Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 47 Ψ­ Generalize Partial Metric Spaces Norhan I. Abdullah Laith K. Shaakir Department of Mathematics, College of Computer and Mathematics Sciences, University of Tikrit, Tikrit, Iraq esamanorhan221@gmail.com dr.laithkhaleel@tu.edu.iq Abstract The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space, give some results and properties and find relations between the general partial metric space, partial metric spaces and D-metric spaces. Keywords: partial metric space, D-metric space, general partial metric space. 1 Introduction and preliminaries Metric spaces are very important in mathematics introduced and studied by the French mathematicians. Many researchers tried to generalized the metric space to different types for example, b-metric space defined by Stefan Czerwik [1], G-metric space defined by Mustafa and Sims [2], 2-metric space defined by Gahler [3], D*-metric space[4], partial metric space defined by Mathews[5] and D-metric space defined by Dhage [11] First , give some definitions and properties of the partial metric spaces that can be found in [5- 10] A non-empty set π‘Œ is said to be partial metric space if there exists a function 𝑝: π‘Œ2 β†’ [0, ∞) satisfies the following condition: p1 𝛼 = 𝛽 ↔ 𝑝(𝛼 , 𝛼) = 𝑝(𝛼 , 𝛽) = 𝑝(𝛽 , 𝛽) p2 𝑝(𝛼 , 𝛼) ≀ 𝑝(𝛼 , 𝛽) p3 𝑝(𝛼, 𝛽) = 𝑝( 𝛽 , 𝛼) p4 𝑝(𝛼, 𝛽) ≀ 𝑝(𝛼 , πœ‡) + 𝑝 (πœ‡ , 𝛽 ) – 𝑝(πœ‡, πœ‡) βˆ€ 𝛼 , 𝛽 and πœ‡ ∈ Y ,where 𝑝 is a partial metric on π‘Œ . A basic example of a partial metric space is (𝑅+, 𝑝), where 𝑝(𝛼, 𝛽) = max{𝛼, 𝛽} βˆ€π›Ό, 𝛽 ∈ 𝑅+ Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.1.2566 Article history: Received 2, February, 2020, Accepted20, February, 2020, Published in January 2021 mailto:esamanorhan221@gmail.com mailto:dr.laithkhaleel@tu.edu.iq 48 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Also, the partial metric space p on π‘Œ generates a 𝑇0 topology πœπ‘on π‘Œ , which has as a base of family open balls{𝐡𝑝(𝛼, πœ–) ∢ 𝛼 ∈ π‘Œ , πœ– > 0}, where 𝐡𝑝(𝛼, ) = {𝛽 ∈ π‘Œ: 𝑝(𝛼, 𝛽) < 𝑝(𝛼, 𝛼) + Ο΅} βˆ€ 𝛼 ∈ Y and πœ– > 0. (see [9]) The sequence {𝛼n} in a partial metric space (π‘Œ, 𝑝) converge sequence if π‘™π‘–π‘šπ‘›β†’βˆž 𝑝(𝛼 , 𝛼𝑛) = 𝑝(𝛼, 𝛼) The sequence {𝛼𝑛} in a partial metric space (π‘Œ, 𝑝) is said to be Cauchy sequences if lim𝑛,π‘š β†’βˆž 𝑝(𝛼𝑛, π›Όπ‘š) exists (finite). The partial metric space (π‘Œ, 𝑝) is said to be complete if every cauchy sequence {𝛼𝑛 } convergent to a point 𝛼 in Y. A mapping 𝐹: (π‘Œ, 𝑝) β†’ (π‘Œ `, 𝑝`) is said to be continuous at 𝛼0∈Y, if for everyπœ– > 0, there exists 𝛿 > 0 such that F(B𝑝(𝛼0, Ξ΄ )) βŠ† B𝑝(F𝛼0, Ο΅ ). (See [10]) If p is a partial metric space, then the function 𝑝𝑠: π‘Œ2 β†’ 𝑅+ defined by 𝑝𝑠(𝛼 , 𝛽) = 2𝑝(𝛼, 𝛽) – 𝑝(𝛼, 𝛼) – 𝑝(𝛽, 𝛽) is a metric on Y (See [6]) Not that, the sequence {𝛼𝑛} is a Cauchy sequence in a partial metric space(π‘Œ, 𝑝) if and only if {𝛼n} is a Cauchy sequence in the metric space(π‘Œ, 𝑝 𝑠). (See [9], [10]) A partial metric space (π‘Œ, 𝑝) is said complete if and only if the metric space (π‘Œ, 𝑝𝑠) is complete. Furthermore,limnβ†’βˆž p 𝑠(𝛼𝑛, 𝛼) = 0 if and only if 𝑝(𝛼, 𝛼) = π‘™π‘–π‘šπ‘›β†’βˆžπ‘(𝛼𝑛, 𝛼) = π‘™π‘–π‘šπ‘› ,π‘š β†’βˆžπ‘(𝛼𝑛, π›Όπ‘š). (𝑠𝑒𝑒[9] , [10]) Second, we recall definition of D-metric space that can be found in [11], [12], [13] A non-empty set Y is said to be D-metric space if there exists a function 𝐷: π‘Œ3 β†’ [0, ∞) satisfies the following conditions: D1. 𝐷(𝛼, 𝛽, 𝛾) = 0 ⇔ 𝛼 = 𝛽 = 𝛾 D2. 𝐷(𝛼, 𝛽, 𝛾) = 𝐷(𝛽, 𝛼, 𝛾) = 𝐷(𝛾, 𝛼, 𝛽) = 𝐷 (𝛽, 𝛾, 𝛼) = … (π‘†π›½π‘šπ‘šπ‘’π‘‘π‘Ÿπ›½) D3. 𝐷(𝛼, 𝛽, 𝛾) ≀ 𝐷(πœ‡ , 𝛽, 𝛾) + 𝐷(𝛼, πœ‡, 𝛾) + 𝐷(𝛼, 𝛽, πœ‡) βˆ€Ξ±, Ξ², Ξ³ π‘Žπ‘›π‘‘ πœ‡ ∈ π‘Œ, where D is D-metric on π‘Œ . Y if for givenπœ– > 0, A sequence {𝛼𝑛} in D-metric space (π‘Œ, 𝐷) is said converge to π›Όβˆˆ there exists a positive integer π”ͺ0 such that𝐷(𝛼𝑛, π›Όπ‘š, 𝛼 ) < πœ– βˆ€ π‘š β‰₯ π”ͺ 0, 𝑛 β‰₯ π”ͺ0. [13] A sequence {𝛼𝑛} in D-metric space (π‘Œ, 𝐷) is said Cauchy if for given πœ– > 0; there exists an positive integer π”ͺ0 such that D(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) < Ο΅ βˆ€m β‰₯ π”ͺ0, n β‰₯ π”ͺ0, l β‰₯ π”ͺ0.