Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 38 Weakly Nearly Prime Submodules Ali Sabah Sadiaq Haibat K. Mohammadali Department of Mathematics, College of Computer Science and Math. , University of Tikrit, Tikrit, Iraq. H.mohammadali@tu.edu.iq alisabahsadickali@gmail.com Abstract In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished. Keywords: Weakly prime submodules, weakly nearly prime submodules, multiplication modules, finitely generated modules, Jacobson of a modules. 1.Introduction The concept of weakly prime submodule was first Introduced and studied by Behoodi and Koohi in [1] as a generalization of weakly prime submodule , where a proper submodule 𝐻 of an R-module π‘ˆ is weakly prime submodule, if whenever 0 β‰  π‘Ÿπ‘’ ∈ 𝐻, for π‘Ÿ ∈ 𝑅,𝑒 ∈ π‘ˆ, implies that either 𝑒 ∈ 𝐻 or π‘Ÿ π‘ˆ βŠ† 𝐻. Recently, weakly prime submodules have been studied by many authors such as [2-5]. Many generalizations of weakly prime submodule are introduced such as weakly primary submodules, weakly quasi- prime submodules and weakly semi- prime submodules see [6- 8]. In 2018 the concepts WE-prime submodules and WE-semi- prime submodules as a strange from of weakly prime submodules are given; see [9]. In this article, we introduce a new generalization of weakly prime submodule called WN-prime submodule , where a proper submodule 𝐻 of an 𝑅-module π‘ˆ is called WN-prime of π‘ˆ if whenever 0 β‰  π‘Ÿπ‘’ ∈ 𝐻, for π‘Ÿ ∈ 𝑅, 𝑒 ∈ π‘ˆ, implies that either 𝑒 ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ), where 𝙹( π‘ˆ) is the Jacobson radical of π‘ˆ. An R-module π‘ˆ is multiplication if each submodule 𝐻 of π‘ˆ from 𝐻 = 𝐼 π‘ˆ for some ideal 𝐼 of 𝑅 , that is 𝐻 = [𝐻:𝑅 π‘ˆ] π‘ˆ [10]. Several characterizations, examples and basic properties of WN-prime submodules were given in this research. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2556 Article history: Received 16,January,2020, Accepted12,February,2020, Published in January 2021 mailto:H.mohammadali@tu.edu.iq mailto:H.mohammadali@tu.edu.iq mailto:alisabahsadickali@gmail.com 39 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 2. Basic Properties of Weakly Nearly Prime Submodules In this stage, we offer the definition of weakly nearly prime submodule and establish some of its basic properties and characterizations. Definition (2.1) A proper submodule 𝐻 of 𝑅-module π‘ˆ is said to be weakly nearly prime submodule of π‘ˆ (for short WN-prime submodule), if whenever 0 β‰  π‘Žπ‘’ ∈ 𝐻, where π‘Ž ∈ 𝑅, 𝑒 ∈ π‘ˆ, implies that either 𝑒 ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ).An ideal 𝐴 of ring 𝑅 is WN-prime ideal of 𝑅 if and only if 𝐴 is a WN-prime submodule of an 𝑅-module 𝚁. For example : consider the Z-module 𝑍24 and the submodule 𝐻 = 〈8Μ…βŒͺ of 𝑍24 which is a WN- prime submodule of 𝑍24 since 𝙹(𝑍24) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ. Thus if 0 β‰  π‘Ÿπ‘š ∈ 𝐻 with π‘Ÿ ∈ 𝑍, π‘š ∈ 𝑍24 , implies that either π‘š ∈ 𝐻 + 𝙹(𝑍24) = 〈8Μ…βŒͺ + 〈6Μ…βŒͺ = 〈2Μ…βŒͺ or π‘Ÿ ∈ [𝐻 + 𝙹(𝑍24):𝑍24] = [〈2Μ…βŒͺ:𝑍24] = 2𝑍 . Remark (2.2) 1. It is clear that every weakly prime submodule of an R-module 𝘜 is WN-prime , but not conversely. For example the submodule 𝑁 = 𝑍 of the Z-module 𝑄 is not weakly prime, but 𝑁 is WN-prime since 𝙹(𝑄) = 𝑄 and for each π‘Ž ∈ 𝑍, 𝑒 ∈ 𝑄 with 0 β‰  π‘Žπ‘’ ∈ 𝑁 , implies that either 𝑒 ∈ 𝑁 + 𝙹(𝑄) or π‘Žπ‘„ βŠ† 𝑍 + 𝙹(𝑄) = 𝑄 . 