Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 116 Nearly Primary-2-Absorbing Submodules and other Related Concepts Omar A. Abdulla Ali Sh. Ajeel Haibat K. Mohammadali omar.aldoori87@gmail.com Ali.shebl@st.tu.edu.iq H.mohammadali@tu.edu.iq Abstract Our aim in this paper is to introduce the notation of a nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule 𝐾 of an 𝑅- module ∁ is called nearly primary-2-absorbing submodule if whenever π‘Žπ‘π‘₯ ∈ 𝐾, for π‘Ž, 𝑏, ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or π‘Žπ‘ ∈ [𝐾 + 𝐽(∁):𝑅 ∁]. We got many basic properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules are inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under 𝑅-epimorphism is studied. Keywords: Primary submodules, prime submodules, multiplication modules, Artirian ring, projective 𝑅-modules , Jacobin of a modules . 1. Introduction Throughout this paper, all rings are commutative with identity and we assume all 𝑅- modules are left unitary. Prime submodulse are among the most famous concepts of modules theory, where a proper submodule 𝐻 of an 𝑅-module ∁ is said to be a prime submodule if whenever π‘Žπ‘₯ ∈ 𝐻, where π‘Ž ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘₯ ∈ 𝐻 or π‘Žβˆ βŠ† 𝐻[1]. In addition, primary submodules is introduced in [2] as a generalization of a prime submodule, where a proper submodule 𝐻 of an 𝑅-module ∁ is said to be a primary submodule if whenever π‘Žπ‘₯ ∈ 𝐻, for π‘Ž ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘₯ ∈ 𝐻 or π‘Žπ‘›βˆ βŠ† 𝐻 for some 𝑛 ∈ 𝑍+. The well-known generalization of prime submodules is the concept of 2-absorbing submodule, where a proper Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2560 Article history: Received 4, Februaryber,2020, Accepted, 13, February 2020, Published in January 2021 Directorate General of Education Salahaddin, the Ministry of Education, Tikrit, Iraq. Directorate General of Education Salahaddin, the Ministry of Education, Tikrit, Iraq. Department of Mathematics , College of Computer Sciences and Mathematics , Tikrit University, Tikrit, Iraq. mailto:omar.aldoori87@gmail.com mailto:Ali.shebl@st.tu.edu.iq mailto:H.mohammadali@tu.edu.iq 117 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 submodule 𝐻 of an 𝑅-module ∁ is called 2-absorbing submodule if whenever π‘Žπ‘π‘₯ ∈ 𝐻, for π‘Ž,𝑏 ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘Žπ‘₯ ∈ 𝐻 or 𝑏π‘₯ ∈ 𝐻 or π‘Žπ‘βˆ βŠ† 𝐻[3] is studied extensively. There are many generalizations of the concept of 2-absorbing, for example see [4 … 6]. Dubey in [7] introduced the concept of 2-absorbing primary submodule, where a proper submodule 𝐻 of an 𝑅-module ∁ is called 2-absorbing primary submodule if whenever π‘Žπ‘π‘₯ ∈ 𝐻, for π‘Ž,𝑏 ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) or π‘Žπ‘ ∈ [𝐻:𝑅 ∁], where π‘Ÿπ‘Žπ‘‘βˆ(𝐻) is the intersection of all prime submodule of ∁ containing 𝐻. Recall that an 𝑅-module ∁ is multiplication if every submodule 𝐻 of ∁ is of the form 𝐻 = 𝐽∁ for some ideal 𝐽 of 𝑅 [8]. Again recall that an 𝑅-module ∁ is said to be faithful if π‘Žπ‘›π‘›π‘… (∁) = (0). And a ring 𝑅 is said to be Artinian if 𝑅 satisfies D.CC on ideals of 𝑅, that is 𝐼1 βŠ‡ 𝐼2 βŠ‡ β‹― βŠ‡ β‹―, then there exists 𝑛 ∈ 𝑍+ such that 𝐼𝑛 = πΌπ‘š for some 𝑛 > π‘š [11]. Finally a ring 𝑅 is called a good ring, if 𝐽(𝑅). ∁= 𝐽(∁) where ∁ is an 𝑅-module [12]. 2. Nearly Primary-2-Absorbing Submodules In this paper, we will introduce the concept of nearly primary-2-absorbing submodule and give some basic results of these classes of submodules. And discuss on the relationships with class of 2-absorbing submodules and nearly primary-2-absorbing submodules. Definition 1 A proper submodule 𝐻 of an 𝑅-module ∁ is said to be nearly primary-2-absorbing submodule of ∁, if whenever π‘Žπ‘π‘₯ ∈ 𝐻, for π‘Ž, 𝑏 ∈ 𝑅, π‘₯ ∈ ∁ implies that either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) + 𝐽(∁) or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) + 𝐽(∁) or π‘Žπ‘ ∈ [𝐻 + 𝐽(∁):𝑅 ∁]. And a proper ideal 𝐽 of a ring 𝑅 is called nearly primary-2-absorbing ideal of 𝑅, if 𝐽 is nearly primary-2-absorbing submodules of an 𝑅- module 𝑅. Remarks and Examples 2 1. It is clear that every 2-absorbing submodule of an 𝑅-module ∁ is a nearly primary-2- absorbing submodule, while the reverse does not hold in general, the following example show that: Let ∁= 𝑍16, 𝑅 = 𝑍 and 𝐾 = 〈8Μ…βŒͺ. 