Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 85 Estimate for Survival and Related Functions of Weighted Rayleigh Distribution. Abstract In this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated[13]. The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function, survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mean squares error. Keyword: weighted Rayleigh distribution, Maximum likelihood method and lest square method. 1. Introduction The Rayleigh distribution is one of the important continuous distributions; it encounters much attention in the literature in benefit from any other distribution in lifetime sample modeling and data analysis. Many researchers developed various generalizations of Rayleigh probability density function to increase the flexibility in lifetime sample modeling [1]. We Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2558 Article history: Received18, December,2019, Accepted29,Janury,2020, Published in January 2021 Saad A. Zain Iden Hassan Hussein Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq. Iden_alkanani@yahoo.com Department of mathematics, College of Education for Pure Science, Ibn Al Haitham, University of Baghdad, Baghdad, Iraq. ssadadnan.2019@gmail.com mailto:Iden_alkanani@yahoo.com mailto:ssadadnan.2019@gmail.com 86 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Introduced a new class of density function depending on the shape parameter in the normal distribution, which is known as weighted normal distribution or (skew-normal distribution) [2]. We used the idea of Azzalini to find the shape parameter to an exponential distribution which is known as weighted exponential distribution, as well as putthe general mathematical formula to treat the weighted statistical distributions which are as follow: 𝑓𝑀(𝑋) = 1 𝑝[π‘₯2 < 𝛼π‘₯1] 𝑓(π‘₯1)𝐹(𝛼π‘₯1) (1) Where: 𝑓𝑀(𝑋) Weighted probability density function. 𝑓(π‘₯1) Standard probability density function for π‘Ÿ. 𝑣(π‘₯1) 𝐹(𝛼π‘₯1) Cumulative distribution functions with respect to weighted parameter 𝛼 for standard distribution. π‘ƒπ‘Ÿ(π‘₯2 < 𝛼π‘₯1) Probability for π‘Ÿ. 𝑣(π‘₯2) with respect to the π‘Ÿ. 𝑣(π‘₯1) and weighted function (𝛼). [3] Studied weighed Weibull distribution by using the idea of Azzalini and introduced the basic properties for this model [4]. Studied the skew-ness parameter of a gamma distribution by using the idea of Azzalini that resulted a new class of weighted gamma distribution.[5] proposed the extension of the weighted Weibull distribution and the main properties of this class are investigated and derived [6]. Estimated Linley’s approximation method for weighted exponential distribution by using a Monte Carlo simulation study [7]. Introduced two shape parameters to the existing weighted exponential distribution to develop the weighted Beta exponential distribution using the log it of beta function[8] proposed a model named exponentiated weighted exponential distribution and some of the basic statistical properties of the proposed model are studied and provided[9]. Studied the Nonparametric method such as the empirical method, kernel method, and modified shrinkage provided in weighted Weibull distribution [10]. Focused on Bayes estimation of weighted exponential distribution with fuzzy data[11]. Derived two parameters inverted weighted Exponential distribution and its various statistical properties thatwere established [12]. presented a new generalization weighted Weibull distribution using topple one family of distribution [13]. Proposed a new class of weighted Rayleigh distribution by using the idea of Azzalini and introduce the main characteristics of this distribution.This paper aimsto introduce a new weighted Rayleigh distribution with its properties which discussed maintained in[13]. Applying this new distribution on real data to estimate the parameters by using two methods and calculate the death density function, survival function, hazard function for these two methods. The rest of this article is as follows: in section two, the new weighted Rayleigh distribution and its properties is presented, section three xplains estimation methods, in section four is devoted to the real data application and section five gives the conclusion. 