2. It is clear that every prime submodule of an R-module π‘ˆ is WN-prime, but not conversely . For example : consider that the Z-module 𝑍12 , and the submodule 𝐻 = 〈4Μ…βŒͺ of 𝑍12 is not prime , but 𝐻 = 〈4Μ…βŒͺ is WN-prime submodule of 𝑍12 since 𝙹(𝑍12) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ. Thus if 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 with π‘Ÿ ∈ 𝑍, 𝑒 ∈ 𝑍12 , implies that either 𝑒 ∈ 𝐻 + 𝙹(𝑍12) = 〈4Μ…βŒͺ + 〈6Μ…βŒͺ = 〈2Μ…βŒͺ or π‘Ÿ ∈ [𝐻 + 𝙹(𝑍12):𝑍12] = [〈2Μ…βŒͺ:𝑍12] = 2𝑍 . 3. If 𝐻 is proper submodule of an R-module π‘ˆ with 𝙹( π‘ˆ) βŠ† 𝐻. Then 𝐻 is a WN-prime if and only if 𝐻 is weakly prime submodule . 4.If π‘ˆ is a semi-simple R-module and 𝐻 is a proper submodule of π‘ˆ,then 𝐻 is a weakly prime if and only if 𝐻 is WN-prime submodule of π‘ˆ. Proof It is well-known if π‘ˆ is a semi-simple, then 𝙹( π‘ˆ) = (0) . [14, Theo. (9.2.1) (a)]. So the proof follows direct. The following propositions give characterizations of WN-prime submodules. Proposition (2.3) Let π‘ˆ be an 𝑅-module, 𝐻 be a submodule of π‘ˆ, then 𝐻 is a WN-prime submodule of π‘ˆ if and only if for every submodule 𝐿 of π‘ˆ and π‘Ÿ ∈ 𝑅 with 0 β‰  βŒ©π‘ŸβŒͺ𝐿 βŠ† 𝐻, implies that either 𝐿 βŠ† 𝐻 + 𝙹( π‘ˆ) or βŒ©π‘ŸβŒͺ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ) . 40 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proof ( β‡’ ) Suppose that 0 β‰  βŒ©π‘ŸβŒͺ𝐿 βŠ† 𝐻, for π‘Ÿ ∈ 𝑅 , and 𝐿 is a submodule of π‘ˆ, with 𝐿 ⊈ 𝐻 + 𝙹( π‘ˆ), then 𝑙 βˆ‰ 𝐻 + 𝙹( π‘ˆ) for some non-zero element 𝑙 ∈ 𝐿. Now 0 β‰  π‘Ÿπ‘™ ∈ 𝐻, then since 𝐻 is WN- prime submodule of π‘ˆ, and 𝑙 βˆ‰ 𝐻 + 𝙹( π‘ˆ), then we have π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ): π‘ˆ] , it follows that βŒ©π‘ŸβŒͺ βŠ† [𝐻 + 𝙹( π‘ˆ): π‘ˆ]. That is βŒ©π‘ŸβŒͺ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ) ( ⇐ ) Let 0 β‰  π‘Ÿπ‘’ ∈ 𝐻, for π‘Ÿ ∈ 𝑅, 𝑒 ∈ π‘ˆ, it follows that 0 β‰  βŒ©π‘ŸβŒͺβŒ©π‘’βŒͺ βŠ† 𝐻, so by hypothesis either βŒ©π‘’βŒͺ βŠ† 𝐻 + 𝙹( π‘ˆ) or βŒ©π‘ŸβŒͺ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ). That is either 𝑒 ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ). Hence 𝐻 is a WN-prime submodule of π‘ˆ. As direct result of Proposition (2.3) we get the following corollary. Corollary (2.4) A proper submodule 𝐻 of an R-module Ε² is WN-prime if and only if for every submodule 𝐾 of π‘ˆ and every π‘Ÿ ∈ 𝑅 such that 0 β‰  π‘ŸπΎ βŠ† 𝐻, implies that either 𝐾 βŠ† 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ) ∢ π‘ˆ] . Proposition (2.5) Let 𝐻 be proper submodule of R-module π‘ˆ, then 𝐻 is WN-prime submodule of π‘ˆ if and, only if [𝐻:𝑅 π‘₯] βŠ† [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βˆͺ [0:𝑅 π‘₯] for all π‘₯ ∈ π‘ˆ and π‘₯ βˆ‰ 𝐻 + 𝙹( π‘ˆ). Proof ( β‡’ ) Let π‘Ÿ ∈ [𝐻:𝑅 π‘₯] and π‘₯ βˆ‰ 𝐻 + 𝙹( π‘ˆ), then π‘Ÿπ‘₯ ∈ 𝐻 .If π‘Ÿπ‘₯ β‰  0, and 𝐻 is a WN-prime submodule of π‘ˆ and π‘₯ βˆ‰ 𝐻 + 𝙹( π‘ˆ) , hence