𝐾 is not 2-absorbing submodule since 2.2. 2Μ… ∈ 𝐾 where 2 ∈ 𝑅 = 𝑍, 2Μ… ∈ 𝑍16, then 2. 2Μ… = 4Μ… βˆ‰ 𝐾 and 2.2 = 4 βˆ‰ [𝐾:𝑅 𝑍16] = 8𝑍. But 𝐾 is a nearly primary-2-absorbing submodule of 𝑍16, since 𝐽(𝑍16) = 〈2Μ…βŒͺ and π‘Ÿπ‘Žπ‘‘βˆ(𝐾) = 〈2Μ…βŒͺ for all π‘Ž, 𝑏 ∈ 𝑍, π‘₯ ∈ 𝑍16 with π‘Žπ‘π‘₯ ∈ 𝐾 = 〈8Μ…βŒͺ implies that either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(𝑍16) = 〈2Μ…βŒͺ + 〈2Μ…βŒͺ = 〈2Μ…βŒͺ or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(𝑍16) = 〈2Μ…βŒͺ or π‘Žπ‘ ∈ [〈8Μ…βŒͺ + 𝐽(𝑍16):𝑍 𝑍16] = [〈2Μ…βŒͺ: 𝑍16] = 2𝑍. That is 2.2. 2Μ… ∈ 𝐾, implies that 2. 2Μ… = 4Μ… ∈ 〈2Μ…βŒͺ + 〈2Μ…βŒͺ = 〈2Μ…βŒͺ or 2.2 = 4 ∈ [〈8Μ…βŒͺ + 〈2Μ…βŒͺ:𝑍 𝑍16] = 2𝑍. 2. It is clear that every prime submodule of an 𝑅-module ∁ is a nearly primary-2-absorbing submodule, while the reverse does not hold in general, the following example show that: Let ∁= 𝑍8, 𝑅 = 𝑍 and 𝐾 = 〈4Μ…βŒͺ . 𝐾 is not prime submodule of 𝑍8, since 2. 2Μ… ∈ 𝐾, where 2 ∈ 𝑍, 2Μ… ∈ 𝑍8 implies that 2Μ… βˆ‰ 𝐾 and 2 βˆ‰ [𝐾:𝑍 ∁] = 4𝑍. But 𝐾 is a nearly primary-2- absorbing submodule of ∁, since 2.2. 1Μ… ∈ 𝐾, where 2 ∈ 𝑍, 1Μ… ∈ 𝑍8 2 implies that 2. 1Μ… ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(𝑍8) = 〈2βŒͺ or 2.2 = 4 ∈ [𝐾 + 𝐽(∁):𝑍 ∁] = 2𝑍. 3. It is clear that every primary submodule of an 𝑅-module ∁ is a nearly primary-2-absorbing submodule, while the reverse does not hold in general. The following example show that: Let ∁= 𝑍6, 𝑅 = 𝑍 and 𝐾 = 〈0Μ…βŒͺ is a submodule of ∁. 𝐾 is a nearly primary-2-absorbing submodule of ∁ but not primary submodule, since 3 ∈ 𝑍, 2Μ… ∈ 𝑍6 such that 3. 2Μ… ∈ 𝐾, but 118 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 2Μ… βˆ‰ 𝐾 = 〈0Μ…βŒͺ and 3 βˆ‰ √[〈0Μ…βŒͺ: 𝑍6] = √6𝑍 = 6𝑍. But 𝐾 is a nearly primary-2-absorbing submodule of ∁= 𝑍6. For all π‘Ž,𝑏 ∈ 𝑅,π‘₯ ∈ ∁, with π‘Žπ‘π‘₯ ∈ 𝐾 implies that either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) = 〈0Μ…βŒͺ + 〈0βŒͺ = 〈0Μ…βŒͺ or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) = 〈0Μ…βŒͺ + 〈0βŒͺ = 〈0Μ…βŒͺ or π‘Žπ‘ ∈ [〈0Μ…βŒͺ + 〈0Μ…βŒͺ:𝑍 𝑍6] = 6𝑍. That is 2.3. 1Μ… ∈ 𝐾,where 2,3 ∈ 𝑅, 1Μ… ∈ 𝑍6 implies that 2. 1Μ… = 2Μ… βˆ‰ 〈0Μ…βŒͺ but 2.3 = 6 ∈ [〈0Μ…βŒͺ + 〈0Μ…βŒͺ:𝑍 𝑍6] = 6𝑍. The following results are characterizations of a nearly primary-2-absorbing submodules. Proposition 3 Let ∁ be an 𝑅-module and 𝐾 is a proper submodule of ∁. Then 𝐾 is a nearly primary-2- absorbing submodule of ∁ if and only if for each π‘Ÿ, 𝑠 ∈ 𝑅 with π‘Ÿπ‘  βˆ‰ [𝐾 + 𝐽(∁):𝑅 ∁], [𝐾:∁ π‘Ÿπ‘ ] βŠ† [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ π‘Ÿ] βˆͺ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ 𝑠]. Proof: (β‡’) Let π‘₯ ∈ [𝐾:∁ π‘Ÿπ‘ ], where π‘Ÿ, 𝑠 ∈ 𝑅 and π‘Ÿπ‘  βˆ‰ [𝐾 + 𝐽(∁):𝑅 ∁], implies that π‘Ÿπ‘ π‘₯ ∈ 𝐾. But 𝐾 is a nearly primary-2-absorbing submodule of ∁, and π‘Ÿπ‘  βˆ‰ [𝐾 + 𝐽(∁):𝑅 ∁], then π‘Ÿπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or 𝑠π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁). That is either π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁):∁ π‘Ÿ] or π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁):∁ 𝑠], thus π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁):∁ π‘Ÿ] βˆͺ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝑠𝐽(∁):∁ 𝑠]. Hence, [𝐾:∁ π‘Ÿπ‘ ] βŠ† [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ π‘Ÿ] βˆͺ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ 𝑠]. (⇐) Let π‘Ÿπ‘ π‘₯ ∈ 𝐾, where π‘₯ ∈ ∁ and π‘Ÿ, 𝑠 ∈ 𝑅 with π‘Ÿπ‘  βˆ‰ [𝐾 + 𝐽(∁):𝑅 ∁]. It follows that π‘₯ ∈ [𝐾:∁ π‘Ÿπ‘ ], by hypothesis π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ π‘Ÿ] βˆͺ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ 𝑠]. Hence π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ π‘Ÿ] or π‘₯ ∈ [π‘Ÿπ‘Žπ‘‘βˆ(𝐾):∁ 