[13] A sequence {𝛼𝑛} in D-metric space (π‘Œ, 𝐷) is said to be complete if every Cauchy sequence in Y converges to a point 𝛼 in Y. A sequence {𝛼𝑛} in D-metric space (π‘Œ, 𝐷) converges strongly to an element 𝛼 in Y if (𝑖)𝐷(𝛼𝑛, π›Όπ‘š, 𝛼) β†’ 0 π‘Žπ‘  𝑛, π‘š β†’ ∞. (𝑖𝑖) {𝐷(𝛽, 𝛽, 𝛼𝑛 )} converges to 𝐷(𝛽, 𝛽, 𝛼) βˆ€ 𝛽 ∈ π‘Œ. [13] A sequence {𝛼𝑛} in D-metric space (π‘Œ, 𝐷) is said to be very strongly converges to an element 𝛼 in Y if 49 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 (𝑖)𝐷(𝛼𝑛, π›Όπ‘š, 𝛼) β†’ 0 π‘Žπ‘  𝑛, π‘š β†’ ∞. (𝑖𝑖){𝐷(𝛽, 𝑧 , 𝛼𝑛)} π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘  π‘‘π‘œ 𝐷(𝛽, 𝑧, 𝛼) βˆ€π›½, 𝑧 ∈ π‘Œ . [13] 2. Generalize Partial Metric Spaces Definition 1 A non-empty set Y is said to be a general partial metric space if there exists a function 𝐷𝑝: π‘Œ 3 β†’ [0, ∞) satisfy the following condition: Dp1. 𝐷𝑝(𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛽, 𝛾) = 𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝(𝛾, 𝛾, 𝛾) ⇔ 𝛼 = 𝛽 = 𝛾 Dp2. 𝐷𝑝(𝛼, 𝛼, 𝛼) ≀ 𝐷𝑝(𝛼, 𝛽, 𝛾) Dp3. 𝐷𝑝(𝛼, 𝛽, 𝛾) = 𝐷𝑝( 𝛼, 𝛾, 𝛽) = 𝐷𝑝(𝛽, 𝛼, 𝛾) = 𝐷𝑝( 𝛽, 𝛾, 𝛼) = … (π‘†π›½π‘šπ‘šπ‘’π‘‘π‘Ÿπ›½) Dp4. 𝐷𝑝(𝛼 , 𝛽, 𝛾) ≀ 𝐷𝑝(πœ‡, 𝛽, 𝛾) + 𝐷𝑝(𝛼, πœ‡, 𝛾) + 𝐷𝑝( 𝛼, 𝛽, πœ‡) βˆ’ 𝐷𝑝(πœ‡, πœ‡, πœ‡) βˆ€ 𝛼, 𝛽, 𝛾 π‘Žπ‘›π‘‘ πœ‡ ∈ π‘Œ, where 𝐷𝑝 is general partial metric space on Y. So, given an example of a general partial metric space we obtain Example 2 Let π‘Œ = [0, ∞) and define a function 𝐷𝑝 on π‘Œ 3 by 𝐷𝑝(𝛼, 𝛽, 𝛾) = π‘šπ‘Žπ›Ό{ 𝛼, 𝛽, 𝛾} Then 𝐷𝑝 is a general partial metric space on Y. Solution: 1) since π‘šπ‘Žπ›Ό{𝛼, 𝛽, 𝛾} = π‘šπ‘Žπ›Ό{𝛼, 𝛼, 𝛼} = π‘šπ‘Žπ›Ό{𝛽, 𝛽, 𝛽} = π‘šπ‘Žπ›Ό {𝛾, 𝛾, 𝛾} if and only if 𝛼 = 𝛽 = 𝛾 then 𝐷𝑝(𝛼, 𝛽, 𝛾) = 𝐷𝑝(𝛼, 𝛼, 𝛼) = 𝐷𝑝(𝛽, 𝛽, 𝛽) = 𝐷𝑝(𝛾, 𝛾, 𝛾) if and only if 𝛼 = 𝛽 = 𝛾 2) 𝐷𝑝(𝛼, 𝛼, 𝛼) = π‘šπ‘Žπ›Ό{𝛼, 𝛼, 𝛼} = 𝛼 ≀ π‘šπ‘Žπ›Ό{𝛼, 𝛽, 𝛾} = 𝐷𝑝(𝛼, 𝛽, 𝛾) . 3) Trivial 4) Since π‘šπ‘Žπ›Ό{𝛼, 𝛽, 𝛾} ≀ π‘šπ‘Žπ›Ό{πœ‡, 𝛽, 𝛾} + π‘šπ‘Žπ›Ό{𝛼, πœ‡, 𝛾} + π‘šπ‘Žπ›Ό{𝛼, 𝛽, πœ‡}– π‘šπ‘Žπ›Ό{πœ‡, πœ‡, πœ‡} Then 𝐷𝑝(𝛼, 𝛽, 𝛾) + 𝐷𝑝(πœ‡, πœ‡, πœ‡) ≀ 𝐷𝑝(πœ‡, 𝛽, 𝛾) + 𝐷𝑝(𝛼, πœ‡, 𝛾) + 𝐷𝑝(𝛼, 𝛽, πœ‡) βŽ• Definition 3 Let (π‘Œ, 𝐷𝑝) be a general partial metric space, then (1) A sequence {𝛼𝑛} in (π‘Œ, 𝐷𝑝) converges to a point 𝛼 ∈ π‘Œif limn ,m β†’βˆž D𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) = D𝑝(𝛼, 𝛼, 𝛼) (2) A sequence {𝛼𝑛} in (π‘Œ, 𝐷𝑝) is Cauchy sequence if limn ,m ,l β†’βˆž D𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) exists (finite) (3) A general partial metric space (π‘Œ, 𝐷𝑝) is said to be complete if every Cauchy sequence is converge to a point 𝛼 in Y. (4) A sequence {𝛼𝑛} in (π‘Œ, 𝐷𝑝) is a strongly converge to 𝛼 if 50 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 i. 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) β†’ 𝐷𝑝(𝛼 , 𝛼 , 𝛼) π‘Žπ‘  𝑛 , π‘š β†’ ∞ ii. 𝐷𝑝(𝛽, 𝛽, 𝛼𝑛) β†’ 𝐷𝑝(𝛽 , 𝛽 , 𝛼) π‘Žπ‘  𝑛 β†’ ∞ βˆ€π›½ ∈ π‘Œ (5) A sequence {𝛼𝑛} in (π‘Œ, 𝐷𝑝) is a very strongly converge to 𝛼 if i. 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) β†’ 𝐷𝑝(𝛼 , 𝛼 , 𝛼) π‘Žπ‘  𝑛 , π‘š β†’ ∞ ii. 𝐷𝑝(𝛽 , 𝛾, 𝛼𝑛) β†’ 𝐷𝑝(𝛽 , 𝛾, 𝛼) π‘Žπ‘  𝑛 β†’ ∞ βˆ€ 𝛽 , 𝛾 ∈ π‘Œ (6) For 𝛼 ∈ π‘Œ and πœ– > 0, the open ball of the general partial metric space with center 𝛼 and radius πœ– is 𝐡𝐷𝑝 (𝛼, πœ–) = { 𝛽 ∈ π‘Œ ∢ 𝐷𝑝(𝛼 , 𝛽 , 𝛽) < 𝐷𝑝(𝛼 , 𝛼 , 𝛼) + πœ–}. (7) A mapping 𝐹: ( π‘Œ , 𝐷𝑝) β†’ ( π‘Œ β€², 𝐷𝑝′) is said to be continuous at 𝛼 if for each open ball 𝐡𝐷𝑝 (𝐹(𝛼), πœ–β€²) in (π‘Œ β€², 𝐷𝑝′) there exists a ball 𝐡𝑝(𝛼 , πœ–) in (π‘Œ, 𝐷𝑝) such that 𝐹(𝐡𝐷𝑝 (𝛼 , πœ–)) βŠ† 𝐡𝐷𝑝 (𝐹(𝛼), πœ–β€²). Not that, if {𝛼𝑛} is a converge sequence in(π‘Œ, 𝐷𝑝) then the converge point is not unique. Example4 Let π‘Œ = [0, ∞) with 𝐷𝑝(𝛼, 𝛽, 𝛾) = π‘šπ‘Žπ›Ό{𝛼, 𝛽, 𝛾} then (π‘Œ, 𝐷𝑝) is a general partial metric observe that if the sequence {1 + 1 𝑛2 }, 𝛼 β‰₯ 1 then 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) = π‘™π‘–π‘šπ‘›,π‘šβ†’βˆžπ‘šπ‘Žπ›Ό{1 + 1 𝑛2 , 1 + 1 π‘š2 , 𝛼} = 𝛼 = 𝐷𝑝(𝛼 , 𝛼 , 𝛼). Hence, every 𝛼 ∈ [1, ∞) is a convergent point for the sequence {1 + 1 𝑛2 }. Thus, the converge point is not unique. Theorem 5 Every converge sequence in (π‘Œ, 𝐷𝑝) is a Cauchy sequence. Proof: Let (π‘Œ, 𝐷𝑝) be a general partial metric space and {𝛼𝑛} is a converge sequence