87 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Weak Pseudo – 2 – Absorbing Submodules And Related Concepts Haibat K. Mohmmadal Sada E. Radeef mfloweriraq767@gmail.co dr.mohammadali2013@gmail.com Department Of Mathematics , College Of Computer Sciences and Mathematics, University Of Tikrit, Tikrit . Iraq. Abstract Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules , where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if 0 ≠ rsx ∈ A for r, s ∈ R , x ∈ E , implies that rx ∈ A + soc ( E ) or sx ∈ A + soc (E) or rs ∈ [ A + soc ( E ) :𝑅 E ]. Many basic properties, characterizations and examples of Weak Pseudo – 2 – Absorbing submodule in some types of modules are introduced . Key word : weakly – 2 – Absorbing submodules , essential submodule , socal of modules , multiplication modules , Z – regular modules , WP – 2 – Absorbing submodules . 1. Introduction The concept of weakly – 2 – Absorbing submodule was first introduced by Darani and Soheilnia as generalization of weakly prime submodule , where a proper submodule A of an R – module E is called a weakly prime submodule of E if 0 ≠ te ∈ A , for t ∈ R , e ∈ E implies that either e ∈ A or t ∈ [ A :𝑅 E ] , where [ A :𝑅 E ] = { s ∈ R : sE  A } [1] , and a proper submodule A of an R- module E is called a weakly – 2 – Absorbing submodule of E , if 0 ≠ ste ∈ A , for s , t ∈ R , e ∈ E implies that either se ∈ A or te ∈ A or st ∈ [ A :𝑅 E ] [2] . Recently , several generalizations of weakly – 2 – Absorbing submodules have been introduced [ 3,4,5 ] . In our paper , we introduce a new generalization of weakly – 2 – Absorbing submodule which we callWeak Pseudo – 2 – Absorbing submodule , where a proper submodule A of an R – module E is said to be Weak Pseudo – 2 – Absorbing Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.2.2615 Article history: Received,19,May,2020, Accepted 23,June,2020, Published in April 2021 mailto:floweriraq767@gmail.com mailto:dr.mohammadali2013@gmail.com mailto:dr.mohammadali2013@gmail.com 88 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 submodule if 0 ≠ ste ∈ A , for s , t ∈ R , e ∈ E , implies that either se ∈ A + soc ( E ) or te ∈ A + soc ( E ) or st ∈ [ A + soc ( E ) :𝑅 E ] . Soc ( E ) is the intersection of all essential submodules of E [6] . A nonzero submodule N of an R – module E is called an essential if N ∩ K ≠ ( 0 ) for all nonzero submodules K of E [6]. Every weakly prime submodule of an R – module is weakly – 2 – Absorbing [7] . Recall that an R – module E is cyclic if E = ˂ x > for x ∈ E [8]. Recall that an R – module E is a semi simple if soc ( E ) = (0) [6]. It is well known that an R – module E is a semi simple if and only if soc ( 𝐸 𝑁 ) = ( 𝑠𝑜𝑐 ( 𝐸 )+ 𝑁 𝑁 ) for each submodule N of E [ 6 , Ex.12(c) ] . The set [ N :𝐸 I ] = [ x ∈ E : x I  N } , where N is a submodule of E , and I is an ideal of R [ N :𝐸 I ] and is a submodule of E containing N. [ N :E R ] = N and [ I :𝐸 R ] = I [9]. Recall that an R – module E is a multiplication if every submodule A of E is of the form A = IE for some ideal I of R , Equivalently A = [ A :𝑅 E ] E [10]. Recall that an R – module E is a faithful if Ann ( E ) = { r ∈ R : rE = ( 0)} [8]. 2. Basic properties of WP – 2 – Absorbing submodules . In this part of the paper , we introduce the definition of WP – 2 – Absorbing submodules and , thus truth some of i𝑡,s basic properties , examples and characterizations. Definition .1. A proper submodule A of an R – module E is said to be Weak Pseudo – 2 – Absorbing (for shorten WP – 2 – Absorbing ) submodule of E , if 0 ≠ ste ∈ A , for s , t ∈ R , e ∈ E , implies that se ∈ A + soc( E ) or te ∈ A + soc ( E ) or st ∈ [ A + soc ( E ) :R E ] . And an ideal J of a ring R is said to be WP – 2 – Absorbing ideal of R, if J is a WP – 2 – Absorbing R – submodule of an R – module R. Example and Remarks .2. 