𝑠]. Therefore π‘Ÿπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or 𝑠π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) , that is 𝐾 is a nearly primary-2-absorbing submodule of ∁. Proposition 4 Let ∁ be an 𝑅-module and 𝐿 be a proper submodule of ∁ . Then 𝐿 is a nearly primary-2- absorbing submodule of ∁ if and only if π‘Žπ‘πΎ βŠ† 𝐿 for π‘Ž, 𝑏 ∈ 𝑅 and 𝐾 is a submodule of ∁ , with π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁ ], implies that π‘ŽπΎ βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑏𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Proof: (β‡’) Let 𝐿 be a nearly primary-2-absorbing submodule of ∁ , π‘Žπ‘πΎ βŠ† 𝐿 with π‘Ÿ, 𝑠 ∈ 𝑅 and 𝐾 is a submodule of ∁ with π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁]. Assume that π‘ŽπΎ ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and 𝑏𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), then π‘Žπ‘˜1 βˆ‰ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘π‘˜2 βˆ‰ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) for some π‘˜1, π‘˜2 ∈ 𝐾. Now we have π‘Žπ‘π‘˜1 ∈ 𝐿 but 𝐿 is a nearly primary-2-absorbing submodule of ∁ and π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁] and π‘Žπ‘˜1 βˆ‰ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), then π‘π‘˜1 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Also, since π‘Žπ‘π‘˜2 ∈ 𝐿 and π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁] and π‘π‘˜2 βˆ‰ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), then π‘Žπ‘˜2 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Again since π‘Žπ‘(π‘˜1 + π‘˜2) ∈ 𝐿 and π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁] we have π‘Ž(π‘˜1 + π‘˜2) ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑏(π‘˜1 + π‘˜2) ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Suppose that π‘Ž(π‘˜1 + π‘˜2) = π‘Žπ‘˜1 + π‘Žπ‘˜2 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), but π‘Žπ‘˜2 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), it follows that π‘Žπ‘˜1 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) a contradiction. Suppose that 𝑏(π‘˜1 + π‘˜2) = π‘π‘˜1 + π‘π‘˜2 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), but π‘π‘˜1 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), we have π‘π‘˜2 ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) a contradiction. Hence π‘ŽπΎ βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑏𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). (⇐) Let π‘Žπ‘π‘₯ ∈ 𝐿, where π‘₯ ∈ ∁ and π‘Ž, 𝑏 ∈ 𝑅 with π‘Žπ‘ βˆ‰ [𝐿 + 𝐽( ∁ ):𝑅 ∁ ]. So that π‘Žπ‘(π‘₯) βŠ† 𝐿, it follows by hypothesis π‘Ž(π‘₯) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑏(π‘₯) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). That is π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑏π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Hence 𝐿 is a nearly primary-2-absorbing submodule of ∁. 119 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proposition 5 Let ∁ be an 𝑅-module and 𝐿 be a proper submodule of ∁. Then 𝐿 is a nearly primary-2- absorbing submodule of ∁ if and only if 𝐼𝐽𝐾 βŠ† 𝐿, where 𝐼, 𝐽 are ideals of 𝑅 and 𝐾 is a submodule of ∁, implies that either 𝐼𝐽 βŠ† [𝐿 + 𝐽(∁):𝑅 ∁] or 𝐼𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝐽𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Proof: (⇐) Clear. (β‡’) Assume that 𝐿 is a nearly primary-2-absorbing submodule of ∁, and 𝐼𝐽𝐾 βŠ† 𝐿, where 𝐼, 𝐽 are ideals of 𝑅 and 𝐾 is a submodule of ∁ and 𝐼𝐽 ⊈ [𝐿 + 𝐽(∁):𝑅 ∁]. We must prove that 𝐼𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝐽𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Suppose that 𝐼𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ )and 𝐽𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). It follows that there exists π‘Ÿ1 ∈ 𝐼 and π‘Ÿ2 ∈ 𝐽 such that π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘Ÿ2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Now π‘Ÿ1π‘Ÿ2𝐾 βŠ† 𝐿 with π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘Ÿ2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and 