π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ]. If π‘Ÿπ‘₯ = 0, then π‘Ÿ ∈ [0:𝑅 π‘₯].Thus π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βˆͺ [0:𝑅 π‘₯].Hence [𝐻:𝑅 π‘₯] βŠ† [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βˆͺ [0:𝑅 π‘₯]. ( ⇐ ) Let 0 β‰  π‘Ÿπ‘₯ ∈ 𝐻 for π‘Ÿ ∈ 𝑅 ,𝑒 ∈ π‘ˆ, with π‘₯ βˆ‰ 𝐻 + 𝙹( π‘ˆ), then π‘Ÿ ∈ [𝐻:𝑅 π‘₯], by hypothesis π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βˆͺ [0:𝑅 π‘₯], but π‘Ÿπ‘₯ β‰  0. Thus, π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] and hence 𝐻 is a WN- prime submodule of π‘ˆ . Proposition (2.6) Let H be a proper submodule of an R-module π‘ˆ with [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] is a maximal ideal of 𝑅, then 𝐻 is a WN-prime submodule of π‘ˆ. Proof Suppose that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 , with π‘Ÿ ∈ 𝑅 ,𝑒 ∈ π‘ˆ and π‘Ÿ π‘ˆ ⊈ 𝐻 + 𝙹( π‘ˆ). That is, π‘Ÿ βˆ‰ [𝐻 + 𝙹( π‘ˆ): π‘ˆ],but [𝐻 + 𝙹( π‘ˆ): π‘ˆ] is maximal, then by [11,Th. 5.1] 𝑅 = βŒ©π‘ŸβŒͺ + [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ]. It follows that 1 = π‘Žπ‘Ÿ + 𝑏, for some π‘Ž ∈ 𝑅 , 𝑏 ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ]. Hence, 𝑒 = π‘Žπ‘Ÿπ‘’ + 𝑏𝑒 ∈ 𝐻 + 𝙹( π‘ˆ). Hence, 𝐻 is a WN-prime submodule of π‘ˆ. Proposition (2.7) Let 𝐻 be a proper submodule of an R-module 𝘜 with [𝐿:𝑅 𝘜] ⊈ [𝐻 + 𝙹(𝘜):𝑅 𝘜] and 𝐻 + 𝙹(𝘜) is a proper submodule of 𝐿 for each submodule 𝐿 of 𝘜 .If [𝐻 + 𝙹(𝘜):𝑅 𝘜] is a prime ideal of 𝑅, then 𝐻 is a WN-prime submodule of 𝘜. 41 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proof Assume that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 , for π‘Ÿ ∈ 𝑅 ,𝑒 ∈ 𝘜 and 𝑒 βˆ‰ 𝐻 + 𝙹(𝘜).We have 𝐻 + 𝙹(𝘜) ⊈ 𝐻 + 𝙹(𝘜) + βŒ©π‘’βŒͺ , put 𝐿 = 𝐻 + 𝙹(𝘜) + βŒ©π‘’βŒͺ = 𝐿, then [𝐿:𝑅 𝘜] ⊈ [𝐻 + 𝙹(𝘜):𝑅 π‘ˆ]. That is there exist π‘Ž ∈ [𝐿:𝑅 𝘜] and π‘Ž βˆ‰ [𝐻 + 𝙹(𝘜):𝑅 𝘜]. It follows that π‘Žπ˜œ βŠ† 𝐿 but π‘Žπ˜œ ⊈ 𝐻 + π™Ήπ˜œ. π‘Žπ˜œ βŠ† 𝐿, implies that π‘Ÿπ‘Žπ˜œ βŠ† π‘ŸπΏ = π‘Ÿ(𝐻 + 𝙹(𝘜) + βŒ©π‘’βŒͺ) βŠ† 𝐻 + 𝙹(𝘜), that is π‘Ÿπ‘Ž ∈ [𝐻 + 𝙹(𝘜):𝘜]. But [𝐻 + 𝙹(𝘜):𝑅 𝘜] is a prime ideal of 𝑅 and π‘Ž βˆ‰ [𝐻 + 𝙹(𝘜):𝑅 𝘜] then π‘Ÿ ∈ [𝐻 + 𝙹(𝘜) ∢ 𝘜]. Thus 𝐻 is a WN-prime submodule of 𝘜. It is well-known that if π‘ˆ is a multiplication R-module and 𝐻 is a proper submodule of π‘ˆ, then [𝐿:𝑅 π‘ˆ] ⊈ [𝐻 :𝑅 π‘ˆ] for each submodule 𝐿 of π‘ˆ with 𝐻 ⊈ 𝐿 [12, Rem. (2.15)]. Corollary (2.8) Let 𝐻 be a proper submodule of a multiplication R-module π‘ˆ,then 𝐻 is a WN-prime submodule of π‘ˆ, if [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] is a prime ideal of 𝑅 and 𝐻 + 𝙹( π‘ˆ) is a proper submodule of 𝐿 for each submodule 𝐿 of π‘ˆ. If 𝐻 is a submodule of an 𝑅-module π‘ˆ, then 𝐻(𝑆) = {𝑒 ∈ π‘ˆ:βˆƒπ‘‘ ∈ 𝑆 such that 𝑑𝑒 ∈ 𝐻} [13]. Proposition (2.9) Let 𝐻 be a proper submodule of an R-module 𝘜, with [𝐻 + 𝙹( 𝘜):𝑅 𝘜] is a prime ideal of 𝑅, then 𝐻 is WN-prime if and only if 𝐻(𝑆) βŠ† 𝐻 + 𝙹( 𝘜) for each multiplicatively closed subset 𝑆 of 𝑅 with 𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅 𝘜] = πœ‘. Proof ( β‡’ ) Suppose that 𝐻 is a WN-prime submodule of 𝘜 with 𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅 𝘜] = πœ‘. Let 𝑒 ∈ 𝐻(𝑆), then βˆƒπ‘Ÿ ∈ 𝑆 such that π‘Ÿπ‘’ ∈ 