to 𝛼 and πœ– > 0. Since {𝛼𝑛} is converge to 𝛼 then there exists π‘˜ ∈ 𝑁 such that |𝐷𝑝(𝛼𝑛, π›Όπ‘š , 𝛼) – 𝐷𝑝(𝛼 , 𝛼 , 𝛼) | < πœ– βˆ€ 𝑛, π‘š > π‘˜ So that 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) ≀ 𝐷𝑝(𝛼, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) βˆ’ 𝐷𝑝(𝛼, 𝛼, 𝛼) ≀ 2𝐷𝑝(𝛼, 𝛼, 𝛼) + πœ– βˆ€ 𝑛, π‘š, 𝑙 > 𝐾 Hence, limn ,m ,lβ†’βˆž D𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) exists, thus {𝛼𝑛} is a Cauchy sequence. βŽ• Remark 6 It is clear from the definition that every strong converge sequence is a converge but the opposite is not true, as we see in example (4) that a sequence {𝛼𝑛} = {1 + 1 𝑛2 } is a converge to 2 but not strongly a converge to 2, to see this 51 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 Take 1 < 𝛽 < 2, π‘™π‘–π‘šπ‘›β†’βˆžπ·π‘(𝛽 , 𝛽 , 𝛼𝑛) = 𝛽 β‰  2 = 𝐷𝑝(𝛽 , 𝛽 , 2) Thus, 𝛼𝑛 = {1 + 1 𝑛2 } is not strongly converging to 2. Theorem 7 If {𝛼𝑛} is a strongly converge, then the converge point is unique. Proof Let {𝛼𝑛} be a strongly converge to w, 𝔃 {𝐷𝑝(𝛽 , 𝛽 , 𝛼𝑛)}is real sequence converge to 𝐷𝑝(𝛽, 𝛽, 𝑀) , 𝐷𝑝(𝛽 , 𝛽, 𝓏) since the converge point is unique ∴ 𝐷𝑝(𝛽, 𝛽, 𝑀) = 𝐷𝑝(𝛽, 𝛽, 𝓏) βˆ€ 𝛽 Take 𝛽 = 𝓏 then 𝐷𝑝(𝓏 , 𝓏 , 𝑀) = 𝐷𝑝(𝓏 , 𝓏 , 𝓏) … 1 Take 𝛽 = 𝑀 then 𝐷𝑝(𝑀, 𝑀, 𝑀) = 𝐷𝑝(𝑀 , 𝑀 , 𝓏) … 2 by defying 𝐷𝑝(𝓏 , 𝓏 , 𝓏) ≀ 𝐷𝑝(𝛽 , 𝛽 , 𝓏) βˆ€ 𝛽 If 𝛽 = 𝑀 then 𝐷𝑝(𝓏 , 𝓏 , 𝓏) ≀ 𝐷𝑝(𝑀 , 𝑀 , 𝓏) = 𝐷𝑝(𝑀 , 𝑀 , 𝑀) ∴ 𝐷𝑝(𝓏 , 𝓏 , 𝓏) ≀ 𝐷𝑝(𝑀 , 𝑀 , 𝑀) … 3 Also, 𝐷𝑝(𝑀, 𝑀, 𝑀) ≀ 𝐷𝑝(𝛽, 𝛽, 𝑀) βˆ€ 𝛽 If 𝛽 = 𝓏 then 𝐷𝑝(𝑀 , 𝑀 , 𝑀) ≀ 𝐷𝑝(𝓏 , 𝓏 , 𝑀) = 𝐷𝑝(𝓏 , 𝓏 , 𝓏) ∴ 𝐷𝑝(𝑀 , 𝑀 , 𝑀) ≀ 𝐷𝑝(𝓏 , 𝓏 , 𝓏) … 4 𝑏𝛽 3, 4; 𝑀𝑒 β„Žπ‘Žπ‘£π‘’ 𝐷𝑝(𝑀 , 𝑀 , 𝑀) = 𝐷𝑝(𝓏 , 𝓏 , 𝓏) ∴ 𝐷𝑝(𝑀 , 𝑀 , 𝓏) = 𝐷𝑝(𝑀 , 𝑀 , 𝑀) = 𝐷𝑝(𝓏 , 𝓏 , 𝓏), π‘‘β„Žπ‘’π‘  𝑀 = 𝓏. βŽ• Example 8 Let π‘Œ = [0, ∞) and 𝐷𝑝(𝛼, 𝛽 , 𝛾) = π‘šπ‘Žπ›Ό{𝛼, 𝛽, 𝛾} then ( π‘Œ , 𝐷𝑝) is general partial metric space as we see in example 2, if 𝛼n= 2 1 𝑛, then the sequence {𝛼𝑛} is a very strongly converge to1. Indeed 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) = π‘šπ‘Žπ›Ό {2 1 𝑛, 2 1 π‘š, 1} β†’ 1 = 𝐷𝑝(1, 1, 1) π‘Žπ‘  𝑛, π‘š β†’ ∞ π΄π‘™π‘ π‘œ 𝐷𝑝(𝛽, 𝛾, 𝛼𝑛 ) = π‘šπ‘Žπ›Ό{𝛽, 𝛾, 2 1 𝑛} ⟢ π‘šπ‘Žπ›Ό{𝛽, 𝛾, 1} π‘Žπ‘  𝑛 β†’ ∞ βˆ€ 𝛽, 𝛾 ∈ π‘Œ Remark 9 It is clear from definition that every very strong converge sequence is a strongly converge, so that If {𝛼𝑛} is very strongly converge then the converge point is unique. Theorem 10 Let (π‘Œ, 𝐷𝑝) be general partial metric space, if 𝐷𝑝(𝛼, 𝛽 , 𝛾) = 0 then 𝛼 = 𝛽 = 𝛾 Proof 52 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 We have 𝐷𝑝(𝛼 , 𝛼 , 𝛼 ) ≀ 𝐷𝑝(𝛼 , 𝛽 , 𝛾) = 0 , 𝐷𝑝(𝛽 , 𝛽 , 𝛽) ≀ 𝐷𝑝(𝛼 , 𝛽 , 𝛾) = 0 π‘Žπ‘›π‘‘ 𝐷𝑝(𝛾 , 𝛾 , 𝛾) ≀ 𝐷𝑝( 𝛼 , 𝛽 , 𝛾) = 0 β‡’ 𝐷𝑝( 𝛼 , 𝛼 , 𝛼) = 𝐷𝑝(𝛽, 𝛽, 𝛽) = 𝐷𝑝(𝛾, 𝛾 , 𝛾) = 𝐷𝑝(𝛼, 𝛽, 𝛾) = 0 Therefore 𝛼 = 𝛽 = 𝛾. βŽ• Remark 11 If 𝛼 = 𝛽 = 𝛾, then 𝐷𝑝(𝛼 , 𝛽, 𝛾) may not be zero. 3. Relations between D-metric, partial metric and general partial metric spaces Theorem 12 Let ( π‘Œ, 𝐷𝑝) be a general partial metric space, then the functions 𝐷 𝑔: π‘Œ3 β†’ [0, ∞) given by 𝐷 𝑔( 𝛼 , 𝛽 , 𝛾) = 𝐷𝑝(𝛼 , 𝛼 , 𝛽) + 𝐷𝑝(𝛼 , 𝛼 , 𝛾) + 𝐷𝑝(𝛽 , 𝛽 , 𝛼) + 𝐷𝑝(𝛽 , 𝛽 , 𝛾) + 𝐷𝑝(𝛾 , 𝛾, 𝛼) + 𝐷𝑝(𝛾 , 𝛾 , 𝛽) – 2𝐷𝑝( 𝛼 , 𝛼 , 𝛼) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) – 2𝐷𝑝(𝛾 , 𝛾 , 𝛾). (1.1) Is a D-metric space on π‘Œ Proof 1) Since 𝐷𝑝(𝛼 , 𝛼 , 𝛽)– 𝐷𝑝(𝛼 , 𝛼 , 𝛼) β‰₯ 0, 𝐷𝑝(𝛼 , 𝛼 , 𝛾)– 𝐷𝑝(𝛼 , 𝛼, 𝛼) β‰₯ 0 , 𝐷𝑝( 𝛽 , 𝛽 , 𝛼)– 𝐷𝑝( 𝛽 , 𝛽 , 𝛽) β‰₯ 0 , 𝐷𝑝( 𝛽 , 𝛽 , 𝛾)– 𝐷𝑝( 𝛽 , 𝛽 , 𝛽) β‰₯ 0 , 𝐷𝑝(𝛾 , 𝛾 , 𝛼) – 𝐷𝑝(𝛾 , 𝛾 , 𝛾) β‰₯ 0 π‘Žπ‘›π‘‘ 𝐷𝑝(𝛾 , 𝛾 , 𝛽) – 𝐷𝑝(𝛾 , 𝛾 , 𝛾) β‰₯ 0 π‘ π‘œ 𝐷 𝑔( 𝛼 , 𝛽 , 𝛾) β‰₯ 0. 2) 𝐼𝑓 𝐷 𝑔(𝛼 , 𝛽 , 𝛾) = 0 π‘‘β„Žπ‘’π‘› 𝐷𝑝( 𝛼 , 𝛼 , 𝛽) + 𝐷𝑝( 𝛼 , 𝛼 , 𝛾) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛼) + 𝐷𝑝( 𝛽, 𝛽 , 𝛾) + 𝐷𝑝(𝛾 , 𝛾 , 𝛼 ) + 𝐷𝑝(𝛾 , 𝛾 𝛽) – 2𝐷𝑝( 𝛼 , 𝛼 , 𝛼) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) – 2𝐷𝑝(𝛾 , 𝛾 𝛾) = 0 π‘‡π‘Žπ‘˜π‘’ 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛼, 𝛾) βˆ’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 0 β‡’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛼, 𝛾) … 1 𝐷𝑝( 𝛼, 𝛼, 𝛾) + 𝐷𝑝( 𝛽, 𝛽, 𝛼) βˆ’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 0 β‡’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛾) + 𝐷𝑝( 𝛽, 𝛽, 𝛼) … 2 πΉπ‘Ÿπ‘œπ‘š 1&2, 𝑀𝑒 𝑔𝑒𝑑 