and only if (โ‚ฃ โˆ’ ๐‘–๐‘›๐‘ก(ร‡)) โˆˆ แปŠ, whenever (โ‚ฃ-ร‡) โˆˆ แปŠ, โˆ€ โ‚ฃ โˆˆ ษŸ๐›ผ . Proof: (โ†’)Let ร‡ โŠ† ำผ, where ร‡ be an ๐›ผ๐‘”แปŠ-open sets and (โ‚ฃ-ร‡) โˆˆ แปŠ, โ‚ฃ โˆˆ ษŸ๐›ผ, since (ำผ-ร‡) is an ๐›ผ๐‘”แปŠ- closed set and (ำผ-ร‡)-ฦ  โˆˆ แปŠ, ฦ  โˆˆ แฟ–๐›ผ implies ๐‘๐‘™(ำผ-ร‡)-ฦ  โˆˆ แปŠ, whenever (ำผ-ร‡)-ฦ  โˆˆ แปŠ, for each ฦ  โˆˆ แฟ–๐›ผ , ๐‘๐‘™(ำผ-ร‡)-ฦ  = (ำผ-ฦ )-(ำผ-๐‘๐‘™(ำผ-ร‡) since ร‡-ร = (ำผ-ร)-(ำผ-ร‡), thus (ำผ-ฦ )-(ำผ-(ำผ-๐‘–๐‘›๐‘ก(ำผ-ำผ- ร‡))) = (ำผ-ฦ )-๐‘–๐‘›๐‘ก(ร‡) = โ‚ฃ-๐‘–๐‘›๐‘ก(ร‡) โˆˆ แปŠ. (โ†) Let โ‚ฃ-๐‘–๐‘›๐‘ก(ร‡) โˆˆ แปŠ, whenever โ‚ฃ-ร‡ โˆˆ แปŠ, for each โ‚ฃ โˆˆ ษŸ๐›ผ . Let (ำผ-ร‡)-ฦ  โˆˆ แปŠ; ฦ  โˆˆ แฟ–๐›ผ , (ำผ-ร‡)- ฦ  = (ำผ-ฦ )-ร‡ โˆˆ แปŠ, let ำผ-ฦ  = โ‚ฃ โˆˆ ษŸ๐›ผ and โ‚ฃ-ร‡ โˆˆ แปŠ this implies โ‚ฃ-๐‘–๐‘›๐‘ก(ร‡) โˆˆ แปŠ, now โ‚ฃ-๐‘–๐‘›๐‘ก(ร‡) = ๐‘๐‘™(ำผ-ร‡)-(ำผ-โ‚ฃ) = ๐‘๐‘™(ำผ-ร‡)-ฦ  โˆˆ แปŠ, thus (ำผ-ร‡) is an ๐›ผ๐‘”แปŠ-closed set, hence ร‡ is an ๐›ผ๐‘”แปŠ-open set. 3-Open function Definition 1: The function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is called; i. ๐›ผ๐‘”แปŠ-open function, denoted by "๐›ผ๐‘”แปŠo-function" if แถ‚(ฦ ) is an ๐›ผ๐‘”ส-open set in ฦณ. Whenever ฦ  is an ๐›ผ๐‘”แปŠ-open in ำผ. ii. ๐›ผ๐‘”แปŠ โˆ—-open function, denoted by "๐›ผ๐‘”แปŠ โˆ—o-function" if แถ‚(ฦ ) is an ๐›ผ๐‘”ส-open set in ฦณ. Whenever ฦ  โˆˆ แฟ–. 33 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 iii. ๐›ผ๐‘”แปŠ โˆ—โˆ—-open function, denoted by "๐›ผ๐‘”แปŠ โˆ—โˆ—o-function" if แถ‚(ฦ ) is an open set in ฦณ. Whenever ฦ  is an ๐›ผ๐‘”แปŠ-open set in ำผ. Proposition 2: Let แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is a function; i. If แถ‚ is an open function then แถ‚ is ๐›ผ๐‘”แปŠ โˆ—o-function Proof: Let ฦ  โˆˆ แฟ–, since แถ‚ is an open function then แถ‚(ฦ )โˆˆ ษŸ and since for each open sets is an ๐›ผ๐‘”แปŠ-open set then แถ‚(ฦ ) is an ๐›ผ๐‘”ส-open set in ฦณ, then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—o-function. ii. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function then แถ‚ is an ๐›ผ๐‘”แปŠ-open function. Proof: Let ฦ  be an ๐›ผ๐‘”แปŠ-open set in ำผ, since แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function, then แถ‚(ฦ )โˆˆ ษŸ, since for each open set is an ๐›ผ๐‘”แปŠ-open set, this implies that แถ‚(ฦ ) is an ๐›ผ๐‘”ส-open set in ฦณ, then แถ‚ is an ๐›ผ๐‘”แปŠ-open function. iii. If แถ‚ is an ๐›ผ๐‘”แปŠo-function then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—o-function. Proof: Let ฦ  โˆˆ แฟ–, since for each open set is an ๐›ผ๐‘”แปŠ-open set, then แถ‚(ฦ ) is an ๐›ผ๐‘”ส-open set in ฦณ, thus แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—o-function. iv. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function then แถ‚ is an open function. Proof: Let ฦ  โˆˆ แฟ–, since for each open set is an ๐›ผ๐‘”แปŠ-open set, then ฦ  be an ๐›ผ๐‘”แปŠ-open set in ำผ, since แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function thus แถ‚(ฦ ) is an open set in ฦณ, then แถ‚ is an open function. v. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—o-function. Proof: By proposition 3.2-ii and proposition 3.2-iii, prove is over. The following scheme explains the relationship between the various concepts presented in Definition 3.1. Arrow chart (3.1) ๐›ผ๐‘”แปŠ-open function ๐œถ๐’ˆแปŠ๐’-function ๐œถ๐’ˆแปŠ โˆ—o-function ๐œถ๐’ˆแปŠ โˆ—โˆ—o-function Open function 34 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 The following are some examples showing that the opposite direction of the above schema is incorrect. ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž 3: A function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ำผ, แฟ–, ส), where ำผ ={แบป1, แบป2, แบป3} such that แถ‚(แบป1) = (แบป2), แถ‚(แบป2) = (แบป1), แถ‚(แบป3) = (แบป3), แฟ–={ำผ,โˆ…,{แบป1}}, แปŠ={โˆ…} and ส={โˆ…,{แบป2},{แบป3},{แบป2,แบป3}} then แฟ–๐›ผ ={ำผ,โˆ…,{แบป1},{แบป1, แบป2},{แบป1, แบป3}} then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = {ำผ,โˆ…,{แบป2,แบป3}} and ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = {ำผ,โˆ…,{แบป1}}. So ๐›ผ๐‘”ส๐ถ(ำผ) = าŽ(ำผ) and ๐›ผ๐‘”ส๐‘‚(ำผ) = าŽ(ำผ). Then แถ‚ is ๐›ผ๐‘”แปŠo-function and ๐›ผ๐‘”แปŠ โˆ—o-function which is not ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function and not an open function, since {แบป1} is an open set in ำผ and ๐›ผ๐‘”แปŠ-open set, but แถ‚(แบป1)=(แบป2) which is not open. Example 4: The function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ำผ, แฟ–, แปŠ); where ำผ={แบป1, แบป2, แบป3} such that แถ‚(แบป) = (แบป), โˆ€ แบปโˆˆำผ, แฟ–={ำผ,โˆ…,{แบป1}}, แปŠ={โˆ…,{แบป2},{แบป3},{แบป2, แบป3}} and ส={โˆ…}. Then แฟ–๐›ผ ={ำผ,โˆ…,{แบป1},{แบป1, แบป2},{แบป1, แบป3}} then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = าŽ(ำผ) and ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = าŽ(ำผ). So ๐›ผ๐‘”ส๐ถ(ำผ) = {ำผ,โˆ…,{แบป2,แบป3}} and ๐›ผ๐‘”ส๐‘‚(ำผ) = {ำผ,โˆ…,{แบป1}}. It is easy to see that แถ‚ is an open function and ๐›ผ๐‘”แปŠ โˆ—o-function but it is not ๐›ผ๐‘”แปŠo-function and not ๐›ผ๐‘”แปŠ โˆ—โˆ—c-function, since {แบป2}โˆˆ ๐›ผ๐‘”แปŠ๐‘‚(ำผ) but แถ‚(แบป2) = (แบป1) which