𝐻, implies that π‘Ÿ ∈ [𝐻:𝑅 𝑒] βŠ† [𝐻 + 𝙹( 𝘜):𝑅 𝘜] βˆͺ [0:𝑅 𝑒] by Proposition (2.5) .It follows that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 (since 𝐻 is a WN-prime ), implies that either 𝑒 ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 𝘜]. If π‘Ÿ ∈ [𝐻 + 𝙹( 𝘜):𝑅 𝘜], implies that π‘Ÿ ∈ 𝑆 ∩ [𝐻 + 𝐽( 𝘜):𝑅 𝘜] = πœ‘ which is a contradiction. Thus 𝑒 ∈ 𝐻 + 𝙹( 𝘜) and hence 𝐻(𝑆) βŠ† 𝐻 + 𝙹( 𝘜). ( ⇐ ) Suppose that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 where π‘Ÿ ∈ 𝑅 ,𝑒 ∈ 𝘜 such that 𝑒 βˆ‰ 𝐻 + 𝙹( 𝘜) and π‘Ÿ βˆ‰ [𝐻 + 𝙹( 𝘜):𝑅 𝘜]. Since π‘Ÿ ∈ 𝑆, then 𝑆 = {1,π‘Ÿ,π‘Ÿ 2,π‘Ÿ3,…} is multiplicatively closed subset of 𝑅 and 𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅 𝘜] = πœ‘ (since[𝐻 + 𝙹( 𝘜):𝑅 𝘜] is prime ideal of 𝑅 ). But 𝑒 βˆ‰ 𝐻 + 𝙹( 𝘜) implies that 𝑒 βˆ‰ 𝐻(𝑆) and then 0 β‰  π‘Ÿπ‘’ βˆ‰ 𝐻 which is a contradiction. Thus 𝑒 ∈ 𝐻 + 𝙹( 𝘜) or π‘Ÿ ∈ [𝐻 + 𝙹( 𝘜):𝑅 𝘜]. That is, 𝐻 is a WN-prime submodule of 𝘜. The following corollary a direct consequence of Proposition (2.9). Corollary (2.10) Let π‘ˆ be an 𝑅-module, 𝐻 be a proper submodule of π‘ˆ, with [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] is prime ideal in 𝑅, then 𝐻 is WN-prime if and only if 𝐻(𝑅 βˆ’ ([𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ]) βŠ† 𝐻 + 𝙹( π‘ˆ). Proposition (2.11) Let π‘ˆ be an 𝑅-module, and 𝐴 be a maximal ideal of 𝑅, with 𝐴 π‘ˆ + 𝙹( π‘ˆ) β‰  π‘ˆ. Then 𝐴 π‘ˆ is a WN-prime submodule of π‘ˆ. Proof: 42 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Since 𝐴 π‘ˆ βŠ† 𝐴 π‘ˆ + 𝙹( π‘ˆ), then 𝐴 βŠ†[A U+J( U) :𝑅U] .That is, there exists π‘Ÿ ∈ [𝐴 π‘ˆ + 𝙹( π‘ˆ): π‘ˆ] and π‘Ÿ βˆ‰ 𝐴. But 𝐴 is a maximal ideal of 𝑅, then 𝑅 = 𝐴 + βŒ©π‘ŸβŒͺ, then 1 = π‘Ž + π‘ π‘Ÿ for some 𝑠 ∈ 𝑅, it follows that 𝑒 = π‘Žπ‘’ + π‘ π‘Ÿπ‘’ for each 𝑒 ∈ π‘ˆ. Thus 𝑒 ∈ 𝐴 π‘ˆ + 𝙹( π‘ˆ) for each 𝑒 ∈ π‘ˆ, so 𝐴 π‘ˆ + 𝙹( π‘ˆ) = π‘ˆ which is a contradiction. Hence, π‘Ÿ ∈ 𝐴 and it follows that [𝐴 π‘ˆ + 𝙹( π‘ˆ): π‘ˆ] βŠ† 𝐴.Thus [𝐴 π‘ˆ + 𝙹( π‘ˆ): π‘ˆ] = 𝐴. That is, [𝐴 π‘ˆ + 𝙹( π‘ˆ): π‘ˆ] is a maximal ideal of 𝑅, hence by Proposition( 2.6 ), 𝐴 π‘ˆ is a WN-prime submodule of π‘ˆ. Proposition (2.12) Let 𝐻 be a proper submodule of an R-module π‘ˆ with [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] = [𝐻 + 𝙹( π‘ˆ):𝑅 𝐾] for each submodule 𝐾 of π‘ˆ such that 𝐻 + 𝙹( π‘ˆ) is a proper submodule of 𝐿, then 𝐻 is a WN- prime submodule of π‘ˆ. Proof Suppose that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 for each π‘Ÿ ∈ 𝑅 ,u ∈ U with 𝑒 βˆ‰ 𝐻 + 𝙹( π‘ˆ). Assume that 𝐾 = 𝐻 + 𝙹( π‘ˆ) + βŒ©π‘’βŒͺ, it is clear that 𝐻 + 𝙹( π‘ˆ) βŠ† 𝐾, then 𝑒 ∈ 𝐾 and so π‘Ÿ ∈ [𝐻:𝑅 𝐾]. Since 𝐻 βŠ† 𝐻 + 𝙹( π‘ˆ), then [𝐻:𝑅 𝐾] = [𝐻 + 𝙹( π‘ˆ):𝑅 𝐾] = [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] by hypothesis. Thus π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ], it follow that 𝐻 is a WN-prime submodule of π‘ˆ. Recall that submodule 𝐻 of an R-module π‘ˆ is to said to be small, if for any submodule 𝐾 of π‘ˆ with π‘ˆ = 𝐻 + 𝐾 then 𝐾 = π‘ˆ [14]. Proposition (2.13) Let 𝐻 be a small proper submodule of an R-module 𝘜 and 𝙹(𝘜) is a weakly prime submodule of 𝘜, then 𝐻 is a WN-prime submodule of 𝘜. Proof Suppose