𝐿 is a nearly primary-2-absorbing submodule of ∁ , impling that by Proposition(4) π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] . Since 𝐼𝐽 ⊈ [𝐿 + 𝐽(∁):𝑅 ∁]. It follows that there exists 𝑠1 ∈ 𝐼, 𝑠2 ∈ 𝐽 such that 𝑠1𝑠2 βˆ‰ [𝐿 + 𝐽(∁):𝑅 ∁] . Since 𝑠1𝑠2𝐾 βŠ† 𝐿, and 𝑠1𝑠2 βˆ‰ [𝐿 + 𝐽(∁):𝑅 ∁] , we have by Proposition(4) either 𝑠1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝑠2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) . Now, we discuss the following cases: Case one: Suppose that 𝑠1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) but 𝑠2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) Since π‘Ÿ1𝑠2𝐾 βŠ† 𝐿 and 𝐿 is a nearly primary-2-absorbing submodule of ∁ with 𝑠2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), implies that π‘Ÿ1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] by Proposition(4). Also since 𝑠1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) but π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), it follows that (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Since (π‘Ÿ1 + 𝑠1)𝑠2𝐾 βŠ† 𝐿 and 𝑠2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) implies that by Proposition(4) (π‘Ÿ1 + 𝑠1)𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] . That is (π‘Ÿ1 + 𝑠1)𝑠2 = π‘Ÿ1𝑠2 + 𝑠1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] and π‘Ÿ1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁], implies that 𝑠1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] a contradiction. Case two: Let it be 𝑠2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) but 𝑠1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) in similarly steps of Case one we get a contradiction. Case three: Assume that 𝑠1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) but 𝑠2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) . Now since 𝑠2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘Ÿ2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), it follows that (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). We have π‘Ÿ1(π‘Ÿ2 + 𝑠2)𝐾 βŠ† 𝐿 and π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), by proposition(4) π‘Ÿ1(π‘Ÿ2 + 𝑠2) = π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁].But π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] and π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁]. It follows that π‘Ÿ1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁]. Now, since 𝑠1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and π‘Ÿ1𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), implies that (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) since (π‘Ÿ1 + 𝑠1)π‘Ÿ2𝐾 βŠ† 𝐿 and π‘Ÿ2𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), it follows that (π‘Ÿ1 + 𝑠1)π‘Ÿ2 = π‘Ÿ1π‘Ÿ2 + 𝑠1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] by Proposition(4). Now, since π‘Ÿ1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] and π‘Ÿ1π‘Ÿ2 + 𝑠1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁], implies that 𝑠1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] . Also , since (π‘Ÿ1 + 𝑠1)(π‘Ÿ2 + 𝑠2)𝐾 βŠ† 𝐿 and (π‘Ÿ1 + 𝑠1)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) and (π‘Ÿ2 + 𝑠2)𝐾 ⊈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ), it follows that (π‘Ÿ1 + 𝑠1)(π‘Ÿ2 + 𝑠2) = π‘Ÿ1π‘Ÿ2 + π‘Ÿ1𝑠2 + 𝑠1π‘Ÿ2 + 𝑠1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] by Proposition(4). Again since π‘Ÿ1π‘Ÿ2, π‘Ÿ1𝑠2, 𝑠1π‘Ÿ2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁], we get that 𝑠1𝑠2 ∈ [𝐿 + 𝐽(∁):𝑅 ∁] a contradiction. Thus, we have either 𝐼𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ) or 𝐽𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽( ∁ ). Proposition 6 Let 𝐻 be a proper submodule of an 𝑅-module ∁, with π‘Ÿπ‘Žπ‘‘βˆ(𝐻) is a prime submodule of ∁. Then 𝐻 is a nearly primary-2-absorbing submodule of ∁. 