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛼, 𝛾) = 𝐷𝑝( 𝛼, 𝛼, 𝛾) + 𝐷𝑝( 𝛽, 𝛽, 𝛼) π‘‘β„Žπ‘’π‘› 𝐷𝑝( 𝛼, 𝛼, 𝛽) = 𝐷𝑝( 𝛽, 𝛽, 𝛼) … 3 𝑆𝑖𝑛𝑐𝑒 𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛽, 𝛽) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛼, 𝛽) = 2𝐷𝑝( 𝛼, 𝛼, 𝛽) 𝐷𝑝(𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) … 4 π‘π‘œπ‘€, π‘‘π‘Žπ‘˜π‘’ 𝐷𝑝( 𝛽, 𝛽, 𝛾) + 𝐷𝑝( 𝛽, 𝛽, 𝛼) βˆ’ 2𝐷𝑝( 𝛽, 𝛽, 𝛽) = 0 53 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 β‡’ 2𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝( 𝛽, 𝛽, 𝛾) + 𝐷𝑝( 𝛽, 𝛽, 𝛼) … 5 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛽, 𝛽, 𝛾) βˆ’ 2𝐷𝑝( 𝛽, 𝛽, 𝛽) = 0 β‡’ 2𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛽, 𝛽, 𝛾) … 6 πΉπ‘Ÿπ‘œπ‘š 5&6, 𝑀𝑒 𝑔𝑒𝑑 𝐷𝑝( 𝛽, 𝛽, 𝛼) + 𝐷𝑝( 𝛽, 𝛽, 𝛾) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛽, 𝛽, 𝛾) π‘‘β„Žπ‘’π‘› 𝐷𝑝(𝛽, 𝛽, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) … 7 𝑆𝑖𝑛𝑐𝑒 2𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝( 𝛽, 𝛽, 𝛼) + 𝐷𝑝( 𝛼, 𝛼, 𝛽) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛼, 𝛽) = 2𝐷𝑝(𝛼, 𝛼, 𝛽) β‡’ 𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) … 8 πΉπ‘Ÿπ‘œπ‘š 4&8, 𝑀𝑒 𝑔𝑒𝑑𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) = 𝐷𝑝( 𝛽, 𝛽, 𝛽) π‘ π‘œ 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝛼 = 𝛽 … 9 π‘Žπ‘›π‘‘ π‘‘π‘Žπ‘˜π‘’ 𝐷𝑝(𝛾, 𝛾, 𝛼) + 𝐷𝑝(𝛾, 𝛾, 𝛽) βˆ’ 2𝐷𝑝(𝛾, 𝛾, 𝛾) = 0 β‡’ 2𝐷𝑝(𝛾, 𝛾, 𝛾) = 𝐷𝑝(𝛾, 𝛾, 𝛼) + 𝐷𝑝(𝛾, 𝛾, 𝛽) 𝑖𝑓 𝛽 = 𝛼 π‘‡β„Žπ‘’π‘› 2𝐷𝑝(𝛾, 𝛾, 𝛾) = 𝐷𝑝(𝛾, 𝛾, 𝛼) + 𝐷𝑝(𝛾, 𝛾, 𝛼) = 2𝐷𝑝(𝛾, 𝛾, 𝛼) β‡’ 𝐷𝑝(𝛾, 𝛾, 𝛾) = 𝐷𝑝(𝛾, 𝛾, 𝛼) … 10 π‘Žπ‘›π‘‘ 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛾, 𝛾) βˆ’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 0 β‡’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛽) + 𝐷𝑝( 𝛼, 𝛾, 𝛾) 𝑖𝑓 𝛽 = 𝛼 π‘‡β„Žπ‘’π‘›, 2𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝( 𝛼, 𝛼, 𝛼) + 𝐷𝑝( 𝛼, 𝛾, 𝛾) β‡’ 𝐷𝑝( 𝛼, 𝛼, 𝛼) = 𝐷𝑝(𝛼, 𝛾, 𝛾) … 11 πΉπ‘Ÿπ‘œπ‘š 10&11, 𝑀𝑒 𝑔𝑒𝑑𝐷𝑝(𝛾, 𝛾, 𝛾) = 𝐷𝑝(𝛾, 𝛾, 𝛼) = 𝐷𝑝(𝛼, 𝛼, 𝛼) π‘ π‘œ 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝛼 = 𝛾 … 12 π‘‡β„Žπ‘’π‘› 𝑏𝑦 9&12 𝑀𝑒 𝑔𝑒𝑑 𝛼 = 𝛽 = 𝛾. 3) π‘‡π‘Ÿπ‘–π‘£π‘–π‘Žπ‘™ 4) 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝑠𝑖𝑛𝑐𝑒 𝐷𝑝(πœ‡ , πœ‡ , 𝛽) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛾) βˆ’ 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡) β‰₯ 0 𝐷𝑝(𝛽, 𝛽 , πœ‡) + 𝐷𝑝(𝛽, 𝛽, πœ‡) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) β‰₯ 0 𝐷𝑝(𝛾 , 𝛾, πœ‡) + 𝐷𝑝(𝛾 , 𝛾, πœ‡) βˆ’ 2𝐷𝑝(𝛾 , 𝛾 , 𝛾) β‰₯ 0 𝐷𝑝( 𝛼 , 𝛼 , πœ‡) + 𝐷𝑝( 𝛼 , 𝛼 , πœ‡)– 2𝐷𝑝( 𝛼 , 𝛼 , 𝛼) β‰₯ 0 , 𝐷𝑝(πœ‡ , πœ‡ , 𝛼) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛾)– 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡) β‰₯ 0 𝐷𝑝(πœ‡ , πœ‡ , 𝛼) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛽) – 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡) β‰₯ 0 54 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 When combined, it is more than and equal to zero and when adding these values 𝐷𝑝( 𝛼 , 𝛼, 𝛽), 𝐷𝑝( 𝛼 , 𝛼 , 𝛾), 𝐷𝑝( 𝛽 , 𝛽 , 𝛼), 𝐷𝑝( 𝛽 , 𝛽 , 𝛾), 𝐷𝑝(𝛾 , 𝛾, 𝛼), 𝐷𝑝(𝛾 , 𝛾, 𝛽), βˆ’2𝐷𝑝( 𝛼 , 𝛼 , 𝛼), βˆ’2𝐷𝑝( 𝛽, 𝛽, 𝛽), βˆ’2𝐷𝑝(𝛾 , 𝛾 , 𝛾) π‘‘π‘œ π‘‘π‘€π‘œ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘’π‘ , 𝑀𝑒 𝑔𝑒𝑑 𝐷𝑝( 𝛼 , 𝛼 , 𝛽) + 𝐷𝑝( 𝛼 , 𝛼 , 𝛾) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛼) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛾) + 𝐷𝑝(𝛾 , 𝛾 , 𝛼) + 𝐷𝑝(𝛾 , 𝛾 , 𝛽)– 2𝐷𝑝( 𝛼 , 𝛼 , 𝛼) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) – 2𝐷𝑝(𝛾 , 𝛾 , 𝛾) ≀ 𝐷𝑝( 𝛼 , 𝛼 , 𝛽) + 𝐷𝑝( 𝛼 , 𝛼 , 𝛾) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛼) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛾) + 𝐷𝑝(𝛾 , 𝛾 , 𝛼) + 𝐷𝑝𝛾 , 𝛾 , 𝛽)– 2𝐷𝑝(𝛼 , 𝛼 , 𝛼) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) βˆ’ 2𝐷𝑝(𝛾 , 𝛾 , 𝛾) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛽) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛾) + 𝐷𝑝(𝛽 , 𝛽 , πœ‡) + 𝐷𝑝( 𝛽 , 𝛽 , πœ‡) + 𝐷𝑝(𝛾 , 𝛾 , πœ‡) + 𝐷𝑝(𝛾 , 𝛾 , πœ‡) + 𝐷𝑝( 𝛼 , 𝛼 , πœ‡) + 𝐷𝑝(𝛼 , 𝛼 , πœ‡) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛼) + 𝐷𝑝(πœ‡ , πœ‡, 𝛾) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛼) + 𝐷𝑝(πœ‡ , πœ‡, 𝛽) – 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡) – 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽) – 2𝐷𝑝(𝛾 , 𝛾 , 𝛾) – 2𝐷𝑝( 𝛼 , 𝛼 , 𝛼) – 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡) – 2𝐷𝑝(πœ‡ , πœ‡, πœ‡) = [𝐷𝑝(πœ‡ , πœ‡ , 𝛽) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛾) + 𝐷𝑝( 𝛽 , 𝛽, πœ‡) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛾) + 𝐷𝑝(𝛾 , 𝛾, πœ‡) + 𝐷𝑝(𝛾 , 𝛾 , 𝛽)– 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡)– 2𝐷𝑝( 𝛽 , 𝛽 , 𝛽)– 2𝐷𝑝(𝛾 , 𝛾, 𝛾)] + [𝐷𝑝( 𝛼 , 𝛼, πœ‡) + 𝐷𝑝( 𝛼 , 𝛼 , 𝛾) + 𝐷𝑝(πœ‡ , πœ‡, 𝛼) + 𝐷𝑝(πœ‡, πœ‡ , 𝛾) + 𝐷𝑝(𝛾 , 𝛾 , 𝛼) + 𝐷𝑝(𝛾 , 𝛾, πœ‡) – 2𝐷𝑝( 𝛼 , 𝛼, 𝛼) – 2𝐷𝑝(πœ‡, πœ‡ , πœ‡) – 2𝐷𝑝(𝛾 , 𝛾 , 𝛾)] + [𝐷𝑝( 𝛼 , 𝛼, 𝛽) + 𝐷𝑝( 𝛼 , 𝛼 , πœ‡) + 𝐷𝑝( 𝛽 , 𝛽 , 𝛼) + 𝐷𝑝(𝛽 , 𝛽 , πœ‡) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛼) + 𝐷𝑝(πœ‡ , πœ‡ , 𝛽) – 2𝐷𝑝( 𝛼 , 𝛼, 𝛼) – 2𝐷𝑝(𝛽 , 𝛽, 𝛽) – 2𝐷𝑝(πœ‡ , πœ‡ , πœ‡)] β‡’ 𝐷 𝑔( 𝛼 , 𝛽, 𝛾) ≀ 𝐷 𝑔 (πœ‡ , 𝛽 , 𝛾) + 𝐷 𝑔( 𝛼 , πœ‡, 𝛾) + 𝐷 𝑔( 𝛼 , 𝛽 , πœ‡) βŽ• Corollary 13 Let (π‘Œ, 𝐷𝑝) be a general partial metric space, the function 𝐷 𝑔 : π‘Œ3 ⟢ [0, ∞) given by 𝐷 𝑔(𝛼, 𝛽, 𝛾) = 𝐷𝑝(𝛼, 𝛽, 𝛾) + 𝐷𝑝(𝛼, 𝛼, 𝛽) + 𝐷𝑝(𝛼, 𝛼, 𝛾) + 𝐷𝑝(𝛽, 𝛽, 𝛼) + 𝐷𝑝( 𝛽, 𝛽, 𝛾) + 𝐷𝑝(𝛾, 𝛾, 𝛼) + 𝐷𝑝(𝛾, 𝛾, 𝛽) βˆ’ 2𝐷𝑝( 𝛼, 𝛼, 𝛼) βˆ’ 2𝐷𝑝( 𝛽, 𝛽, 𝛽) βˆ’ 3𝐷𝑝(𝛾, 𝛾, 𝛾) 𝑖𝑠 𝐷 βˆ’ π‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘ π‘π‘Žπ‘π‘’. (1.2) Proof: the prove is similar to theorem 12 Remark 14 It is clear from definition that every D-metric space (π‘Œ, 𝐷) is a general partial metric space(π‘Œ, 𝐷𝑝), but the converse is not true. as we saw in example 2, by definition of D-metric space if 𝛼 = 𝛽 = 𝛾 then 𝐷(𝛼, 𝛽, 𝛾) = 0 Suppose 𝛼 = 5 = 𝛽 = 𝛾 then 𝐷𝑝(5, 5, 5) = π‘šπ‘Žπ›Ό{5, 5, 5} = 5 β‰  0 Lemma 15 Let (π‘Œ, 𝐷𝑝) be a general partial metric space if {𝐷𝑝(π›Όπ‘š , π›Όπ‘š , π›Όπ‘š)} β†’ 𝛼 π‘Žπ‘  π‘š β†’ ∞ and {𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 )} is a Cauchy sequence as 𝑛 , π‘š , 𝑙 β†’ ∞, then 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) β†’ 𝛼 as 𝑛, π‘š, 𝑙 ⟢ ∞ where 𝐷 𝑔define in corollary 13. Proof Since 𝐷𝑝(𝛼𝑛 , π›Όπ‘š, 𝛼𝑙 ) β†’ 𝛼 π‘Žπ‘  π‘š ⟢ ∞, then from everyπœ– > 0 there exists 𝑛0 ∈ 𝑁 such that 55 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 |𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝛼| < πœ– 2 βˆ€ π‘š > 𝑛0, and 𝐷 𝑔 (𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) < πœ€ 2 βˆ€ 𝑛 , π‘š, 𝑙 > 𝑛0 πœ– 2 > 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) = 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑙 ) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑛) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , π›Όπ‘š) – 2𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) – 2𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) – 3𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑙 ). β‡’ 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) – 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) < πœ– 2 So that |𝐷𝑝(𝛼n, 𝛼m, 𝛼l) βˆ’ 𝛼|=|𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) βˆ’ 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝛼| ≀ |𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) βˆ’ 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š)| + |𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝛼| < πœ– 2 + πœ– 2 < πœ– Hence 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) β†’ 𝛼 π‘Žπ‘  𝑛, π‘š, 𝑙 ⟢ ∞ βŽ• Theorem 16 Let (π‘Œ, 𝐷𝑝) be a general partial metric space, then 𝑖) A sequence {𝛼𝑛} is a Cauchy sequence in a general partial metric space (π‘Œ, 𝐷𝑝) if and only if {𝛼𝑛} is a Cauchy sequence in (π‘Œ, 𝐷 𝑔). 