that 0 β‰  π‘Ÿπ‘’ ∈ 𝐻, where π‘Ÿ ∈ 𝑅 ,𝑒 ∈ 𝘜. Since 𝐻 is a small submodule of 𝘜, then 0 β‰  π‘Ÿπ‘’ ∈ 𝐻 βŠ† 𝙹(𝘜). It follows that 0 β‰  π‘Ÿπ‘’ ∈ 𝙹(𝘜), but 𝙹(𝘜) is a weakly prime submodule of π‘ˆ, implies that either 𝑒 ∈ 𝙹(𝘜) βŠ† 𝐻 + 𝙹(𝘜) or π‘Ÿπ˜œ βŠ† 𝙹(𝘜) βŠ† 𝐻 + 𝙹(𝘜). Hence 𝐻 is a WN- prime submodule of 𝘜. Remark (2.14) If 𝐻 and 𝐿 are two submodules of R-module π‘ˆ with 𝐻 is contained in 𝐿, 𝐿 is a WN-prime submodule of π‘ˆ. Then 𝐻 not necessary to be WN-prime submodule of π‘ˆ. The following example explains that. Consider the Z-module 𝑍24 and the submodule 𝐻 = {0Μ… ,12Μ…Μ…Μ…Μ… }, 𝐿 = {0Μ…, 2Μ… , 4Μ…, 6Μ…, 8Μ…,10Μ…Μ…Μ…Μ… ,12Μ…Μ…Μ…Μ… ,14Μ…Μ…Μ…Μ… ,16Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… ,20Μ…Μ…Μ…Μ… ,22Μ…Μ…Μ…Μ… } we have 𝐿 is a WN-prime (since 𝐿 is a weakly prime ) submodule of the Z-module 𝑍24, but 𝐻 is not WN-prime because if 3 ∈ 𝑍,4Μ… ∈ 𝑍24 such that 0Μ… β‰  3 4Μ… ∈ 𝐻, but 4Μ… βˆ‰ 𝐻 + 𝙹(𝑍24) = {0Μ…, 6Μ…,12Μ…Μ…Μ…Μ… ,18Μ…Μ…Μ…Μ… } and 3 βˆ‰ [ 𝐻 + 𝙹(𝑍24) ∢ 𝑍24] = 6𝑍. Proposition (2.15) Let π‘ˆ be an R-module , and 𝐻,𝐿 are submodules of π‘ˆ with 𝐻 contained in 𝐿, and 𝙹( π‘ˆ) βŠ† 𝙹(𝐿). If 𝐻 is WN-prime submodule of π‘ˆ, then 𝐻 is WN-prime submodule of 𝐿. Proof Assume that 0 β‰  π‘Ÿπ‘₯ ∈ 𝐻 with π‘Ÿ ∈ 𝑅,π‘₯ ∈ 𝐿. Since 𝐿 is a WN-prime submodule of π‘ˆ, then π‘₯ ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ]. But 𝙹( π‘ˆ) βŠ† 𝙹(𝐿) so π‘₯ ∈ 𝐻 + 𝙹(𝐿) or π‘Ÿ ∈ [𝐻 + 𝙹(𝐿):𝑅 π‘ˆ] βŠ† [𝐻 + 𝙹(𝐿):𝑅 𝐿]. Hence 𝐻 is a WN-prime submodule of 𝐿. 43 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Remark (2.16) The resudule of WN-prime submodule of an R-module π‘ˆ need not to be WN-prime ideal of 𝑅. The following example shows that: Let π‘ˆ = 𝑍12 , 𝑅 = 𝑍 and 𝐻 = {0Μ…, 4Μ…, 8Μ…}, 𝐻 is a WN-prime submodule of 𝑍12 by Remark(2.2)(2). But [𝐻:𝑍 𝑍12] = 4𝑍 is not WN-prime ideal of 𝑅 because 0 β‰  2 2 ∈ 4𝑍,2 ∈ 𝑍 but 2 βˆ‰ 4𝑍 + 𝙹(𝑍) = 4𝑍 and 2 βˆ‰ [4𝑍 + 𝙹(𝑍):𝑍 𝑍] = 4𝑍. The following propositions show that the resudule of a WN-prime submodule is a WN-prime ideal in the class of multiplication R-module over a good ring, Artinian ring respectively. Remember that A ring 𝑅 is called good if 𝙹(𝘜) = 𝙹(𝑅).𝘜 where 𝘜 is an R-module [14]. Proposition (2.17) Let 𝘜 be a multiplication module over a good ring 𝑅 , and 𝐻 is a WN-prime submodule of 𝘜 then [𝐻:𝑅 𝘜] is a WN-prime ideal of 𝑅. Proof suppose that 0 β‰  π‘Ÿπ‘  ∈ [𝐻:𝑅 𝘜] where π‘Ÿ,𝑠 ∈ 𝑅, implies that 0 β‰  π‘Ÿ(π‘ π˜œ) βŠ† 𝐻. But 𝐻 is a WN- prime submodule of 𝘜, then by Corollary (2.4) either π‘ π˜œ βŠ† 𝐻 + 𝙹(𝘜) or π‘Ÿπ˜œ βŠ† 𝐻 + 𝙹(𝘜). For 𝘜 a multiplication module over good ring, then 𝙹(𝘜) = 𝙹(𝑅).𝘜 and 𝐻 = [𝐻:𝑅 𝘜].𝘜. Thus either π‘ π˜œ βŠ† [𝐻:𝑅 𝘜].𝘜 + 𝙹(𝑅).𝘜 or π‘Ÿπ˜œ βŠ† [𝐻:𝑅 𝘜] π‘ˆ + 𝙹(𝑅)𝘜. Hence either 𝑠 ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) or π‘Ÿ ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) = [[𝐻:𝑅 𝘜] + 𝙹(𝑅):𝑅 𝘜]. Therefore [𝐻:𝑅 𝘜] is a WN-prime ideal of 𝑅. It is well known if π‘ˆ is a module over Artinian ring 𝑅 then 𝙹(𝘜) = 𝙹(𝑅)𝘜. [14, Co. 9.3.10(c)]. Proposition (2.18) Let 𝘜 is a multiplication module over Artinian ring 𝑅, and 𝐻 is a WN-prime submodule of π‘ˆ then [𝐻:𝑅 π‘ˆ] is a WN-prime ideal of 𝑅. Proof Let 0 β‰  π‘ŸπΌ ∈ [𝐻:𝑅 𝘜] where π‘Ÿ ∈ 𝑅 and 𝐼 is an ideal of 𝑅, then 0 β‰  π‘ŸπΌ βŠ† 𝐻. Since 𝐻 is a WN-prime submodule of π‘ˆ, then by Corollary (2.4) either 𝐼𝘜 βŠ† 𝐻 + 𝙹(𝘜) or π‘Ÿπ˜œ βŠ† 𝐻 + 𝙹(𝘜).But π‘ˆ is a multiplication module over good ring 𝑅, then 𝙹(𝘜) = 𝙹(𝑅)𝘜 and 𝐻 = [𝐻:𝑅 𝘜]𝘜. It follows that either 𝐼𝘜 βŠ† [𝐻:𝑅 𝘜]𝘜 + 𝙹(𝑅)𝘜 or π‘Ÿπ˜œ βŠ† [𝐻:𝑅 𝘜]𝘜 + 𝙹(𝑅).