120 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proof: Suppose that π‘Žπ‘π‘₯ ∈ 𝐻, where π‘Ž, 𝑏 ∈ 𝑅, π‘₯ ∈ ∁ and 𝑏π‘₯ βˆ‰ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) + 𝐽( ∁ ). Since𝐻 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐻), then π‘Ž(𝑏π‘₯) ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻), but π‘Ÿπ‘Žπ‘‘βˆ(𝐻) is a prime submodule of ∁, then π‘ŽβˆβŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐻) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐻) + 𝐽(∁). That is π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐻) + 𝐽( ∁ ), for some π‘₯ ∈ ∁. Thus 𝐻 is a nearly primary-2-absorbing submodule of ∁. Before we introduce the next result, we need to recall the following Lemma. Lemma 7[10] If 𝑅 is a good ring, ∁ is an 𝑅-module and 𝑁 is a submodule of ∁, then 𝐽(∁) ∩ 𝑁 = 𝐽(𝑁). Proposition 8 Let 𝑅 be a good ring, 𝐿 and 𝐾 are proper submodules of an 𝑅-module ∁ with 𝐿 ⊊ 𝐾 and 𝐽(∁) βŠ† 𝐾. If 𝐿 is a nearly primary-2-absorbing submodule of ∁, then 𝐿 is a nearly primary-2- absorbing submodule of 𝐾. Proof: Let π‘Ÿπ‘ π‘₯ ∈ 𝐿, where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ 𝐾 βŠ† ∁. Since 𝐿 is a nearly primary-2-absorbing submodule of ∁, implies that either π‘Ÿπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝑠π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or π‘Ÿπ‘ βˆβŠ† 𝐿 + 𝐽(∁). That is either π‘Ÿπ‘₯ ∈ (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) ) ∩ 𝐾 or 𝑠π‘₯ ∈ (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) ) ∩ 𝐾 or π‘Ÿπ‘ βˆ βŠ† (𝐿 + 𝐽(∁)) ∩ 𝐾. But by modular law we have (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) ) ∩ 𝐾 = (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) ∩ 𝐾) + ( 𝐽(∁) ∩ 𝐾) = (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) ∩ 𝐾) + 𝐽(𝐾) by Lemma(7). Thus we have either π‘Ÿπ‘₯ ∈ (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) ∩ 𝐾) + 𝐽(𝐾) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(𝐾) or 𝑠π‘₯ ∈∈ (π‘Ÿπ‘Žπ‘‘βˆ(𝐿) ∩ 𝐾) + 𝐽(𝐾) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(𝐾) or π‘Ÿπ‘ βˆ βŠ† (𝐿 ∩ 𝐾) + (𝐽(∁) ∩ 𝐾) = (𝐿 ∩ 𝐾) + 𝐽(𝐾) βŠ† 𝐿 + 𝐽(𝐾). Hence 𝐿 is a nearly primary-2-absorbing submodule of 𝐾. Recall that for any submodules 𝐿, 𝐾 of a multiplication 𝑅-module ∁ with 𝐿 = 𝐼∁, 𝐾 = 𝐽∁ for some ideals 𝐼 and 𝐽 of 𝑅. The product 𝐿𝐾 = 𝐼∁. 𝐽∁= 𝐼𝐽∁. That is 𝐿𝐾 = 𝐼𝐾, in particular 𝐿∁= 𝐼∁∁= 𝐼∁= 𝐿. Also for any π‘₯ ∈ ∁ we have 𝐿π‘₯ = 𝐼π‘₯[13]. The following result gives a characterization of nearly primary-2-absorbing submodules in class of multiplication modules. Proposition 9 Let ∁ be a multiplication 𝑅-module and 𝐿 is a proper submodule of ∁. Then 𝐿 is a nearly primary-2-absorbing submodule of ∁ if and only if, whenever 𝐿1𝐿2𝐿3 βŠ† 𝐿 for 𝐿1, 𝐿2, 𝐿3 are submodules of ∁, impling that either 𝐿1𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐿2𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐿1𝐿2π‘Š βŠ† 𝐿 + 𝐽(∁). Proof: (β‡’) Let 𝐿 be a nearly primary-2-absorbing submodule of ∁ and 𝐿1𝐿2𝐿3 βŠ† 𝐿 for 𝐿1, 𝐿2, 𝐿3 are submodules of ∁, with 𝐿1𝐿2 ∁ ⊈ 𝐿 + 𝐽(∁). Since ∁ is a multiplication, then 𝐿1 = 𝐼1∁ and 𝐿2 = 𝐼2∁ for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝑅. Clearly 𝐼1𝐼2𝐿3 βŠ† 𝐿 and 𝐼1𝐼2 ⊈ [𝐿 + 𝐽(∁):𝑅 ∁]. Since 𝐿 is a nearly primary-2-absorbing submodule of ∁, implies that either 𝐼1𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐼2𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁), it follows that either 𝐿1𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐿2𝐿3 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) (⇐) Assume that 𝐼1𝐼2𝐾 βŠ† 𝐿, where 𝐼1, 𝐼2 are ideals of 𝑅, and 𝐾 is a submodule of ∁. Since ∁ is a multiplication, then 𝐼1𝐼2𝐾 = 𝐿1𝐿2𝐾 βŠ† 𝐿, by hypothesis either 𝐿1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐿2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐿1𝐿2 βŠ† [𝐿 + 𝐽(∁) :𝑅 ∁ ]. That is either 𝐼1𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁)or 𝐼2𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝐼1𝐼2 βŠ† [𝐿 + 𝐽(∁) :𝑅 ∁ ]. Then by Proposition (5) 𝐿 is a nearly primary-2-absorbing submodule of ∁. 