𝑖𝑖) A general partial metric space (π‘Œ, 𝐷𝑝) is complete if (π‘Œ, 𝐷 𝑔) is complete. Where 𝐷 𝑔define in corollary 13 Proof π’Š First, we must prove that each Cauchy sequence in (π‘Œ, 𝐷𝑝) is Cauchy in (π‘Œ, 𝐷 𝑔). Then, there exists 𝛼 ∈ 𝑅 such that, βˆ€πœ– > 0 there is 𝑛0 ∈ 𝑁 with |𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) βˆ’ 𝛼| < πœ– 14 βˆ€ n, m, l β‰₯ n0. Hence, |Dg(𝛼n, 𝛼m, 𝛼l)|= |𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑙 ) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑛) + 𝐷 𝑝(𝛼𝑙 , 𝛼𝑙 , π›Όπ‘š ) βˆ’ 2𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) βˆ’ 2𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 3𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑙 )| ≀ |𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) βˆ’ 𝛼| + |𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) βˆ’ 𝛼| + |𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑙 ) βˆ’ 𝛼| + |𝐷 𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛 ) βˆ’ 𝛼| + |𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑙 ) βˆ’ 𝛼| + |𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑛) βˆ’ 𝛼| + |𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , π›Όπ‘š) βˆ’ 𝛼|-2|𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) βˆ’ 𝛼 | βˆ’ 2|𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝛼| βˆ’ 3|𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑙 ) βˆ’ 𝛼| Ξ΅ 14 < βˆ€ n, m, l β‰₯ n0. Hence, {𝛼𝑛} is a Cauchy sequence in(π‘Œ, 𝐷 𝑔). Conversely, now we must prove {𝛼𝑛} is Cauchy sequence in (π‘Œ, 𝐷𝑝) Since {𝛼𝑛} is a Cauchy sequence in (π‘Œ, 𝐷 𝑔) π‘ π‘œ βˆ€πœ– > 0, βˆƒ 𝑛0 ∈ 𝑁 such that 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) < πœ– 2 βˆ€π‘› , π‘š, 𝑙 > 𝑛0 πœ– 2 >𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) = 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑙 ) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑛) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , π›Όπ‘š) – 2𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) – 2𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) – 3𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑙 ) 56 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 β‡’ 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) – 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) ≀ 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) < πœ– 2 By compensation 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) to two parties, we have 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) ≀ 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛) < πœ– 2 + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) 𝐴𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) ≀ 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) π‘ π‘œ 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) ≀ 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) ≀ 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) < πœ– 2 + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛) β‡’ 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) ≀ πœ– 2 + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) βˆ€ 𝑛 , π‘š > 𝑛0 𝐿𝑒𝑑 𝛼𝑛 = 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛) ∈ 𝑅 π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ | 𝛼 π‘šβ€“ 𝛼𝑛 | < πœ– 2 ∴{ Ξ±π‘š} is a Cauchy sequence, ∴ { 𝛼𝑛} β†’ 𝛼 , ∴ 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) β†’ 𝛼 ∈ 𝑅 Then by lemma 15, 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) is Cauchy sequence in ( π‘Œ, 𝐷𝑝). βŽ• ii : If {𝛼𝑛} is a Cauchy sequence in (π‘Œ, 𝐷𝑝), then it is a Cauchy sequence in (π‘Œ, 𝐷 𝑔) and since D- metric (π‘Œ, 𝐷 𝑔) is complete then there exists 𝛼 ∈ π‘Œ such that limn ,m β†’βˆž D 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼) = 0, hence π‘™π‘–π‘šπ‘› ,π‘šβ†’βˆž[𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼) + 𝐷𝑝(𝛼 , 𝛼 , 𝛼𝑛 ) + 𝐷𝑝(𝛼, 𝛼 , π›Όπ‘š) – 2𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) – 2𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) – 3𝐷𝑝(𝛼 , 𝛼 , 𝛼)] = 0 There for π‘™π‘–π‘šπ‘› π‘š β†’βˆž[𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) – 𝐷𝑝(𝛼, 𝛼, 𝛼)] = 0 β‡’π‘™π‘–π‘šπ‘› π‘šβ†’βˆž 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) = 𝐷𝑝(𝛼 , 𝛼, 𝛼) hence (π‘Œ, 𝐷𝑝) is converge Thus (π‘Œ, 𝐷𝑝) is complete. Corollary 17 we can get from the proof of theorem 16, (𝑖𝑖), π‘™π‘–π‘šπ‘›,π‘š β†’βˆž[𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) βˆ’ 𝐷𝑝(𝛼, 𝛼, 𝛼)]=π‘™π‘–π‘šπ‘› ,π‘š β†’βˆž)[𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) – 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š)] = π‘™π‘–π‘šπ‘› ,π‘š β†’βˆž[𝐷𝑝(𝛼𝑛, π›Όπ‘šπ›Ό) – 