𝘜. Hence either 𝐼 βŠ† [𝐻:𝑅 𝘜] + 𝙹(𝑅) or π‘Ÿ ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) = [[𝐻:𝑅 𝘜] + 𝙹(𝑅):𝑅 𝘜].Therefore [𝐻:𝑅 π‘ˆ] is a WN-prime ideal of 𝑅. It is well known that if 𝘜 is a projective R-module then 𝙹(𝘜) = 𝙹(𝑅).𝘜 [14, Th. 9.2.1(g)]. Proposition (2.19) Let 𝘜 be a projective multiplication R-module , and 𝐻 is a WN-prime submodule of 𝘜 then [𝐻:𝑅 𝘜] is a WN-prime ideal of 𝑅. Proof 44 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Follows in the same way of Proposition (2.17) and Proposition (2.18). It is well known if π‘ˆ is a multiplication finitely generated R-module , and 𝐴,𝐡 are ideals of 𝑅, then 𝐴 π‘ˆ βŠ† 𝐡 π‘ˆ if and only if 𝐴 βŠ† 𝐡 + π‘Žπ‘›π‘›( π‘ˆ) [15, Cor. of th. 9]. Proposition (20) Let π‘ˆ be a multiplication finitely generated faithful module over good ring 𝑅 , 𝘈 is a WN- prime ideal of 𝑅.Then 𝘈 π‘ˆ is a WN-prime submodule of π‘ˆ. Proof Suppose that 0 β‰  π‘Žπ» βŠ† 𝘈 π‘ˆ where π‘Ž ∈ 𝑅,𝐻 is a submodule of π‘ˆ,implies that 0 β‰  π‘ŽπΌ π‘ˆ βŠ† 𝐴 π‘ˆ for π‘ˆ is a multiplication, it follows that 0 β‰  π‘ŽπΌ βŠ† 𝘈 + π‘Žπ‘›π‘›( π‘ˆ).But π‘ˆ is faithful, then π‘Žπ‘›π‘›( π‘ˆ) = (0). Thus 0 β‰  π‘ŽπΌ βŠ† 𝘈. But 𝘈 is a WN-prime ideal of 𝑅, then either 𝐼 βŠ† 𝘈 + 𝙹(𝑅) or π‘Ÿ ∈ [𝘈 + 𝙹(𝑅):𝑅] = 𝘈 + 𝙹(𝑅). Hence 𝐼 π‘ˆ βŠ† 𝘈 π‘ˆ + 𝙹(𝑅) π‘ˆ or π‘Ÿ π‘ˆ βŠ† 𝘈 π‘ˆ + 𝙹(𝑅) π‘ˆ. That is either 𝐼 π‘ˆ βŠ† 𝘈 π‘ˆ + 𝙹( π‘ˆ) or π‘Ÿ π‘ˆ βŠ† 𝘈 π‘ˆ + 𝙹( π‘ˆ). Thus either 𝐻 βŠ† 𝘈 π‘ˆ + 𝙹( π‘ˆ) or π‘Ÿ ∈ [𝘈 π‘ˆ + 𝙹( π‘ˆ):𝑅 π‘ˆ]. Therefore 𝘈 π‘ˆ is a WN-prime submodule of π‘ˆ. Proposition (2.21) Let π‘ˆ be a finitely generated multiplication faithful module over Artinian ring 𝑅, and 𝐴 be a WN-prime ideal of 𝑅, then 𝐴 π‘ˆ is a WN-prime submodule of π‘ˆ. Proof Similar as in Proposition (2.20). Proposition (2.22) Let 𝘜 be a finitely generated projective multiplication R-module , and 𝐴 is a WN-prime ideal of 𝑅 with π‘Žπ‘›π‘›(𝘜)βŠ† 𝐴 then 𝐴𝘜 is a WN-prime submodule of 𝘜. Proof Suppose that 0 β‰  π‘Žπ‘’ ∈ 𝐴𝘜 for π‘Ž ∈ 𝑅,𝑒 ∈ 𝘜 so, 0 β‰  π‘Ž(𝑒) βŠ† 𝐴𝘜. Since 𝘜 is a multiplication, then (𝑒) = π™Ήπ˜œ for some ideal 𝙹 of 𝑅, hence 0 β‰  π‘Žπ™Ήπ˜œ βŠ† 𝐴𝘜, since 𝘜 is finitely generated multiplication, then 0 β‰  π‘Žπ™Ή βŠ† 𝐴 + π‘Žπ‘›π‘›(𝘜). But π‘Žπ‘›π‘›(𝘜) βŠ† 𝐴, then 0 β‰  π‘Žπ™Ή βŠ† 𝐴, since 𝐴 is a WN-prime ideal of 𝑅 then by Corollary (2.4) either 𝙹 βŠ† 𝐴 + 𝙹(𝑅) or π‘Ž ∈ [𝐴 + 𝙹(𝑅):𝑅 𝑅] = 𝐴 + 𝙹(𝑅). That is either π™Ήπ˜œ βŠ† 𝐴𝘜 + 𝙹(𝑅)𝘜 or π‘Žπ˜œ βŠ† 𝐴𝘜 + 𝙹(𝑅)𝘜. But 𝘜 is a projective, then 𝙹(𝑅) π‘ˆ = 𝙹( π‘ˆ). Thus either (𝑒) βŠ† 𝐴 π‘ˆ + 𝙹( π‘ˆ) or π‘Ž ∈ [𝐴 π‘ˆ + 𝙹( π‘ˆ):𝑅 π‘ˆ]. That is either 𝑒 ∈ 𝐴 π‘ˆ + 𝙹(𝘜) or π‘Ž ∈ [𝐴𝘜 + 𝙹(𝘜):𝑅 𝘜]. Thus 𝐴𝘜 is a WN-prime submodule of 𝘜. Proposition (2.23) Let 𝐻 be a WN-prime submodule of an R-module π‘ˆ, then π‘†βˆ’1𝐻 is a WN-prime submodule of π‘†βˆ’1𝑅-module π‘†βˆ’1 π‘ˆ, where 𝑆 is a multiplicatively closed subset of 𝑅. Proof Suppose that (0) β‰  π‘Ÿ1 𝑠1 𝑒 𝑠2 ∈ π‘†βˆ’1𝐻 for π‘Ÿ1 𝑠1 ∈ π‘†βˆ’1𝑅 and 𝑒 𝑠2 ∈ π‘†βˆ’1 π‘ˆ and π‘Ÿ1 ∈ 𝑅, 𝑠1,𝑠2 ∈ 𝑆,𝑒 ∈ π‘ˆ. Then π‘Ÿ1𝑒 𝑑 ∈ π‘†βˆ’1𝐻, where 𝑑 = 𝑠1𝑠2 ∈ 𝑆, that is there exists non-zero element 𝑑1 ∈ 𝑆 such that 0 β‰  𝑑1π‘Ÿ1𝑒 ∈ 𝐻. But 𝐻 is a WN-prime submodule of π‘ˆ, then either 𝑑1𝑒 ∈ 𝐻 + 𝙹( π‘ˆ) or π‘Ÿ1 ∈ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ], it follows that either 𝑑1𝑒 𝑑1𝑠2 ∈ π‘†βˆ’1(𝐻 + 𝙹( π‘ˆ)) βŠ† π‘†βˆ’1𝐻 + 𝙹(π‘†βˆ’1 π‘ˆ)or π‘Ÿ1 𝑠1 ∈ 45 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 π‘†βˆ’1[𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βŠ† [𝑆 βˆ’1𝐻 + 𝙹(π‘†βˆ’1 π‘ˆ):𝑅 𝑆 βˆ’1 π‘ˆ]. Hence either 𝑒 𝑠2 ∈ π‘†βˆ’1𝐻 + 𝙹(π‘†βˆ’1 π‘ˆ) or π‘Ÿ1 𝑠1 ∈ [π‘†βˆ’1𝐻 + 𝙹(π‘†βˆ’1 π‘ˆ):𝑅 𝑆 βˆ’1 π‘ˆ]. Thus π‘†βˆ’1𝐻 is a WN-prime submodule of π‘†βˆ’1𝑅-module π‘†βˆ’1 π‘ˆ. It is well known that if πœ‘ ∢ π‘ˆ ⟢ π‘Œ is an R-epimorphism and πΎπ‘’π‘Ÿπœ‘ small submodule of R- module π‘ˆ, then πœ‘( 𝙹( π‘ˆ)) = 𝙹(π‘Œ),πœ‘βˆ’1( 𝙹(π‘Œ)) = 𝙹( π‘ˆ) [14, Cor. 9.1.5(a)]. Proposition (2.24) Let πœ‘ ∢ π‘ˆ ⟢ π‘ˆβ€² be an 𝑅-epimorphism with πΎπ‘’π‘Ÿπœ‘ is small submodule of πš„, and 𝐾 be a WN-prime submodule of π‘ˆβ€², then πœ‘βˆ’1(𝐾) is a WN-prime submodule of π‘ˆ. Proof Let 0 β‰  π‘Ÿπ‘₯ ∈ πœ‘βˆ’1(𝐾) where π‘Ÿ ∈ 𝑅,π‘₯ ∈ π‘ˆ with π‘₯ βˆ‰ πœ‘βˆ’1(𝐾) + 𝙹( π‘ˆ), it follows that πœ‘(π‘₯) βˆ‰ 𝐾 + πœ‘( 𝙹( π‘ˆ)) = 𝐾 + 𝙹( π‘ˆβ€²). Since 0 β‰  π‘Ÿπ‘₯ ∈ πœ‘βˆ’1(𝐾), implies that 0 β‰  π‘Ÿ πœ‘(π‘₯) ∈ 𝐾. But 𝐾 be a WN-prime submodule of π‘ˆβ€²and πœ‘(π‘₯) βˆ‰ 𝐾 + 𝙹( π‘ˆβ€²), it follows that π‘Ÿ ∈ [𝐾 + 𝙹( π‘ˆβ€²):𝑅 π‘ˆ β€²], that is π‘Ÿ π‘ˆβ€² βŠ† 𝐾 + 𝙹( π‘ˆβ€²), hence π‘Ÿ πœ‘( π‘ˆ) = πœ‘(π‘Ÿ π‘ˆ) βŠ† 𝐾 + 𝙹( π‘ˆβ€²). Implies that π‘Ÿ π‘ˆ βŠ† πœ‘βˆ’1(𝐾) + 𝙹( π‘ˆ). Therefore πœ‘βˆ’1(𝐾) is a WN-prime submodule of π‘ˆ. Proposition (2.25) Let 𝑓 ∢ 𝘜 ⟢ π˜œβ€² be an 𝑅-epimorphism with πΎπ‘’π‘Ÿπ‘“ is small submodule of 𝘜, and 𝐻 be a WN- prime submodule of 𝘜 with πΎπ‘’π‘Ÿπ‘“ βŠ† 𝐻. Then 𝑓(𝐻) is a WN-prime submodule of π˜œβ€². Proof Since πΎπ‘’π‘Ÿπ‘“ βŠ† 𝐻, that's clearly𝑓(𝐻) is a proper submodule of π˜œβ€². Now, suppose that 0β‰  π‘Ÿπ‘₯β€² ∈ 𝑓(𝐻), where π‘Ÿ ∈ 𝑅, π‘₯β€² ∈ π˜œβ€². Since 𝑓 is an epimorphism then 𝑓(π‘₯) = π‘₯β€² for some π‘₯ ∈ 𝘜, thus 0 β‰  π‘Ÿπ‘₯β€² = π‘Ÿπ‘“(π‘₯) = 𝑓(π‘Ÿπ‘₯) ∈ 𝑓(𝐻),it follows that there exists non-zero 𝑦 ∈ 𝐻 such that 𝑓(π‘Ÿπ‘₯) = 𝑓(𝑦), implies that 𝑓(π‘Ÿπ‘₯ βˆ’ 𝑦) = 0, hence π‘Ÿπ‘₯ βˆ’ 𝑦 ∈ πΎπ‘’π‘Ÿ 𝑓 βŠ† 𝐻 β‡’ 0 β‰  π‘Ÿπ‘₯ ∈ 𝐻. but 𝐻 is a WN-prime submodule of 𝘜, then either π‘₯ ∈ 𝐻 + 𝙹(𝘜) or π‘Ÿπ˜œ βŠ† 𝐻 + 𝙹(𝘜), it follows that either π‘₯β€² = 𝑓(π‘₯) ∈ 𝑓(𝐻) + 𝙹(π˜œβ€²) or π‘Ÿ π‘ˆβ€² = π‘Ÿπ‘“(𝘜) βŠ† 𝑓(𝐻) + 𝙹( π˜œβ€²). That is 𝑓(𝐻) is a WN-prime submodule of π˜œβ€². 3. Conclusion In this article the concept WN-prime submodule was introduced and studied as generalization of a weakly prime submodule. The results that we set in this research are the following: 1. Every weakly prime submodule of R-module π‘ˆ is WN-prime, but not conversely . 2. A proper submodule 𝐻 of an R-module π‘ˆ is a WN-prime if and only if whenever 0 β‰  βŒ©π‘ŸβŒͺ𝐿 βŠ† 𝐻 where π‘Ÿ ∈ 𝑅, 𝐿 is a submodule of π‘ˆ implies that either 𝐿 βŠ† 𝐻 + 𝙹( π‘ˆ) or βŒ©π‘ŸβŒͺ π‘ˆ βŠ† 𝐻 + 𝙹( π‘ˆ) . 