2- Weighted Rayleigh Distribution 87 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 In this section, we will provide the probability density function of new weighted Rayleigh distribution which is as follows: 𝑓(π‘₯; 𝛼, πœƒ) = 𝛼2 + 1 𝛼2 πœƒπ‘₯ 𝑒 βˆ’ πœƒ 2 π‘₯2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯2𝛼2 ] , π‘₯ > 0[13] (2) The cumulative distribution of new distribution is as follow: 𝐹(π‘₯; 𝛼, πœƒ) = 1 βˆ’ [ (𝛼2+1)𝑒 βˆ’ πœƒ 2 π‘₯2 βˆ’π‘’ βˆ’ πœƒ 2 π‘₯2(𝛼2+1) 𝛼2 ] (3) The survival function and hazard function is as follows: 𝑆(π‘₯) = (𝛼2 + 1)𝑒 βˆ’ πœƒ 2 π‘₯2 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯2(𝛼2+1) 𝛼2 (4) β„Ž(π‘₯) = πœƒπ‘₯(𝛼2 + 1) [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯2𝑑2 ] [(𝛼2 + 1) βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯2𝛼2 ] (5) The π‘Ÿπ‘‘β„Ž moment of new distribution is as follows: 𝐸(π‘₯π‘Ÿ) = 𝛼2 + 1 𝛼2 ( 2 πœƒ ) π‘Ÿ 2 𝛀 ( π‘Ÿ 2 + 1) [1 βˆ’ 1 (𝛼2 + 1) π‘Ÿ 2 +1 ] (6) The mean and the variance of the new distribution is: M= E (𝑋)= 𝛼2+1 𝛼2 [ πœ‹ 2πœƒ ] 1 2 [1 βˆ’ 1 (𝛼2+1) 3 2⁄ ] (7) The variance: 𝜎2 = π‘£π‘Žπ‘Ÿ(𝑋) = 4𝛼4(𝛼2+2)βˆ’πœ‹[(𝛼2+1) 3 2βˆ’1] 2 2πœƒπ›Ό4(𝛼2+1) (8) The Moment generated function of this distribution is as follows: π‘š. 𝑔. 𝑓 = 𝛼2 + 1 𝛼2 βˆ‘ π‘‘π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 ( 2 𝛳 ) π‘Ÿ 2 Ξ“ ( π‘Ÿ 2 + 1) [1 βˆ’ 1 (𝛼2 + 1) π‘Ÿ 2⁄ +1 ] (9) The Factorial Moment Generating function is: 𝑀π‘₯(𝑑) = 𝛼2 + 1 𝛼2 βˆ‘ (ℓ𝑛𝑑)π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 ( 2 πœƒ ) π‘Ÿ 2 Ξ“ ( π‘Ÿ 2 + 1) [1 βˆ’ 1 (𝛼2 + 1) π‘Ÿ 2 +1 ] (10) The skewness and the kurtosis of this distribution is : 88 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 𝐢. 𝑆 = 1 𝛼2 𝛀 ( 5 2 ) [ (𝛼2 + 1) 5 2 βˆ’ 1 (𝛼2 + 1) 3 2 ] (11) 𝐢. π‘˜ = 2[(𝛼2 + 1)3 βˆ’ 1] 𝛼2(𝛼2 + 1)2 βˆ’ 3 (12) The characteristic function of this distribution is as follows : 𝑄π‘₯ (π‘₯) = 𝛼2 + 1 𝛼2 βˆ‘ (𝑖𝑑)π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 ( 2 πœƒ ) π‘Ÿ Ξ“ ( π‘Ÿ 2 + 1) [1 βˆ’ 1 (𝛼2 + 1) π‘Ÿ 2 +1 ] (13) 3. Estimation Methods In this section, estimate the parameters of weighted Rayleigh distribution by employing two methods (Maximum likelihood estimator method and Ordinary least square estimator method). 3.1: Maximum Likelihood Method MLE is a famous and classical method used to find the estimators of parameters that maximize the likelihood function. The probability density function is: 𝑓(x; Ξ±, ΞΈ) = Ξ±2 + 1 Ξ±2 ΞΈx e βˆ’ ΞΈ 2 x2 [1 βˆ’ e βˆ’ ΞΈ 2 x2Ξ±2 ] (14) 𝐿 (𝛼, πœƒ; π‘₯) = (𝛼2 + 1)𝑛 𝛼2𝑛 πœƒπ‘› ∏ π‘₯𝑖 𝑛 𝑖=1 𝑒 βˆ’ ΞΈ 2 x2 ∏ [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯2𝛼2 ] 𝑛 𝑖=1 (15) 𝐿𝑛𝐿 = 𝑛𝑙𝑛 (𝛼2 + 1) βˆ’ 2𝑛 𝑙𝑛(𝛼) + π‘›π‘™π‘›πœƒ + βˆ‘ 𝐿𝑛 π‘₯𝑖 𝑛 𝑖=1 βˆ’ Σ¨ 2 βˆ‘ π‘₯𝑖 2 𝑛 𝑖=1 + βˆ‘ 𝐿𝑛 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] 𝑛 𝑖=1 (16) 𝑑𝑙𝑛𝑙 π‘‘πœƒ = 𝑛 πœƒ βˆ’ 1 2 βˆ‘ π‘₯𝑖 2 𝑛 𝑖=1 + βˆ‘ 1 2 π‘₯𝑖 2 𝛼2𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] = 𝑔1(πœƒ) 𝑛 𝑖=1 (17) 𝑑𝑙𝑛𝑙 𝑑𝛼 = 2𝑛𝛼 (𝛼2 + 1) βˆ’ 2𝑛 𝛼 + βˆ‘ πœƒπ›Ό π‘₯𝑖 2 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] = 𝑔2 𝑛 𝑖=1 (𝛼) (18) 𝑑𝑔1(πœƒ) π‘‘πœƒ = βˆ’ 𝑛 πœƒ2 βˆ’ βˆ‘ 1 4 π‘₯𝑖 4𝛼4π‘’βˆ’πœƒπ‘₯𝑖 