121 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Recall that an 𝑅-epimorphism 𝑓: ∁⟢ βˆΜ… is called a small epimorphism if ker (𝑓) is a small submodule of ∁ [10]. Lemma 10 [10, Corollary (9.1.5) ] Let ∁ and βˆΜ… be an 𝑅-module and 𝑁 be a proper submodule of ∁. If 𝑓: ∁⟢ βˆΜ… is an 𝑅- homomorphism, then 𝑓(𝐽(∁)) βŠ† 𝐽(βˆΜ…) and 𝐽(𝑁) βŠ† 𝐽(∁). If 𝑓 is a small epimorphism then 𝑓(𝐽(∁)) = 𝐽(βˆΜ…) = 𝐽(𝑓(∁)) and 𝐽(∁) = 𝑓 βˆ’1(𝐽(βˆΜ…)). Lemma 11 [2] Let 𝑓: ∁⟢ βˆΜ… be an 𝑅-epimorphism and 𝐿 is a submodule of βˆΜ… with ker(𝑓) βŠ† 𝐿, then 𝑓(π‘Ÿπ‘Žπ‘‘βˆ(𝐿))) = π‘Ÿπ‘Žπ‘‘βˆΜ…(𝑓(𝐿)). Proposition 12 Let 𝑓: ∁⟢ βˆΜ… be a small 𝑅-epimorphism and οΏ½Μ…οΏ½ is a nearly primary-2-absorbing submodule of βˆΜ…. Then 𝑓 βˆ’1(οΏ½Μ…οΏ½) be a nearly primary-2-absorbing submodule of ∁. Proof: Let π‘Ÿπ‘ π‘₯ ∈ 𝑓 βˆ’1(οΏ½Μ…οΏ½), where π‘Ÿ, 𝑠 ∈ 𝑅, π‘₯ ∈ ∁, impling that π‘Ÿπ‘ π‘“(π‘₯) ∈ οΏ½Μ…οΏ½. Since οΏ½Μ…οΏ½ is a nearly primary-2-absorbing submodule of βˆΜ…. It follows that either π‘Ÿπ‘“(π‘₯) ∈ π‘Ÿπ‘Žπ‘‘βˆΜ…(οΏ½Μ…οΏ½) + 𝐽(βˆΜ…) or 𝑠𝑓(π‘₯) ∈ π‘Ÿπ‘Žπ‘‘βˆΜ…(οΏ½Μ…οΏ½) + 𝐽(βˆΜ…) or π‘ π‘ŸβˆΜ… βŠ† οΏ½Μ…οΏ½ + 𝐽(βˆΜ…). Thus by Lemma (10) and by Lemma (11), we have either π‘Ÿπ‘₯ ∈ 𝑓 βˆ’1(π‘Ÿπ‘Žπ‘‘βˆΜ…(οΏ½Μ…οΏ½) + 𝑓 βˆ’1(𝐽(βˆΜ…)) = π‘Ÿπ‘Žπ‘‘βˆ(𝑓 βˆ’1(οΏ½Μ…οΏ½)) + 𝐽(∁) or 𝑠π‘₯ ∈ 𝑓 βˆ’1(π‘Ÿπ‘Žπ‘‘βˆΜ…(οΏ½Μ…οΏ½) + 𝑓 βˆ’1(𝐽(βˆΜ…)) = π‘Ÿπ‘Žπ‘‘βˆ(𝑓 βˆ’1(οΏ½Μ…οΏ½)) + 𝐽(∁) or π‘Ÿπ‘ βˆ βŠ† 𝑓 βˆ’1(𝐾) + 𝐽(∁). Hence 𝑓 βˆ’1(οΏ½Μ…οΏ½) is a nearly primary-2-absorbing submodule of ∁. Proposition 13 Let 𝑓: ∁⟢ βˆΜ… be a small 𝑅-epimorphism and 𝐾 is a nearly primary-2-absorbing submodule of ∁ with ker (𝑓) βŠ† 𝐾 . Then 𝑓(𝐾) is a nearly primary-2-absorbing submodule of βˆΜ…. Proof: Let π‘Ÿπ‘ οΏ½Μ…οΏ½ ∈ 𝑓(𝐾), where π‘Ÿ, 𝑠 ∈ 𝑅, οΏ½Μ…οΏ½ ∈ βˆΜ…. Since 𝑓 is onto, then 𝑓(π‘₯) = οΏ½Μ…οΏ½ for someπ‘₯ ∈ ∁. Thus π‘Ÿπ‘ π‘“(π‘₯) ∈ 𝑓(𝐾), implies that π‘Ÿπ‘ π‘“(π‘₯) = 𝑓(π‘˜) for some π‘˜ ∈ 𝐾, it follows that 𝑓(π‘Ÿπ‘ π‘₯ βˆ’ π‘˜) = π‘œ, implies that π‘Ÿπ‘ π‘₯ βˆ’ π‘˜ ∈ ker (𝑓) βŠ† 𝐾, then π‘Ÿπ‘ π‘₯ ∈ 𝐾. But 𝐾 is a nearly primary-2- absorbing submodule of ∁, then either π‘Ÿπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or 𝑠π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐾) + 𝐽(∁) or π‘Ÿπ‘ βˆβŠ† 𝐾 + 𝐽(∁), it follows that by Lemma(11) either π‘Ÿπ‘“(π‘₯) ∈ 𝑓(π‘Ÿπ‘Žπ‘‘βˆ(𝐾)) + 𝑓(𝐽(∁)) βŠ† π‘Ÿπ‘Žπ‘‘βˆΜ…(𝑓(𝐾)) + 𝑓(𝐽(∁)) or 𝑠𝑓(π‘₯) ∈ 𝑓(π‘Ÿπ‘Žπ‘‘βˆ(𝐾)) + 𝑓(𝐽(∁)) βŠ† π‘Ÿπ‘Žπ‘‘βˆΜ…(𝑓(𝐾)) + 𝑓(𝐽(∁)) or π‘Ÿπ‘ π‘“(∁) βŠ† 𝑓(𝐾) + 𝑓(𝐽(∁)) βŠ† 𝑓(𝐾) + 𝐽(βˆΜ…). Also, by Lemma (12) either π‘ŸοΏ½Μ…οΏ½ ∈ π‘Ÿπ‘Žπ‘‘βˆΜ…(𝑓(𝐾)) + 𝐽(βˆΜ…) or 𝑠�̅� ∈ π‘Ÿπ‘Žπ‘‘βˆΜ…(𝑓(𝐾)) + 𝐽(βˆΜ…) or π‘Ÿπ‘ βˆΜ… βŠ† 𝑓(𝐾) + 𝐽(βˆΜ…). Hence 𝑓(𝐾) is a nearly primary-2- absorbing submodule of βˆΜ…. Lemma 14 [9, Theorem(2.12)] Let 𝑅 be a commutative ring with identity, 𝐿 be a proper submodule of a multiplication 𝑅-module ∁ and 𝐽 = [𝐿:𝑅 ∁]. Then π‘Ÿπ‘Žπ‘‘βˆ(𝐿) = √𝐽. ∁= √[𝐿:𝑅 ∁]. ∁. Lemma 15 [2, Theorem 1, (1)] Let ∁ is a module over Artinian Ring 𝑅, then 𝐽(𝑅). ∁= 𝐽(∁). Proposition 16 Let ∁ be a multiplication module over an Artinian ring 𝑅 and 𝐿 be a proper submodule of ∁. Then 𝐿 is a nearly primary-2-absorbing submodule of ∁ if and only if [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅. 122 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Proof: (β‡’) Let π‘Žπ‘πΌ βŠ† [𝐿:𝑅 ∁] for π‘Ž, 𝑐 ∈ 𝑅, 𝐼 is an ideal of 𝑅 with π‘Žπ‘ βˆ‰ [[[𝐿:𝑅 ∁] + J(R):𝑅 R]] = [𝐿:𝑅 ∁] + J(R), that is π‘Žπ‘βˆβŠˆ [𝐿:𝑅 ∁]. ∁ + J(R). ∁. But ∁ is a module over Artinian ring, then by Lemma (15) 𝐽(𝑅). ∁= 𝐽(∁), that is π‘Žπ‘βˆβŠˆ 𝐿 + J(∁) i.e. π‘Žπ‘ βˆ‰ [𝐿 + J(∁):𝑅 ∁] . Now, since π‘Žπ‘πΌ βŠ† [𝐿:𝑅 ∁], then π‘Žπ‘(𝐼∁) βŠ† 𝐿. But 𝐿 is a nearly primary-2-absorbing submodule of ∁, then by Proposition (4) either π‘Ž(𝐼∁) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝑐(𝐼∁) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁). But by Lemma(14) π‘Ÿπ‘Žπ‘‘βˆ(𝐿) = √[𝐿:𝑅 ∁] . ∁ and by Lemma(15) 𝐽(𝑅). ∁= 𝐽(∁). Thus either π‘ŽπΌβˆ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁ or π‘πΌβˆ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁, it follows that either π‘ŽπΌ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅) or 𝑐𝐼 βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). Therefore [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅. (⇐) Assume that [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅, and π‘Ÿπ‘ πΎ βŠ† 𝐿, for π‘Ÿ,𝑠 ∈ 𝑅, 𝐾 is a submodule of ∁ with π‘Ÿπ‘  βˆ‰ [𝐿 + 𝐽(∁):𝑅 ∁], it follows that π‘Ÿπ‘ βˆ ⊈ 𝐿 + 𝐽(∁). But ∁ is a module over Artinian ring, then by lemma (15) 𝐽(𝑅). ∁= 𝐽(∁). Thus π‘Ÿπ‘ βˆ ⊈ [𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁, it follows that π‘Ÿπ‘  ⊈ [𝐿:𝑅 ∁] + 𝐽(𝑅) = [[[𝐿:𝑅 ∁] + J(R):𝑅 R]]. Now, since π‘Ÿπ‘ πΎ βŠ† 𝐿 and ∁ is a multiplication, then 𝐾 = 𝐼∁ for some ideal 𝐼 of 𝑅. Hence π‘Ÿπ‘ πΌβˆ βŠ† 𝐿, implies that π‘Ÿπ‘ πΌ βŠ† [𝐿:𝑅 ∁]. But [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅 and π‘Ÿπ‘  βˆ‰ [[[𝐿:𝑅 ∁] + J(R):𝑅 R]], then by proposition (4) we have either π‘ŸπΌ βŠ† √[𝐿:𝑅 ∁] + 𝐽(𝑅) or 𝑠𝐼 βŠ† √[𝐿:𝑅 ∁] + 𝐽(𝑅). That is π‘ŸπΌβˆ βŠ† √[𝐿:𝑅 ∁] . ∁ + 𝐽(𝑅). ∁ or π‘ πΌβˆ βŠ† √[𝐿:𝑅 ∁] . ∁ + 𝐽(𝑅). ∁ . But ∁ is a module over Artinian ring, then by Lemma (15) 𝐽(𝑅). ∁= 𝐽(∁) and by Lemma(14) π‘Ÿπ‘Žπ‘‘βˆ(𝐿) = √[𝐿:𝑅 ∁] . ∁ we get either π‘ŸπΎ βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝑠𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁). Hence by Proposition (4) 𝐿 is a nearly primary-2-absorbing submodule of ∁. Lemma 17 [10, proposition (17.10)] If 𝑃 is projective 𝑅-module, then 𝐽(𝑅). 𝑃 = 𝐽(𝑃). Proposition 18 Let ∁ be a multiplication projective 𝑅-module and 𝐿 is a proper submodule of ∁. Then 𝐿 is a nearly primary-2-absorbing submodule of ∁ if and only if [𝐿:𝑅 ∁] is a nearly primary-2- absorbing ideal of 𝑅. Proof: (β‡’) Let π‘Žπ‘πΌ βŠ† [𝐿:𝑅 ∁] for π‘Ž, 𝑐 ∈ 𝑅, 𝐼 is an ideal of 𝑅 with π‘Žπ‘ βˆ‰ [[[𝐿:𝑅 ∁] + J(R):𝑅 R]] = [𝐿:𝑅 ∁] + J(R), that is π‘Žπ‘βˆβŠˆ [𝐿:𝑅 ∁]. ∁ + J(R). ∁. But ∁ is projective 𝑅-module, then by Lemma (17) 𝐽(𝑅). ∁= 𝐽(∁), that is π‘Žπ‘βˆβŠˆ 𝐿 + J(∁) i.e. π‘Žπ‘ βˆ‰ [𝐿 + J(∁):𝑅 ∁] . Now, since π‘Žπ‘πΌ βŠ† [𝐿:𝑅 ∁], then π‘Žπ‘(𝐼∁) βŠ† 𝐿. But 𝐿 is a nearly primary-2-absorbing submodule of ∁, then by proposition (4) either π‘Ž(𝐼∁) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝑐(𝐼∁) βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁). But by Lemma(14) π‘Ÿπ‘Žπ‘‘βˆ(𝐿) = √[𝐿:𝑅 ∁] . ∁ and by Lemma(17) 𝐽(𝑅). ∁= 𝐽(∁). Thus either π‘ŽπΌβˆ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁ or π‘πΌβˆ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁. It follows that either π‘ŽπΌ βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅) or 𝑐𝐼 βŠ† √[𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). Therefore, [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅. (⇐) Assume that [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅, and π‘Ÿπ‘ πΎ βŠ† 𝐿, for π‘Ÿ,𝑠 ∈ 𝑅, 𝐾 is a submodule of ∁ with π‘Ÿπ‘  βˆ‰ [𝐿 + 𝐽(∁):𝑅 ∁], it follows that π‘Ÿπ‘ βˆ ⊈ 𝐿 + 𝐽(∁). But ∁ is a project 𝑅-module, then by Lemma (17) 𝐽(𝑅). ∁= 𝐽(∁). Thus π‘Ÿπ‘ βˆ ⊈ [𝐿:𝑅 ∁]. ∁ + 𝐽(𝑅). ∁. It follows that π‘Ÿπ‘  ⊈ [𝐿:𝑅 ∁] + 𝐽(𝑅) = [[[𝐿:𝑅 ∁] + J(R):𝑅 R]]. Now, since π‘Ÿπ‘ πΎ βŠ† 𝐿 and ∁ is a 123 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 multiplication, then 𝐾 = 𝐼∁ for some ideal 𝐼 of 𝑅. Hence π‘Ÿπ‘ πΌβˆ βŠ† 𝐿, implies that π‘Ÿπ‘ πΌ βŠ† [𝐿:𝑅 ∁]. But [𝐿:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅 and π‘Ÿπ‘  βˆ‰ [[[𝐿:𝑅 ∁] + J(R):𝑅 R]], then by Proposition (4) we have either π‘ŸπΌ βŠ† √[𝐿:𝑅 ∁] + 𝐽(𝑅) or 𝑠𝐼 βŠ† √[𝐿:𝑅 ∁] + 𝐽(𝑅). That is π‘ŸπΌβˆ βŠ† √[𝐿:𝑅 ∁] . ∁ + 𝐽(𝑅). ∁ or π‘ πΌβˆ βŠ† √[𝐿:𝑅 ∁] . ∁ + 𝐽(𝑅). ∁ . But ∁ is projective 𝑅-module, then by Lemma (17) 𝐽(𝑅). ∁= 𝐽(∁) and by Lemma(14) π‘Ÿπ‘Žπ‘‘βˆ(𝐿) = √[𝐿:𝑅 ∁] . ∁ we get either π‘ŸπΎ βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁) or 𝑠𝐾 βŠ† π‘Ÿπ‘Žπ‘‘βˆ(𝐿) + 𝐽(∁). Hence by proposition (4) 𝐿 is a nearly primary-2-absorbing submodule of ∁. We need to invite the following finding before we study the next propositions. Lemma 19[14, Corollary of Theorem. 