is not open and not ๐›ผ๐‘”ส-open set. Definition 5: The function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is said, i. ๐›ผ๐‘”แปŠ-closed function, denoted by "๐›ผ๐‘”แปŠc-function" if แถ‚(ฦ ) is ๐›ผ๐‘”ส-closed in ฦณ whenever ฦ  is an ๐›ผ๐‘”แปŠ-closed in ำผ. ii. ๐›ผ๐‘”แปŠ โˆ—-closed function, denoted by "๐›ผ๐‘”แปŠ โˆ—c-function", if แถ‚(ฦ ) is ๐›ผ๐‘”ส-closed in ฦณ whenever ฦ  is an closed in ำผ. iii. ๐›ผ๐‘”แปŠ โˆ—โˆ—-closed function, denoted by "๐›ผ๐‘”แปŠ โˆ—โˆ—c-function", if แถ‚(ฦ ) is closed in ฦณ whenever ฦ  is an ๐›ผ๐‘”แปŠ-closed in ำผ. Proposition 6: Let แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is function, i. If แถ‚ is a closed function then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—c-function. ii. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—c-function then แถ‚ is an ๐›ผ๐‘”แปŠc-function. iii. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—c-function then แถ‚ is a closed function. iv. If แถ‚ is an ๐›ผ๐‘”แปŠc-function then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—c-function. v. If แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—โˆ—c-function then แถ‚ is an ๐›ผ๐‘”แปŠ โˆ—c-function. Proof: By Remark 2.4 and Definition 3.5. The follow Diagram shows the relationships between the different concepts that are inserted in Definition 3.5 35 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Arrow chart (3.2) ๐›ผ๐‘”แปŠ-closed function Example 3.3 and 3.4 show that the opposite direction of the above chart is incorrect. Remark 7: If แถ‚ is onto function then: i. ๐›ผ๐‘”แปŠo-function and ๐›ผ๐‘”แปŠc-function are the same. ii. ๐›ผ๐‘”แปŠ โˆ—o-function and ๐›ผ๐‘”แปŠ โˆ—c-function are the same. iii. ๐›ผ๐‘”แปŠ โˆ—โˆ—o-function and ๐›ผ๐‘”แปŠ โˆ—โˆ—c-function are the same. Proof: since แถ‚ is an onto function then the prove is easy by using Definition 3.1 and Definition 3.5 4- Near continuous function ๐ƒ๐ž๐Ÿ๐ข๐ง๐ข๐ญ๐ข๐จ๐ง 1: A function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is called; i. แปŠ-๐›ผ-g-continuous function, denoted by "๐›ผ๐‘”แปŠ-continuous function", if แถ‚ โˆ’1(ฦ ) is an ๐›ผ๐‘”แปŠ- open set in ำผ, where ฦ  โˆˆ ษŸ. ii. Strongly แปŠ-๐›ผ-g-continuous function, denoted by "Strongly ๐›ผ๐‘”แปŠ-continuous function" if แถ‚โˆ’1(ฦ ) โˆˆ แฟ–, whenever ฦ  is an ๐›ผ๐‘”ส-open set in ฦณ. iii. แปŠ-๐›ผ-๐‘”-irresolute function, denoted by "๐›ผ๐‘”แปŠ-irresolute function", if แถ‚ โˆ’1(ฦ ) is an ๐›ผ๐‘”แปŠ- open set in ำผ, where ฦ  is an ๐›ผ๐‘”ส-open set in ฦณ. ๐œถ๐’ˆแปŠ๐’„-function ๐œถ๐’ˆแปŠ โˆ—c-function ๐œถ๐’ˆแปŠ โˆ—โˆ—c-function Closed function 36 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proposition 2: Let แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ฦณ, ษŸ, ส) is a function; i. If แถ‚ is a continuous function, then แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function. ii. If แถ‚ is Strongly ๐›ผ๐‘”แปŠ-continuous function, then แถ‚ is a continuous function. iii. If แถ‚ is an ๐›ผ๐‘”แปŠ-irresolute function, then แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function. iv. If แถ‚ is Strongly ๐›ผ๐‘”แปŠ-continuous function, then แถ‚ is an ๐›ผ๐‘”แปŠ-irresolute function. v. If แถ‚ is Strongly ๐›ผ๐‘”แปŠ-continuous function, then แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function. Proof: i. Let ฦ  โˆˆ ษŸ. Since แถ‚ is a continuous function, then แถ‚โˆ’1(ฦ ) โˆˆ แฟ–. แถ‚โˆ’1(ฦ ) is an ๐›ผ๐‘”แปŠ-open set in ำผ By Remark 2.4. Hence แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function. ii. Let ฦ  โˆˆ ษŸ. By Remark 2.4, ฦ  is an ๐›ผ๐‘”ส-open set in ฦณ. Since แถ‚ is Strongly ๐›ผ๐‘”แปŠ-continuous function, then แถ‚โˆ’1(ฦ ) โˆˆ แฟ–. Hence แถ‚ is a continuous function. iii. Let ฦ  โˆˆ ษŸ, this implies to ฦ  is ๐›ผ๐‘”ส-open set in ฦณ. Since แถ‚ is an ๐›ผ๐‘”แปŠ-irresolute function then แถ‚โˆ’1(ฦ ) is an ๐›ผ๐‘”แปŠ-open set in ำผ. Then แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function iv. Let ฦ  is an ๐›ผ๐‘”ส-open set in ำผ. Since แถ‚ is a Strongly ๐›ผ๐‘”แปŠ-continuous function, then แถ‚ โˆ’1(ฦ ) โˆˆ แฟ–. By Remark 2.4, แถ‚(ฦ ) is ๐›ผ๐‘”แปŠ-open set in ำผ. This implies แถ‚ is an ๐›ผ๐‘”แปŠ-irresolute function. v. Let ฦ  โˆˆ ษŸ this implies ฦ  is an ๐›ผ๐‘”ส-open set and since แถ‚ is a Strongly ๐›ผ๐‘”แปŠ-continuous function, thus แถ‚โˆ’1(ฦ ) is open set in ำผ by Remark 2.4 แถ‚โˆ’1(ฦ ) is an ๐›ผ๐‘”แปŠ-open set, so แถ‚ is an ๐›ผ๐‘”แปŠ-continuous function. The follow scheme shows the relation between the variant notions were presented in Definition 4.1. Arrow chart (4.1) ๐œถ๐’ˆแปŠ-irresolute function. ๐œถ๐’ˆแปŠ-continuous function Strongly ๐œถ๐’ˆแปŠ-continuous function Continuous function 37 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 แปŠ-ฮฑ-g-continuous function The following are some examples showing that the opposite direction of the above schema is incorrect. Example 3: The function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ำผ, แฟ–, ส), where ำผ={แบป1, แบป2, แบป3} such that แถ‚(แบป1)=(แบป1), แถ‚(แบป2)=(แบป2), แถ‚(แบป3)=(แบป3), แฟ– = {ำผ,โˆ…,{แบป1}}, แปŠ={โˆ…} and