2𝛼2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] 2 (19) 𝑛 𝑖=1 89 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 𝑑𝑔1(πœƒ) 𝑑𝛼 = βˆ‘ βˆ’ 1 2 πœƒπ›Ό3π‘₯𝑖 4𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 + 𝛼π‘₯𝑖 2𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 βˆ’ 𝛼π‘₯𝑖 2π‘’βˆ’πœƒπ‘₯𝑖 2𝛼2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] 2 𝑛 𝑖=1 (20) d𝑔2(Ξ±) dπœƒ = βˆ‘ βˆ’ 1 2 ΞΈΞ±3xi 4 e βˆ’ ΞΈ 2 xi 2Ξ±2 + Ξ±xi 2e βˆ’ ΞΈ 2 xi 2Ξ±2 βˆ’ Ξ±xi 2eβˆ’ΞΈxi 2Ξ±2 [1 βˆ’ e βˆ’ ΞΈ 2 xi 2Ξ±2 ] 2 n i=1 (21) 𝑑𝑔2(Ξ±) d𝛼 = 2𝑛(1 βˆ’ 𝛼2) (𝛼2 + 1 )2 + 2𝑛 𝛼2 + βˆ‘ πœƒπ‘₯𝑖 2𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 βˆ’ πœƒπ‘₯𝑖 2π‘’βˆ’πœƒπ‘₯𝑖 2𝛼2 βˆ’ πœƒ2𝛼2π‘₯𝑖 4𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 [1 βˆ’ 𝑒 βˆ’ πœƒ 2 π‘₯𝑖 2𝛼2 ] 2 𝑛 𝑖=1 (22) The above equations are nonlinear and must use multivariate Newton-Raphson method which is as follow: (23) [ ΞΈk+1 Ξ±k+1 ] = [ ΞΈk Ξ±k ] βˆ’ jβˆ’1 [ 𝑔1(πœƒ) 𝑔2(Ξ±) ] Where the Jacobean matrix is as follows: 𝐽 = [ 𝑑𝑔1(πœƒ) π‘‘πœƒ 𝑑𝑔1(πœƒ) 𝑑𝛼 𝑑𝑔 2 (Ξ±) π‘‘πœƒ 𝑑𝑔 2 (Ξ±) 𝑑𝛼 ] (24) Where J is Jacobean is a symmetric and square matrix. Then we find the stopping Rule for getting convergence which is as follows: |[ ΞΈk+1 Ξ±k+1 ] βˆ’ [ ΞΈk Ξ±k ]| ≀ | πœ–πœƒ πœ–π›Ό | (25) 3.2. The Ordinary Least Square Method The least squares method is a statistical procedure to find the best fit for a set of data points by minimizing the sum of the offsets or residuals of points from the plotted curve. Least squares regression is used to predict the behavior of dependent variables. π‘Œπ‘– = 𝛣0 + 𝛣1π‘₯ + Ξ΅ (26) Where: Ξ’0 represents the intercept term Ξ’1 represents the slop term Ξ΅ represents the error term The idea of this method is to minimize the sum of the squared difference between observed sample values and the estimate expected values by linear approximation: 90 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Ξ΅ = π‘Œπ‘– βˆ’ οΏ½Μ‚οΏ½0 βˆ’ οΏ½Μ‚οΏ½1π‘₯ (27) βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘[𝑦𝑖 βˆ’ 𝐸(yΜ‚) 2]2 n i=1 βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘ [Yi βˆ’ Ξ’Μ‚0 βˆ’ Ξ’Μ‚1x] 2 n i=1 Now, we apply this method to minimize the square difference between the estimate cumulative distribution function and the empirical cumulative distribution function, where the empirical (CDF) is: F(x) = π‘–βˆ’0.5 𝑛 (28) βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘[FΜ‚(xi) βˆ’ F(xi)] 2 n i=1 βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘ [1 βˆ’ [ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] βˆ’ i βˆ’ 0.5 n ] n i=1 2 βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘ [1 βˆ’ (i βˆ’ 0.5) n βˆ’ [ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ]] 2 n i=1 βˆ‘ Ξ΅ i 2 n i=1 = βˆ‘ [ n βˆ’ i + 0.5 n βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) Ξ±2 ] n i=1 Let yi = n βˆ’ i + 0.5 n (29) d βˆ‘ Ξ΅ i 2n i=1 dΞΈ = 2 βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] βˆ— n i=1 91 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 βˆ— [0 βˆ’ ( 1 Ξ±2 [βˆ’ 1 2 xi 2(Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 + 1 2 xi 2(Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)])] 𝑑 βˆ‘ Ξ΅ 𝑖 2𝑛 𝑖=1 π‘‘πœƒ = 2 βˆ‘ [𝑦𝑖 βˆ’ (𝛼2 + 1)π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) 𝛼2 ] 𝑛 𝑖=1 βˆ— (βˆ’ [ π‘₯𝑖 2(𝛼2 + 1) 2𝛼2 (βˆ’π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 + π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1))]) 𝑑 βˆ‘ Ξ΅ 𝑖 2𝑛 𝑖=1 π‘‘πœƒ = βˆ‘ [𝑦𝑖 βˆ’ (𝛼2 + 1)π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) 𝛼2 ] βˆ— 𝑛 𝑖=1 π‘₯𝑖 2(𝛼2 + 1) π‘₯2 βˆ— [π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1)] 𝑑 βˆ‘ Ξ΅ 𝑖 2𝑛 𝑖=1 π‘‘πœƒ = βˆ‘ π‘₯𝑖 2(𝛼2 + 1) 𝛼2 βˆ— [𝑦𝑖 βˆ’ (𝛼2 + 