3. A proper submodule 𝐻 of an R-module π‘ˆ is WN-prime if and only if [𝐻:𝑅 π‘₯] βŠ† [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] βˆͺ [0:𝑅 π‘₯] for all π‘₯ ∈ π‘ˆ and π‘₯ βˆ‰ 𝐻 + 𝙹( π‘ˆ). 4. Let 𝐻 be a proper submodule of an R-module π‘ˆ, with [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] is a prime ideal of 𝑅, then 𝐻 is a WN-prime if and only if 𝐻(𝑆) βŠ† 𝐻 + 𝙹( π‘ˆ) for each multiplicatively closed subset 𝑆 of 𝑅 with 𝑆 ∩ [𝐻 + 𝙹( π‘ˆ):𝑅 π‘ˆ] = πœ‘. 5. If a submodule 𝐻 of an R-module π‘ˆ is small and 𝙹( π‘ˆ) is a weakly prime submodule of π‘ˆ, then 𝐻 is WN-prime submodule of π‘ˆ. 46 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 6. Let π‘ˆ be a multiplication module over Artinian ring 𝑅, and 𝐻 is a WN-prime submodule of π‘ˆ then [𝐻:𝑅 π‘ˆ] is a WN-prime ideal of 𝑅. 7. If π‘ˆ is a projective multiplication R-module , and 𝐻 is a WN-prime submodule of π‘ˆ then [𝐻:𝑅 π‘ˆ] is a WN-prime ideal of 𝑅. 8. If π‘ˆ is finitely generated faithful multiplication module over good ring 𝑅, and 𝐴 be WN- prime ideal of 𝑅, then 𝐴 π‘ˆ is WN-prime submodule of π‘ˆ. 9. If π‘ˆ is finitely generated projective multiplication R-module then 𝐴 π‘ˆ is a WN-prime submodule of π‘ˆ for all WN-prime ideal 𝐴 of 𝑅 with π‘Žπ‘›π‘›( π‘ˆ) βŠ† 𝐴. 10. If 𝐻 is a WN-prime submodule of an R-module π‘ˆ, then π‘†βˆ’1𝐻 is a WN-prime submodule of π‘†βˆ’1𝑅-module π‘†βˆ’1 π‘ˆ, where 𝑆 is a multiplicatively closed subset of 𝑅. References 1. Behoodi, M. ; Koohi, H. Weakly prime Modules. Vietnam Journal of Math., 2004, 32,2, 185- 195. 2. Azizi, A.; weakly prime submodules and prime submodules, Glasgow Math. Journal, 2006, 48, 343-348. 3. Ebrahimi, S. ; Farzalipour, F.; On weakly prime submodules. TAMKANG Journal of Math. 2007, 38,3, 247-252. 4. Azizi, A. On prime and weakly prime submodules , Vietnam Journal of Math., 2008, 36,3, 315-325. 5. Adil, K. J. A Generalizations of prime and weakly prime submodules, Pure Math. Science, 2013, 2,1, 1-11. 6. Ebrahimi, S. ; Farzalipour, F. On weakly primary ideals, Georgian Math. Journal, 2005, 13, 423-429. 7. AL-Joboury, W. K. Weakly quasi- prime Modules and weakly quasi- prime submodules, M.SC. Thesis 2013, University of Tikrit. 8. Farzalipour, F. On Almost semi- prime submodules; Hindawi Publishing Corporation Algebra, 2014, 31, 231-237. 9. Saif, A; Haibt, K. M. WE- prime submodules and WE-semi- prime submodules. Ibn-Al- Haitham Jornal, for Pure and Apple.Sci. 2018, 31,3, 109-117. 10. El-Bast, Z.; Smith, P. F. ; Multiplication Modules, Comm. Algebra. 1988,16,4, 755-779. 11. Burton, D.; First course in rings and Ideals; University of New. Hampshire. 1970, 12. Athab, E. A. prime and Semi prime Submodules, M.SC. thesis, College of Science, University of Baghdad. 1996. 13. Larsen, M. D. ; McCarthy, P. J. ; Multiplicative Theory of Ideals; Academic press, New York and London, 1971. 14. Kasch, F. , Modules and rings, London Math. Soc. Monographs (17) New York.1982. 15. Smith P.; Some remarks on multiplication Modules, Arch. Math., 1988, 50, 223-226.