ส={โˆ…,{แบป2},{แบป3},{แบป2,แบป3}} then แฟ–๐›ผ ={ำผ,โˆ…,{แบป1},{แบป1, แบป2},{แบป1, แบป3}} then ๐›ผ๐‘”แปŠ๐ถ(ำผ) = {ำผ,โˆ…,{แบป2,แบป3}} and ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = {ำผ,โˆ…,{แบป1}}. So ๐›ผ๐‘”ส๐ถ(ำผ) = าŽ(ำผ) and ๐›ผ๐‘”ส๐‘‚(ำผ) = าŽ(ำผ). It is possible to see clearly that แถ‚ is continuous and ๐›ผ๐‘”แปŠ-continuous function but not ๐›ผ๐‘”แปŠ- irresolute function since {แบป3} is an ๐›ผ๐‘”ส-open set in ฦณ but แถ‚ โˆ’1(แบป3) = แบป3 is not an ๐›ผ๐‘”แปŠ-open set in ำผ. Example 4: The function แถ‚: (ำผ, แฟ–, แปŠ) โ†’ (ำผ, แฟ–, ส), where ำผ={แบป1, แบป2, แบป3} such that แถ‚(แบป1)=(แบป1), แถ‚(แบป2)=(แบป2), แถ‚(แบป3)=(แบป3), แฟ– = {ำผ,โˆ…,{แบป1}}, ส={โˆ…} and แปŠ={โˆ…,{แบป2},{แบป3},{แบป2,แบป3}} then แฟ–๐›ผ ={ำผ,โˆ…,{แบป1},{แบป1, แบป2},{แบป1, แบป3}} then ๐›ผ๐‘”ส๐ถ(ำผ) = {ำผ,โˆ…,{แบป2,แบป3}} and ๐›ผ๐‘”ส๐‘‚(ำผ) = {ำผ,โˆ…,{แบป1}}. So ๐›ผ๐‘”แปŠ๐ถ(ำผ) = าŽ(ำผ) and ๐›ผ๐‘”แปŠ๐‘‚(ำผ) = าŽ(ำผ). It is possible to see clearly that แถ‚ is ๐›ผ๐‘”แปŠ-continuous function but not continuous function since {แบป1}โˆˆ แฟ– but แถ‚ โˆ’1(แบป1) = แบป2 is not open in ำผ, and not Strongly ๐›ผ๐‘”แปŠ-continuous function since {แบป1} โˆˆ ๐›ผ๐‘”ส๐‘‚(ำผ) but แถ‚ โˆ’1(แบป1) = แบป2 is not open in ำผ. 5- Conclusion The concept of closed and open sets was used with the ideal concept to introduce new notions from these categories; ๐›ผ๐‘”แปŠ-closed set, ๐›ผ๐‘”แปŠ-open set. And we introduce a new functions like: ๐›ผ๐‘”แปŠ-open function, ๐›ผ๐‘”แปŠ โˆ—-open function, ๐›ผ๐‘”แปŠ โˆ—โˆ—-open function, ๐›ผ๐‘”แปŠ-closed function, ๐›ผ๐‘”แปŠ โˆ—-closed function and ๐›ผ๐‘”แปŠ โˆ—โˆ—-closed function with near continuous functions. References: 1. Njastad, O. On some classes of nearly open set, Pacific J. Math. 1965, 15, 961 โ€“ 970. 2. Nadia, M. Ali. On New Types of Weakly Open Sets "ฮฑ-Open and Semi-ฮฑ-Open Sets", M.Sc. Thesis, January 2004. 3. Kuratowski, K. Topology. NewYork: Acadeic Press .1933, I. 4. Nasef, A. A.; Esamaeel, R. B. Some ฮฑ- operators vai ideals, International Electronic journal of Pur and Applied Mathematics. 2015, 9, 3, 149- 159. 5. Nasef, A. A.; Radwan, A. E.; Iprahem, F. A.; Esmaeel, R. B. Soft ฮฑ-compactness via soft ideals, Ready to be published in Journal of Advances in Mathematics, in June- 2016. 6. Abd El-Monsef, M. E.; Nasef, A. A.; Radwan, A. E.; Esmaeel, R. B. On ฮฑ- open sets with respect to an ideal, Journal of Advances Studies in Topology. 2014,5,3. 1-9. 7. Esmaeel, R. B. on ฮฑ-c-compactness, Ibn Al-Haithatham Journal for Pure and Applied Science. 2012, 22, 212-218.