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛)] = 0, such that π‘™π‘–π‘šπ‘› ,π‘š β†’βˆž 𝐷𝑝(𝛼𝑛, π›Όπ‘š, 𝛼) = π‘™π‘–π‘šπ‘š β†’βˆž) 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) = π‘™π‘–π‘šπ‘›β†’βˆž 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) = 𝐷𝑝(𝛼 , 𝛼 , 𝛼). Propositions 18 If {𝛼𝑛} is Cauchy sequence in (π‘Œ, 𝐷 𝑔), then π‘™π‘–π‘šπ‘› ,π‘š β†’βˆž 𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š) =π‘™π‘–π‘šπ‘›β†’βˆž 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛). Proof Since {𝛼𝑛} is Cauchy sequence in (π‘Œ, 𝐷 𝑔) then π‘™π‘–π‘šπ‘› ,π‘š,π‘™β†’βˆž 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) = 0 57 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 And 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) = 𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑙 ) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑛 ) + 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, 𝛼𝑙 ) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑛 ) + 𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , π›Όπ‘š)– 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛)– 2𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š )– 2𝐷𝑝(𝛼𝑙 , 𝛼𝑙 , 𝛼𝑙 ). And 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) ≀ 𝐷 𝑔(𝛼𝑛, π›Όπ‘š, 𝛼𝑙 ) then π‘™π‘–π‘šπ‘› ,π‘š β†’βˆžπ·π‘(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š)– 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) β†’ 0 Similarly π‘™π‘–π‘šπ‘› ,π‘š β†’βˆžπ·π‘ (𝛼𝑛, 𝛼𝑛, π›Όπ‘š)– 𝐷𝑝(π›Όπ‘š, π›Όπ‘š , π›Όπ‘š) β†’ 0 Since 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) – 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) = 𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) π‘‘β„Žπ‘’π‘› π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆž[𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛)] = π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆž[𝐷𝑝(π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š)] + π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆž[𝐷𝑝(𝛼𝑛, 𝛼𝑛, π›Όπ‘š) βˆ’ 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 )] ⟢ 0 So that π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆž[𝐷𝑝 (π›Όπ‘š, π›Όπ‘š, π›Όπ‘š) βˆ’ 𝐷𝑝 (𝛼𝑛, 𝛼𝑛 , 𝛼𝑛)] ⟢ 0 Let 𝛼𝑛 = 𝐷𝑝 (𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ) ∴ | π›Όπ‘š – 𝛼𝑛| β†’ 0 π‘Žπ‘  𝑛, π‘š ⟢ ∞ Hence {𝛼𝑛} is a Cauchy sequence in R, therefor {𝐷𝑝(𝛼𝑛, 𝛼𝑛 , 𝛼𝑛)} converge to Ξ±. Also , π‘™π‘–π‘šπ‘›βŸΆβˆž 𝐷𝑝(𝛼𝑛 , 𝛼𝑛, π›Όπ‘š) = π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆž [𝐷𝑝(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) + 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛) – 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛)] Then [𝐷𝑝 (𝛼𝑛, 𝛼𝑛 , π›Όπ‘š)– 𝐷𝑝(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 )] ⟢ 0 so π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆžπ·π‘(𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) = 𝛼 Thus π‘™π‘–π‘šπ‘›,π‘šβŸΆβˆžπ·π‘ (𝛼𝑛, 𝛼𝑛 , π›Όπ‘š) = π‘™π‘–π‘šπ‘›βŸΆβˆžπ·π‘(𝛼𝑛, 𝛼𝑛, 𝛼𝑛 ). βŽ• Theorem 19 If (Y, 𝑝) be partial metric space then 𝐷𝑝(𝛼, 𝛽, 𝛾) = 𝑝(𝛼, 𝛽) + 𝑝(𝛼 , 𝛾) + 𝑝(𝛽 , 𝛾) – 𝑝(𝛼 , 𝛼) – 𝛲(𝛽 , 𝛽) – 𝑝(𝛾 , 𝛾) (1.3) is general partial metric space. 1)𝑆𝑖𝑛𝑐𝑒 𝑝(𝛼, 𝛽) – 𝑝( 𝛼, 𝛼) β‰₯ 0 , 𝑝(𝛼 , 𝛾) – 𝑝(𝛾 , 𝛾) β‰₯ 0 , 𝑝(𝛽 , 𝛾) – 𝑝( 𝛽, 𝛽) β‰₯ 0 then 𝐷𝑝( 𝛼 , 𝛽, 𝛾) β‰₯ 0 2)𝑙𝑒𝑑 𝐷𝑝( 𝛼 , 𝛽, 𝛾) = 𝐷𝑝( 𝛼 , 𝛼 , 𝛼) = 𝐷𝑝( 𝛽, 𝛽, 𝛽) = 𝐷𝑝(𝛾 , 𝛾 , 𝛾) 𝑠𝑖𝑛𝑐𝑒 𝐷𝑝(𝛼 , 𝛼 , 𝛼) = 𝐷𝑝( 𝛽, 𝛽 , 𝛽) = 𝐷𝑝(𝛾, 𝛾, 𝛾) = 0 β‡’ 𝐷𝑝( 𝛼 , 𝛽 , 𝛾) = 0 β‡’ 𝑝( 𝛼, 𝛽) + 𝑝( 𝛽 , 𝛾) + 𝑝( 𝛼, 𝛾) – 𝑝(𝛼 , 𝛼) – 𝑝(𝛽, 𝛽) – 𝑝(𝛾 , 𝛾) = 0 β‡’ 𝑝( 𝛼 , 𝛽)– 𝑝( 𝛼 , 𝛼) = 0 β‡’ 𝑝( 𝛼, 𝛽) = 𝑝( 𝛼, 𝛼) … 1, β‡’ 𝑝( 𝛼 , 𝛾)– 𝑝(𝛾 , 𝛾) = 0 β‡’ 𝑝( 𝛼, 𝛾) = 𝑝(𝛾, 𝛾) … 2, 58 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 π‘Žπ‘›π‘‘ 𝑝( 𝛽, 𝛾) – 𝑝( 𝛽 , 𝛽) = 0 β‡’ 𝑝( 𝛽, 𝛾) = 𝑝( 𝛽, 𝛽) … 3 πΉπ‘Ÿπ‘œπ‘š 1 𝑝( 𝛼, 𝛼) = 𝑝( 𝛼, 𝛽) π‘Žπ‘›π‘‘ 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝑝( 𝛼, 𝛼) = 𝑝( 𝛼, 𝛽) ≀ 𝑝( 𝛼, 𝛾) + 𝑝(𝛾, 𝛽) βˆ’ 𝑝(𝛾, 𝛾) 𝑆𝑖𝑛𝑐𝑒 𝑝( 𝛼, 𝛾) = 𝑝(𝛾, 𝛾) & 𝑝( 𝛽, 𝛾) = 𝑝( 𝛽, 𝛽) 𝑀𝑒 𝑔𝑒𝑑 𝑝( 𝛼, 𝛼) = 𝑝( 𝛽, 𝛽) πΉπ‘Ÿπ‘œπ‘š 2 𝑝( 𝛽, 𝛽) = 𝑝( 𝛽, 𝛾) π‘Žπ‘›π‘‘ 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝑝( 𝛽, 𝛽) = 𝑝( 𝛽, 𝛾) ≀ 𝑝( 𝛽, 𝛼) + 𝑝( 𝛼, 