1)π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) 𝛼2 ] 𝑛 𝑖=1 βˆ— [π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1)] 𝑔1(πœƒ) = βˆ‘ xi 2(Ξ±2 + 1) Ξ±2 [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) Ξ±2 ] n i=1 βˆ— [eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1)] (30) d βˆ‘ Ξ΅ 𝑖 2 dΞ± = 2 βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] n i=1 βˆ— (βˆ’ [[ 1 Ξ±2 [2Ξ±eβˆ’ ΞΈ 2 xi 2 + ΞΈΞ±x2eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)] + [(Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)]] (βˆ’ 2 𝛼3 )) d βˆ‘ Ξ΅ 𝑖 2 dΞ± = 2 βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] n i=1 βˆ— ( 2 Ξ±3 [(Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)] βˆ’ 1 Ξ±2 [2Ξ±eβˆ’ ΞΈ 2 xi 2 + ΞΈΞ±xi 2eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)]) 92 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 d βˆ‘ Ξ΅ 𝑖 2 dΞ± = 2 βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] n i=1 [ 2 Ξ±3 Ξ±2eβˆ’ ΞΈ 2 xi 2 + 2 Ξ±3 eβˆ’ ΞΈ 2 xi 2 βˆ’ 2 Ξ±3 eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) βˆ’ 2Ξ±2 Ξ±3 eβˆ’ ΞΈ 2 xi 2 βˆ’ ΞΈΞ±2xi 2 Ξ±3 eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)] 𝑔2(𝛼) = βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) Ξ±2 ] [ 4π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ 4π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 (𝛼2+1) βˆ’ 2πœƒπ›Ό2π‘₯𝑖 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 (𝛼2+1) 𝛼3 ] n i=1 (31) dg1 dΞΈ = βˆ‘ xi 4(Ξ±2 + 1) 2Ξ±2 ([yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) Ξ±2 ] [eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) βˆ’ eβˆ’ ΞΈ 2 xi 2 ] n i=1 + (Ξ±2 + 1) Ξ±2 [eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1)] 2 ) (32) 𝑑𝑔1 𝑑𝛼 = βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] ( πœƒπ›Ό2(𝛼2 + 1)π‘₯𝑖 4π‘’βˆ’ ΞΈ 2 xi 2(𝛼2+1) βˆ’ 2π‘₯2 [π‘’βˆ’ ΞΈ 2 xi 2 βˆ’ π‘’βˆ’ ΞΈ 2 xi 2(𝛼2+1)] 𝛼3 ) n i=1 + xi 2(Ξ±2+1) Ξ±2 [eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1)] [ 2𝑒 βˆ’ ΞΈ 2 xi 2 βˆ’2𝑒 βˆ’ ΞΈ 2 xi 2(𝛼2+1) βˆ’πœƒπ›Ό2π‘₯2𝑒 βˆ’ ΞΈ 2 xi 2(𝛼2+1) 𝛼3 ] (33) 𝑑𝑔2 π‘‘πœƒ = βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) Ξ±2 ] n i=1 ( πœƒπ›Ό2(𝛼2 + 1)xi 4eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) βˆ’ 2π‘₯𝑖 2 [eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1)] 𝛼3 ) + xi 2(Ξ±2 + 1) Ξ±2 [ 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 (𝛼2+1) βˆ’ πœƒπ›Ό2π‘₯𝑖 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 (𝛼2+1) 𝛼3 ] [eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1)] (34) 𝑑𝑔2 𝑑𝛼 = βˆ‘ [yi βˆ’ (Ξ±2 + 1)eβˆ’ ΞΈ 2 xi 2 βˆ’ eβˆ’ ΞΈ 2 xi 2(Ξ±2+1) Ξ±2 ] n i=1 ( 2ΞΈ2𝛼2π‘₯𝑖 4eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) βˆ’ 3 [4eβˆ’ ΞΈ 2 xi 2 βˆ’ 4eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1) βˆ’ 2ΞΈ2𝛼2π‘₯𝑖 2eβˆ’ ΞΈ 2 xi 2 (Ξ±2+1)] 𝛼4 ) (35) + [ 4π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ 4π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) βˆ’ 2πœƒπ›Ό2π‘₯𝑖 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) 𝛼3 ] [ 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2 βˆ’ 2π‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) + π›Όπ‘’βˆ’ πœƒ 2 π‘₯𝑖 2(𝛼2+1) 𝛼3 ] 93 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 [ ΞΈk+1 Ξ±k+1 ] = [ ΞΈk Ξ±k ] βˆ’ jβˆ’1 [ 𝑔1(πœƒ) 𝑔2(𝛼) ] (36) π½βˆ’1 = [ 𝑑𝑔1 π‘‘πœƒ 𝑑𝑔1 𝑑𝛼 𝑑𝑔2 π‘‘πœƒ 𝑑𝑔2 𝑑𝛼 ] βˆ’1 (37) Symmetric and square, where: The Jacobean matrix is 𝑑𝑔1 𝑑𝛼 = 𝑑𝑔2 π‘‘πœƒ Then we can terminate and stop when: |[ ΞΈk+1 Ξ±k+1 ] βˆ’ [ ΞΈk Ξ±k ]| ≀ | Ξ΅ πœƒ Ξ΅ 𝛼 | (38) 4. Real Data Application In this section, real data for brain cancer disease is analyzed because it is widespread and deadly in Iraq; the time from infection to death was registered for period from 1/1/2018 