9] Let 𝐼1 and 𝐼2 are ideals of a ring 𝑅 and ∁ is a finitely generated multiplication 𝑅-module. Then 𝐼1∁ βŠ† 𝐼2∁ if and only if 𝐼1 βŠ† 𝐼2 + π‘Žπ‘›π‘›π‘… (∁). Lemma 20[15, Proposition. (2.4)] Let ∁ be a multiplication 𝑅-module and 𝐼 is an ideal of 𝑅 such that π‘Žπ‘›π‘›π‘… (∁) βŠ† 𝐼, then π‘Ÿπ‘Žπ‘‘βˆ(𝐼∁) = √𝐼∁. Proposition 21 Let ∁ be a faithful finitely generated multiplication 𝑅-module over an Artinian ring 𝑅 and 𝐼 is a nearly primary-2-absorbing ideal of 𝑅 and πΌβˆβ‰  ∁. Then 𝐼∁ is a nearly primary-2-absorbing submodule of ∁. Proof: Let π‘Žπ‘π‘₯ ∈ 𝐼∁ for π‘Ž,𝑐 ∈ 𝑅, π‘₯ ∈ ∁, then π‘Žπ‘(π‘₯) βŠ† 𝐼∁, implies that π‘Žπ‘π½βˆ βŠ† 𝐼∁ for some ideal 𝐽 of 𝑅 since ∁ is a multiplication. Hence by Lemma(19) π‘Žπ‘π½ βŠ† 𝐼 + π‘Žπ‘›π‘›π‘… (∁), but ∁ is a faithful. It follows that π‘Žπ‘›π‘›π‘… (∁) = (0), that is π‘Žπ‘π½ βŠ† 𝐼. Since 𝐼 is a nearly primary-2-absorbing ideal of 𝑅, then by Proposition(4) either π‘Žπ½ βŠ† √𝐼 + 𝐽(𝑅) or 𝑐𝐽 βŠ† √𝐼 + 𝐽(𝑅) or π‘Žπ‘ ∈ [𝐼 + 𝐽(𝑅): 𝑅] = 𝐼 + 𝐽(𝑅). It follows that π‘Žπ½βˆ βŠ† √𝐼∁ + 𝐽(𝑅)∁ or π‘π½βˆ βŠ† √𝐼∁ + 𝐽(𝑅)∁ or π‘Žπ‘βˆ βŠ† 𝐼∁ + 𝐽(𝑅)∁. But by Lemma(15) 𝐽(𝑅)∁= 𝐽(∁) and by Lemma(20) √𝐼∁ = π‘Ÿπ‘Žπ‘‘βˆ(𝐼∁). Thus either π‘Žπ‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐼∁) + 𝐽(∁) or 𝑐π‘₯ ∈ π‘Ÿπ‘Žπ‘‘βˆ(𝐼∁) + 𝐽(∁) or π‘Žπ‘βˆβŠ† 𝐼∁ + 𝐽(∁). Hence 𝐼∁ is a nearly primary-2-absorbing submodule of ∁. Proposition 22 Let ∁ be a faithful finitely generated multiplication 𝑅-module over an Artinian ring 𝑅 and 𝐾 be a proper submodule of ∁. Then the next statements are equivalent. 1. L is a nearly primary-2-absorbing submodule of ∁. 2. [L:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅. 3. L = J∁ for some nearly primary-2-absorbing ideal of 𝑅. Proof: 1 ⇔ 2 Via Proposition(16). 2 β‡’ 3 Since [L:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅 with π‘Žπ‘›π‘›π‘… (∁) = [0: ∁] βŠ† [L:𝑅 ∁] and L = [L:𝑅 ∁]∁, implies that L = I∁ where I = [L:𝑅 ∁] is a nearly primary-2-absorbing ideal of 𝑅. 3 ⟹ 2 Suppose that 𝐿 = 𝐽∁ for some nearly primary-2-absorbing ideal 𝐽 of 𝑅. Since ∁ is multiplication, then L = [L:𝑅 ∁]∁= I∁. Since ∁ is a faithful finitely generated multiplication 𝑅- module over an Artinian ring 𝑅, then we have [L:𝑅 ∁] = J. Thus [L:𝑅 ∁] is a nearly primary-2- absorbing ideal of 𝑅. 124 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 3. Conclusion In this article we introduce a new generalization of (prime, primary, 2-absorbing) submodules called a nearly primary-2-absorbing submodules and we explain the converse implication of the above by examples. Many characterizations of this generalization are introduced. Relationships of this generalization with other classes of modules are given. References 1. Lu, C.P., Prime Submodules of Modules , Commutative Mathematics, University spatula. 1981, 33, 61-69. 2. Lu, C.P., M-radical of Submodules in Modules , Math. Japan. 1989, 34, 61-69. 3. Badwi.A,On 2-Absorbing Ideals of Commutative Rings, Bull.Austral. Math. Soc, 2007, 75, 417-429. 4. Reem.T.A.; Shwkea.M.R., Nearly 2-Absorbing Submodules and Related Concepts, Tikrit Journal, for Pure.Sci, 2018, 23,9, 104-112. 5. Haibat, K.M.; Omar. A.A., Pseudo primary-2-Absorbing submodules and some related Concepts, Ibn Al Haitham Journal for pure and applied science, 2019, 32,3, 129-139. 6. Haibat, K.M.; Khalaf, H.A., Nearly Quasi2-Absorbing submodules, Tikrit Journal, for Pure.Sci, 2018, 239, 99-102. 7. Dubey, M.; Aggarwal, P, On 2-Absorbing Primary Submodules of Modules over Commutative Rings, Asian-European J. of Math, 2015, 8,4, 243-251. 8. A. Barnard., Multiplication Modules, Journal of Algebra, 1981,71, 174-178. 9. El-Bast. Z.A.; Smith.P.F., Multiplication Modules, Comm. In Algebra.1988, 16,4, 755- 779. 10. Kasch F., Modules and Rings, London Mathematical society Monographs, New York, Academic press.1982. 11. Burton, D.M., First Couse in Rings and Ideals , University of New Hampshive . 1970. 12. Anderson, D.D. ; Smith, E, Weakly Prime Ideals , Housto Journal of Mathematic. 2003, 29, 831-840. 13. Darani, A.Y.; Soheilniai, F., 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal Math.2011, 9, 577-584. 14. Smith, P.F., Some Remarks on Multiplication Modules, Arch. Math. 1988, 50, 223-225. 15. Ahmed, A.A. On Submodules of Multiplication Modules, M.Sc. Thesis, Baghdad University, 1992.