𝛾) βˆ’ 𝑝( 𝛼, 𝛼) 𝑏𝛽 1&2 𝑀𝑒 𝑔𝑒𝑑 𝑝(𝛽, 𝛽) = (𝛾, 𝛾) πΉπ‘Ÿπ‘œπ‘š 3 𝑝(𝛾, 𝛾) = 𝑝( 𝛼, 𝛾)π‘Žπ‘›π‘‘ 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝑝(𝛾, 𝛾) = 𝑝( 𝛼, 𝛾) ≀ 𝑝( 𝛼, 𝛽) + 𝑝( 𝛽, 𝛾) βˆ’ 𝑝( 𝛽, 𝛽) 𝑏𝑦 1&3 𝑀𝑒 𝑔𝑒𝑑 𝑝(𝛾, 𝛾) = 𝑝 ( 𝛼, 𝛼) 𝐻𝑒𝑛𝑐𝑒 𝑝(𝛼 , 𝛼) = 𝑝( 𝛽, 𝛽) = 𝑝(𝛾, 𝛾) π‘‡β„Žπ‘’π‘  𝑝( 𝛼, 𝛼) = 𝑝( 𝛼, 𝛽) = 𝑝( 𝛽, 𝛽) 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝛼 = 𝛽, π‘Žπ‘›π‘‘ 𝑝( 𝛽, 𝛽) = 𝑝( 𝛽, 𝛾) = 𝑝(𝛾, 𝛾) 𝑏𝑦 π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› 𝛽 = 𝛾 π‘‘β„Žπ‘’π‘› 𝑀𝑒 𝑔𝑒𝑑 𝛼 = 𝛽 = 𝛾. 3) π‘‡π‘Ÿπ‘–π‘£π‘–π‘Žπ‘™ 4) 𝑠𝑖𝑛𝑐𝑒 𝑝(πœ‡ , 𝛾) – 𝑝(𝛾 , 𝛾) β‰₯ 0 , 𝑝(πœ‡ , 𝛽) – 𝑝(πœ‡ , πœ‡) β‰₯ 0 , 𝑝( 𝛼 , πœ‡) – 𝑝( 𝛼 , 𝛼) β‰₯ 0 , 𝑝(πœ‡ , 𝛾) – 𝑝(πœ‡ , πœ‡ ) β‰₯ 0 , 𝑝( 𝛽 , πœ‡) – 𝑝( 𝛽 , 𝛽 ) β‰₯ 0 , 𝑝( 𝛼 , πœ‡) – 𝑝(πœ‡ , πœ‡) β‰₯ 0 When combined, it is more than and equal to zero and when added these values 𝑝(𝛼 , 𝛽) , 𝑝( 𝛽 , 𝛾) , 𝑝( 𝛼 , 𝛾) , βˆ’ 𝑝( 𝛼 , 𝛼) , βˆ’ 𝑝( 𝛽 , 𝛽) , βˆ’ 𝑝(𝛾 , 𝛾) π‘‘π‘œ π‘π‘œπ‘‘β„Ž π‘ π‘Žπ‘–π‘‘ , 𝑀𝑒 𝑔𝑒𝑑 𝑝( 𝛼 , 𝛽) + 𝑝( 𝛽 , 𝛾) + 𝑝( 𝛼 , 𝛾) – 𝑝( 𝛼 , 𝛼) – 𝑝( 𝛽 , 𝛽) – 𝑝(𝛾 , 𝛾) ≀ 𝑝( 𝛼, 𝛽) + 𝑝( 𝛽 , 𝛾) + 𝑝( 𝛼 , 𝛾) – 𝑝( 𝛼 , 𝛼) – 𝑝( 𝛽 , 𝛽) – 𝑝(𝛾 , 𝛾) + 𝑝(πœ‡ , 𝛾) – 𝑝(𝛾 , 𝛾) + 𝑝( 𝛼 , πœ‡) – 𝑝( 𝛼 , 𝛼) + 𝑝( 𝛽 , πœ‡) – 𝑝( 𝛽 , 𝛽) + 𝑝(πœ‡ , 𝛽) – 𝑝(πœ‡ , πœ‡) + 𝑝(πœ‡ , 𝛾) – 𝑝(πœ‡ , πœ‡) + 𝑝( 𝛼 , πœ‡) – 𝑝(πœ‡ , πœ‡). β‡’ 𝐷𝑝( 𝛼 , 𝛽 , 𝛾) ≀ [ 𝑝(πœ‡ , 𝛽) + 𝑝(πœ‡ , 𝛾) + 𝑝(𝛾 , 𝛽) – 𝑝(πœ‡ , πœ‡) – 𝑝( 𝛽 , 𝛽) – 𝑝(𝛾 , 𝛾)] + [ 𝑝( 𝛼 , πœ‡) + 𝑝( 𝛼 , 𝛾) + 𝑝(πœ‡ , 𝛾) – 𝑝( 𝛼 , 𝛼) – 𝑝(πœ‡ , πœ‡) – 𝑝(𝛾 , 𝛾)] + [ 𝑝( 𝛼 , 𝛽) + 𝑝( 𝛼 , πœ‡) + 𝑝( 𝛽 , πœ‡) – 𝑝( 𝛼 , 𝛼) – 𝑝( 𝛽 , 𝛽) – 𝑝(πœ‡ , πœ‡)] 𝐷𝑝(𝛼 , 𝛽 , 𝛾) ≀ 𝐷𝑝(πœ‡ , 𝛽, 𝛾) + 𝐷𝑝( 𝛼 , πœ‡ , 𝛾) + 𝐷𝑝( 𝛼 , 𝛽, πœ‡) – 𝐷𝑝(πœ‡ , πœ‡ , πœ‡) βŽ• Proposition 20 Let (π‘Œ, 𝐷𝑝) be a general partial metric space and 𝐷𝑝( 𝛼 , 𝛽 , 𝛽) ≀ 𝐷𝑝( 𝛼 , 𝛾 , 𝛾) + 𝐷𝑝(𝛾 , 𝛽, 𝛽) – 𝐷𝑝(𝛾, 𝛾 , 𝛾) (1.4) holds then the function 𝑝: π‘Œ2 β†’ [0 , ∞) which is defied by 𝑝(𝛼 , 𝛽) = 𝐷𝑝( 𝛼 , 𝛽 , 𝛽) is a partial metric on Y . Proof 59 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 1)𝑠𝑖𝑛𝑐𝑒 𝑝(𝛼, 𝛽) = 𝑝(𝛼, 𝛼) = 𝑝(𝛽, 𝛽) ⇔ 𝐷𝑝(𝛼, 𝛽, 𝛽) = 𝐷𝑝(𝛼, 𝛼, 𝛼) = 𝐷𝑝(𝛽, 𝛽, 𝛽) ⇔ 𝛼 = 𝛽. 2) 𝑠𝑖𝑛𝑐𝑒 𝐷𝑝( 𝛼 , 𝛼, 𝛼) ≀ 𝐷𝑝( 𝛼, 𝛽 , 𝛽) π‘‘β„Žπ‘’π‘› 𝑝( 𝛼 , 𝛼) ≀ 𝑝( 𝛼 , 𝛽) βˆ€ 𝛼, 𝛽 ∈ 𝛼 3) Trivial 4) 𝑝(𝛼 , 𝛽) = 𝐷𝑝( 𝛼 , 𝛽 , 𝛽) ≀ 𝐷𝑝(𝛼 , 𝛾 , 𝛾) + 𝐷𝑝(𝛾 , 𝛽, 𝛽) – 𝐷𝑝(𝛾 , 𝛾 , 𝛾) π‘“π‘Ÿπ‘œπ‘š (1.3) = 𝑝( 𝛼, 𝛾) + 𝑝(𝛾, 𝛽) βˆ’ 𝑝(𝛾, 𝛾). βŽ• References 1. Czerwik, Stefan. Contraction mappings in $ b $-metric spaces, Acta mathematica et informatica universitatis ostraviensis. 1993, 1, 1, 5-11. 2. Mustafa, Zead.; Obiedat, Hamed.; Awawdeh, Fadi. Some fixed point theorem for mapping on complete G-metric spaces. Fixed point theory and Applications. 2008, 2008, 1, 189870. 3.Gahler, Siegfried. 2‐metrische RΓ€ume und ihre topologische Struktur, Mathematische Nachrichten, 1963, 26,1‐4, 115-148. 6.Sedghi, Shaban.; Shobe, Nabi.; Zhou, Haiyun. A common fixed point theorem in-metric spaces, Fixed point theory and Applications, 2007, 2007, 1, 027906. 5. Matthews, Steve G. Partial metric topology, Annals of the New York Academy of Sciences- Paper Edition. 1994, 728, 183-197. 6. Aydi, Hassen, et al. On Ο†-contraction type couplings in partial metric spaces, Journal of Mathematical Analysis. 2017, 8, 4, 78-89. 7. ŞAHIN, Memet.; Kargin, Abdullah.; Γ‡oban, Mehmet Ali. Fixed point theorem for neutrosophic triplet partial metric space, Symmetry. 2018, 10, 7, 240. 8. PANT, Rajendra, et al. Some new fixed point theorems in partial metric spaces with applications, Journal of Function Spaces. 2017, 2017. 9. Altun, Ishak.; Erduran, Ali. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications. 2011, 2011,1, 508730. 10. Karapinar, Erdal.; Agarwal, Ravi.; Aydi, Hassen. Interpolative Reich–Rus–ĆiriΔ‡ type contractions on partial metric spaces, Mathematics. 2018, 6, 11, 256. 11. Dhage, B. C. Generalized metric spaces and topological structure. I, Analele Atintifice ale Universitatii Al. I. Cuza din lasi. Serie Noua Mathematica. 2000, 46,3, 24. 12. Fora, Ali Ahmad.; Massadeh, Mourad Oqla. Submetrizable Spaces and Generalized D- submetrizable spaces. 2017. 13. Ramabhadrasarma, I.; SambasIvarao, S. ON D-METRIC SPACES, Journal of Global Research in Mathematical Archives. 2013, 1,12.