to 31/12/2018 at Republic of Iraq / Ministry of Health/Medical City. The data of size (111) patients are considered as complete data set. X= { 23 10 14 4 14 11 20 15 20 9 7 15 10 16 12 7 11 15 16 13 14 15 12 9 14 14 21 28 16 16 10 5 5 13 17 9 9 9 9 22 10 13 18 22 8 19 20 10 6 12 10 20 5 12 10 26 8 9 21 12 16 12 14 14 19 17 28 6 10 5 20 6 8 11 14 17 9 18 24 9 10 9 10 14 14 8 16 8 8 7 13 11 5 14 24 7 11 15 2 18 10 11 15 20 28 14 19 9 15 7 9 }. After applying the chi square goodness of fit to test the hypothesis: 𝐻0 = π‘‘β„Žπ‘’ π‘‘π‘Žπ‘‘π‘Ž 𝑖𝑠 π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘Žπ‘  π‘€π‘’π‘–π‘”β„Žπ‘‘π‘’π‘‘ π‘…π‘Žπ‘¦π‘™π‘’π‘–π‘”β„Ž π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘–π‘œπ‘›. 𝐻1 = π‘‘β„Žπ‘’ π‘‘π‘Žπ‘‘π‘Ž π‘›π‘œπ‘‘ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘Žπ‘  π‘€π‘’π‘–π‘”β„Žπ‘‘π‘’π‘‘ π‘…π‘Žπ‘¦π‘™π‘’π‘–π‘”β„Ž π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘–π‘œπ‘›. Where the chi square goodness of fit statistic depends on the differences of the theoretical frequencies under the assumed distribution and observed differences from data and we applying the formula: 𝑋2 = βˆ‘ (π‘‚π‘–βˆ’πΈπ‘–) 2 𝐸𝑖 𝑁 𝑖=1 (39) 94 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 We apply the chi square goodness of fit to the data to get: The calculate chi square test = 4.2963 The calculate chi square test = 35.17 Calculate chi- square < tabulate chi-square. We accept 𝐻0 which means the data are distributed as weighted Rayleigh distribution. We apply the equation (23) and (25) in Maximum likelihood method by using Math Lab program version (2014) to find and estimate the values of πœƒ and 𝛼.Μ‚ Finally, we apply the equation (36) and (38) in Ordinary least square method by using MATHLAB program version (2014) to find and estimate the values of πœƒ and 𝛼,Μ‚ then we get: 𝛼.̂𝑀𝐿𝐸 =1.9881, πœƒπ‘€πΏπΈ = 0.0118 𝛼.̂𝑂𝐿𝑆 =5.9299, �̂�𝑂𝐿𝑆= 0.0218 4.1. Maximum Likelihood Method The value of estimate parameters (οΏ½Μ‚οΏ½, πœƒ) will be (1.9881, 0.0118) respectively. The estimated Probability Density Function, Survival Function, Cumulative Distribution and Hazard Functions will be as illustrated in Table 1. Table 1. Estimate the values of 𝑓(t), οΏ½Μ‚οΏ½(t), οΏ½Μ‚οΏ½(t), β„ŽΜ‚(t) for MLE method. X οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) 2 0.998678 0.002583 0.001322 0.002586 4 0.981538 0.016821 0.018462 0.017137 5 0.959154 0.028277 0.040846 0.029481 5 0.959154 0.028277 0.040846 0.029481 5 0.959154 0.028277 0.040846 0.029481 5 0.959154 0.028277 0.040846 0.029481 5 0.959154 0.028277 0.040846 0.029481 6 0.924601 0.040877 0.075399 0.04421 6 0.924601 0.040877 0.075399 0.04421 6 0.924601 0.040877 0.075399 0.04421 7 0.877585 0.052931 0.122415 0.060314 7 0.877585 0.052931 0.122415 0.060314 7 0.877585 0.052931 0.122415 0.060314 7 0.877585 0.052931 0.122415 0.060314 7 0.877585 0.052931 0.122415 0.060314 8 0.819409 0.062997 0.180591 0.076881 8 0.819409 0.062997 0.180591 0.076881 95 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 8 0.819409 0.062997 0.180591 0.076881 8 0.819409 0.062997 0.180591 0.076881 8 0.819409 0.062997 0.180591 0.076881 8 0.819409 0.062997 0.180591 0.076881 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 9 0.752565 0.070164 0.247435 0.093233 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 10 0.680162 0.074106 0.319838 0.108953 11 0.605378 0.074984 0.394622 0.123864 11 0.605378 0.074984 0.394622 0.123864 11 0.605378 0.074984 0.394622 0.123864 11 0.605378 0.074984 0.394622 0.123864 11 0.605378 0.074984 0.394622 0.123864 11 0.605378 0.074984 0.394622 0.123864 12 0.53106 0.073266 0.46894 0.137963 12 0.53106 0.073266 0.46894 0.137963 12 0.53106 0.073266 0.46894 0.137963 12 0.53106 0.073266 0.46894 0.137963 12 0.53106 0.073266 0.46894 0.137963 12 0.53106 0.073266 0.46894 0.137963 13 0.459511 0.06955 0.540489 0.151356 13 0.459511 0.06955 0.540489 0.151356 13 0.459511 0.06955 0.540489 0.151356 13 0.459511 0.06955 0.540489 0.151356 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 14 0.392426 0.064435 0.607574 0.164197 96 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 15 0.330929 0.058456 0.669071 0.176641 16 0.275656 0.05205 0.724344 0.188823 16 0.275656 0.05205 0.724344 0.188823 16 0.275656 0.05205 0.724344 0.188823 16 0.275656 0.05205 0.724344 0.188823 16 0.275656 0.05205 0.724344 0.188823 16 0.275656 0.05205 0.724344 0.188823 17 0.226855 0.045562 0.773145 0.200842 17 0.226855 0.045562 0.773145 0.200842 17 0.226855 0.045562 0.773145 0.200842 18 0.184472 0.03925 0.815528 0.212767 18 0.184472 0.03925 0.815528 0.212767 18 0.184472 0.03925 0.815528 0.212767 19 0.148234 0.033299 0.851766 0.224641 19 0.148234 0.033299 0.851766 0.224641 19 0.148234 0.033299 0.851766 0.224641 20 0.11771 0.027837 0.88229 0.236489 20 0.11771 0.027837 0.88229 0.236489 20 0.11771 0.027837 0.88229 0.236489 20 0.11771 0.027837 0.88229 0.236489 20 0.11771 0.027837 0.88229 0.236489 20 0.11771 0.027837 0.88229 0.236489 21 0.092372 0.022938 0.907628 0.248324 21 0.092372 0.022938 0.907628 0.248324 22 0.071635 0.018636 0.928365 0.260153 22 0.071635 0.018636 0.928365 0.260153 23 0.0549 0.014932 0.9451 0.27198 24 0.04158 0.011801 0.95842 0.283806 24 0.04158 0.011801 0.95842 0.283806 26 0.02302 0.007078 0.97698 0.307456 28 0.012156 0.004025 0.987844 0.331107 28 0.012156 0.004025 0.987844 0.331107 28 0.012156 0.004025 0.987844 0.331107 From Table 2. We find that the death density function is increasing with the failure times until (0.074984) when t=11, then the values decreasing with failure times from (0.073266) when t=12 until the end of failure times .We find that the survival function is decreasing with the increasing of failure times .We find that the hazard function is increasing with increasing failure times. 4.2: Ordinary Least square method The value of estimated (οΏ½Μ‚οΏ½, πœƒ) will be (5.9299, 0.0218) respectively and the estimated Probability Density, Survival, Distribution and Hazard Functions will be as illustrated in Table 97 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Table 2. Estimate the values of 𝑓(t), οΏ½Μ‚οΏ½(t), οΏ½Μ‚οΏ½(t), β„ŽΜ‚(t) for OLS method X οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) οΏ½Μ‚οΏ½(t) 2 0.97873 0.033599 0.02127 0.034329 4 0.863998 0.075079 0.136002 0.086898 5 0.783413 0.085272 0.216587 0.108846 5 0.783413 0.085272 0.216587 0.108846 5 0.783413 0.085272 0.216587 0.108846 5 0.783413 0.085272 0.216587 0.108846 5 0.783413 0.085272 0.216587 0.108846 6 0.695008 0.090785 0.304992 0.130624 6 0.695008 0.090785 0.304992 0.130624 6 0.695008 0.090785 0.304992 0.130624 7 0.6033 0.09194 0.3967 0.152395 7 0.6033 0.09194 0.3967 0.152395 7 0.6033 0.09194 0.3967 0.152395 7 0.6033 0.09194 0.3967 0.152395 7 0.6033 0.09194 0.3967 0.152395 8 0.512414 0.089245 0.487586 0.174166 8 0.512414 0.089245 0.487586 0.174166 8 0.512414 0.089245 0.487586 0.174166 8 0.512414 0.089245 0.487586 0.174166 8 0.512414 0.089245 0.487586 0.174166 8 0.512414 0.089245 0.487586 0.174166 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 9 0.425848 0.083439 0.574152 0.195937 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 10 0.346284 0.075389 0.653716 0.217707 11 0.275522 0.065981 0.724478 0.239478 11 0.275522 0.065981 0.724478 0.239478 11 0.275522 0.065981 0.724478 0.239478 11 0.275522 0.065981 0.724478 0.239478 11 0.275522 0.065981 0.724478 0.239478 11 0.275522 0.065981 0.724478 0.239478 12 0.214499 0.056038 0.785501 0.261249 98 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 12 0.214499 0.056038 0.785501 0.261249 12 0.214499 0.056038 0.785501 0.261249 12 0.214499 0.056038 0.785501 0.261249 12 0.214499 0.056038 0.785501 0.261249 12 0.214499 0.056038 0.785501 0.261249 13 0.163395 0.046244 0.836605 0.28302 13 0.163395 0.046244 0.836605 0.28302 13 0.163395 0.046244 0.836605 0.28302 13 0.163395 0.046244 0.836605 0.28302 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 14 0.121786 0.037119 0.878214 0.30479 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 15 0.088818 0.029004 0.911182 0.326561 16 0.06338 0.022077 0.93662 0.348332 16 0.06338 0.022077 0.93662 0.348332 16 0.06338 0.022077 0.93662 0.348332 16 0.06338 0.022077 0.93662 0.348332 16 0.06338 0.022077 0.93662 0.348332 16 0.06338 0.022077 0.93662 0.348332 17 0.044253 0.016378 0.955747 0.370102 17 0.044253 0.016378 0.955747 0.370102 17 0.044253 0.016378 0.955747 0.370102 18 0.030233 0.011848 0.969767 0.391873 18 0.030233 0.011848 0.969767 0.391873 18 0.030233 0.011848 0.969767 0.391873 19 0.02021 0.00836 0.97979 0.413644 19 0.02021 0.00836 0.97979 0.413644 19 0.02021 0.00836 0.97979 0.413644 20 0.013219 0.005756 0.986781 0.435415 20 0.013219 0.005756 0.986781 0.435415 20 0.013219 0.005756 0.986781 0.435415 20 0.013219 0.005756 0.986781 0.435415 20 0.013219 0.005756 0.986781 0.435415 20 0.013219 0.005756 0.986781 0.435415 21 0.00846 0.003868 0.99154 0.457185 21 0.00846 0.003868 0.99154 0.457185 22 0.005298 0.002537 0.994702 0.478956 22 0.005298 0.002537 0.994702 0.478956 23 0.003246 0.001625 0.996754 0.500727 24 0.001946 0.001017 0.998054 0.522498 24 0.001946 0.001017 0.998054 0.522498 26 0.000655 0.000371 0.999345 0.566039 99 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 28 0.000202 0.000123 0.999798 0.609581 28 0.000202 0.000123 0.999798 0.609581 28 0.000202 0.000123 0.999798 0.609581 From table (2), we find that the death density function is increasing with the failure times until (0.09194) when t=7, then decreasing with failure times from (0.089245) when t=8 until the end of failure times .We find that the survival function is decreasing with the increasing of failure times. We find that the hazard function is increasing with the increasing failure times. �̂�𝑀𝐿𝐸 = 𝟏. πŸ—πŸ–πŸ–πŸ, �̂�𝑀𝐿𝐸 = 𝟎. πŸŽπŸπŸπŸ–, �̂�𝑂𝐿𝑆 = πŸ“. πŸ—πŸπŸ—πŸ—, �̂�𝑂𝐿𝑆 =0.0218 �̂�𝑀𝐿𝐸 = 𝟏. πŸ—πŸ–πŸ–πŸ, �̂�𝑀𝐿𝐸 = 𝟎. πŸŽπŸπŸπŸ–, �̂�𝑂𝐿𝑆 = πŸ“. πŸ—πŸπŸ—πŸ—, �̂�𝑂𝐿𝑆 =0.0218 100 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 �̂�𝑀𝐿𝐸 = 𝟏. πŸ—πŸ–πŸ–πŸ, �̂�𝑀𝐿𝐸 = 𝟎. πŸŽπŸπŸπŸ–, �̂�𝑂𝐿𝑆 = πŸ“. πŸ—πŸπŸ—πŸ—, �̂�𝑂𝐿𝑆 =0.0218 101 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 �̂�𝑀𝐿𝐸 = 𝟏. πŸ—πŸ–πŸ–πŸ, �̂�𝑀𝐿𝐸 = 𝟎. πŸŽπŸπŸπŸ–, �̂�𝑂𝐿𝑆 = πŸ“. πŸ—πŸπŸ—πŸ—, �̂�𝑂𝐿𝑆 =0.0218 102 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 .Conclusion 5 1. In the two estimation methods above, the probability estimation values of the survival function are decreasing with the increase in failure time values. This shows that there is an inverse relationship between the probability survival function and the failure times. 2. In the two estimation methods, we can watch the estimation value of the probability hazard function is increasing with the increase in failure times, and then it is very clear that this relationship is direct between the times of failure and the probability hazard function. 3. From our reading of the values of the estimated probability density function of the two methods used are increasing values until the time of failure (x = 11) in MLE and (x=7)in OLS, then the probability density function decreases with increasing failure times. This shows us that the relationship between the probability density function and the failure times is not constant i.e. according to the values of failure times. 4. That clear the values of the cumulative distribution function are increasing with increasing the values of failure times. 103 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 5. Observing that the estimation values of the parameters which are the shape parameter and the scale parameter in the weighted Rayleigh distribution. It is clear that for the οΏ½Μ‚οΏ½ values is one close to the other in the MLE, OLS method but on the other hand, the value of οΏ½Μ‚οΏ½ is close to one unit of the other. In the table below, the estimate values of the two parameters for weighted Rayleigh distribution by MLE and OLS can be show in following Table: Table 3. Estimate the values of οΏ½Μ‚οΏ½, οΏ½Μ‚οΏ½ by MLE and OLS methods 6. Note that, as is known, the values of the probability hazard function depend on the value of the shape parameter, thus the probability hazard function is an increasing such that (Ξ± > 1) for the two estimation methods. 9. The mean squares error values for the MLE, OLS methods by using the equation is: 𝑀𝑆𝐸[οΏ½Μ‚οΏ½(t)] = βˆ‘ [οΏ½Μ‚οΏ½(t)βˆ’s(t)]2𝑛𝑖=1 𝑛 (40) We find the MSE for MLE and OLS and there is a clear difference and eventually. The MLE method is better than OLS as below: MSE OLS MLE 0.0626 0.0006 References 1. Azzalini, A. A Class of Distributions which includes. The normal ones, Board of the foundation of the Scandinavian journal of statistics.1985, 12, 2, 171-178. 2. Gupta, R.D.; Kundu, D. A new class of weighted exponential distributions, A journal of the article and Applied statistics.2009, 43, 6, 621-634. 3. Shahbaz, S.; Shah 76ΨΊ baz, M.Q.; Butt, N.S. A class of weighted Weibull Distribution, Scorn Electronic Journal.2010, 6, 1, 53-59. 4. Ramadan, M. M A class of weighed Gamma Distributions its properties, Economic Quality Control.2010, 26, 2, 133-144. 5. Essam, A.A.; Mohamed, A.H. A weighted three –parameters weibull distribution, Journal of Applied Sciences Research.2014, 9, 13, 6627-6635. 6. Farahani, Z.S.M.; Khorram, E. Bayesian statistical inference for weighted Exponential Distribution, Taylor and Francis group. LLc.2014, 43, 6, 1384-1462. 7. Tawfiq, LNM.; Jabber, AK. Mathematical Modeling of Groundwater Flow. Global Journal of Engineering Science and Researches. 2016, 3, 10, 15-22. οΏ½Μ‚οΏ½ οΏ½Μ‚οΏ½ The methods 0.0118 1.9881 MLE 0.0218 5.9299 OLS 104 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 8. Oguntunde, p. E. On the Exponentiated Weighted Exponential Distribution and its Basic statistical properties. PSCI Publication.2015, 10, 3, 160-167. 9. Zahrani, B. on the estimation of Reliability of Weighted weibull Distri- bution: A comparative study, international journal of statistics and probability.2016, 5, 4, 1427- 7040. 10. Al-Noor, N.H.; Hussein, L.K. Weighted Exponential distribution: Approximate Bayes Estimations with Fuzzy Data, scientific international conference college of science, Al- Nahrain Unevercity.2017, 0, 1, 174-185. 11. Oguntunde, P.E.; Ilori, K.A.; Okagbue, H. I. The inverted weighted exponential distribution with applications, interracial journal of Advanced and Applied Sciences.2018, 5, 11, 46-50. 12. Tawfiq, LNM; Oraibi. YA. Fast Training Algorithms for Feed Forward Neural Networks. Ibn Al-Haitham Journal for Pure and Applied Science. 2017, 26, 1: 1275-280. 13. Hussein. Iden Hasan and Zain. Saad Adnan. Some Aspects of Weighted Rayleigh Distribution. Ibn Al- Haitham Journal for Pure and Applied Science. Date of acceptance of publication in the above journal. 2019, 33, that will out in 2020. http://codental.uobaghdad.edu.iq/jih/index.php/j/article/view/534