1. In the Z – module 𝑍36 , the only essential submodules are ˂ 2̅ >, ˂ 3 ̅>, ˂ 6̅ > and Z36 itself thus Soc ( Z36 ) = ˂ 6̅ > = { 0̅ , 6̅ , 12̅̅̅̅ , 18̅̅̅̅ , 24 ̅̅ ̅̅ , 30̅̅̅̅ } 2 . It is clear that the submodules of the Z – module Z36 are ˂ 4̅ > ,˂ 6̅ >, ˂ 9̅ > , ˂ 12̅̅̅̅ > and ˂ 18̅̅̅̅ > are WP – 2 – Absorbing submodules . 3 . The submodules ˂ 12̅̅̅̅ > and ˂ 18̅̅̅̅ > of the Z – module Z36 are not weakly – 2 – Absorbing submodules , since 0 ≠ 2 . 3 . 2̅ ∈ ˂ 12̅̅̅̅ > for 2 , 3 ∈ Z , 2̅ ∈ Z36 but 2 . 2̅ = 4̅  ˂ 12̅̅̅̅ > and 3 . 2̅ = 6̅  ˂ 12̅̅̅̅ > and 2. 3 = 6  [˂ 12̅̅̅̅ > :Z Z36 ] = 12 Z . 4 . The submodule ˂ 2̅ >, ˂ 3 ̅> of the Z- module Z36 are weakly – 2 – Absorbing submodules of Z36 because they are weakly prime submodules of Z - Z36 . 5 . It is clear that the submodules ˂ 4̅ > , ˂ 6̅ > and ˂ 9̅ > of the Z – module Z36 are weakly – 2 – Absorbing submodules . 6 . It is clear that every weakly – 2 – Absorbing submodule of an R – module E is a WP – 2 – Absorbing , but not conversely , the following example shows that : -- In the Z – module Z36 , the submodule ˂ 18̅̅̅̅ > is a WP – 2- Absorbing by (2) , but ˂ 18̅̅̅̅ > is not weakly – 2 – Absorbing submodule by (3) . 89 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 7 . It is clear that every weakly prime submodule of an R – module E is a WP – 2 – Absorbing but not conversely. The following example explains that in the Z- module Z36 , the submodule ˂ 4̅ > is a WP – 2 – Absorbing by (2) . But ˂ 4̅ > is not weakly prime submodule, since 0 ≠ 2 . 2̅  ˂ 4̅ > for 2  Z , 2̅  Z36 , but 2̅  ˂ 4̅ > and 2  [˂ 4̅ > : Z Z36 ] = 4Z. 8 . In general ,the submodule nZ of the Z – module Z is weakly – 2 – Absorbing if n = 0 , P, P2 and pq by [7, Rems. And Exs. ( 1.2.2 ) (3) ] . Hence the submodules nZ of the Z – module Z is a WP – 2 – Absorbing if n = 0 , P , P2 and pq by ( 6 ) . 9 . The submodules 12Z and 18Z of the Z – module Z are not WP – 2 – Absorbing because soc (Z) = ( 0 ) [8]. That is , 0 ≠ 2 . 3 . 2  12Z for 2 , 3 , 2  Z , but 2 . 2  12Z + soc ( Z ) and 3 .2 12Z + soc ( Z ) and 2 . 3  [ 12Z + soc ( Z ) :Z Z ] = 12Z . Also , 0 ≠ 2 . 3 . 3  18Z for 2 , 3  Z , but 2.3  18Z + soc ( Z ) and 3.3  18Z + soc ( Z ) and 2. 3  [ 18Z + soc ( Z ) :Z Z ] = 18Z . 10 . If A is a WP – 2 – Absorbing submodule of an R – module E , then [ A :R E ] need not to be WP – 2 – Absorbing ideal of R . For example the submodule ˂ 18̅̅̅̅ > of the Z – module Z36 is a WP – 2 – Absorbing submodule by ( 2 ) , but [˂ 18̅̅̅̅ > : Z Z36 ] = 18Z is not WP – 2 – Absorbing ideal of Z by ( 9 ) . 11 . The intersection of two WP – 2 – Absorbing submodules of an R- module E need not to be WP – 2 – Absorbing submodule .For example the submodules 3Z , 4Z are WP – 2 – Absorbing submodule of the Z – module Z by (8) , but 3Z  4Z = 12Z is not WP – 2 – Absorbing submodul by (9) . The following results are characterizations of WP – 2 – Absorbing submodules . Proposition 3. A proper submodule A of an R- module E is a WP – 2 – Absorbing submodule of E if and only if for any t , s  R with ts  [ A + soc ( E ) : R E ] we have [ A :E ts ]  [ 0 : E ts ]  [ A + soc ( E ) : E t ]  [ A + soc ( E ) :E s ] Proof : ( ) tse , it follows ≠ A . If 0 E ] ,then tse R A + soc ( E ) : [ ts ] with ts E A :[ Let e t ] or e E [ A + soc ( E ) : A + soc ( E ) , that is either e A + soc ( E) or se that either te [ A + soc ( E ts ] E [0 : ts ] . Hence e E [ 0 : s ] . If tse = 0 then e E[ A + soc ( E ) :  [ A t ] E[ A + soc ( E ) : ts ] E [ 0 : st ] E s ] . Therefore [ A :E [ A + soc ( E ) : t ] E) : ] . sE soc ( E ) : + () Let 0 ≠ tse  A for t, s  R , e  E with ts  [ A + soc ( E ) :R E ] . It follows by hypothesis e  [ A :E ts ] and e  [ 0 : E ts ] , implies that e  [A + soc ( E ) :E t ]  [ A + soc ( E ) : E s ]. Hence either te  A + soc ( E ) or se  A + soc ( E ) . Therefore A is aWP – 2 – Absorbing submodule of E . 90 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Proposition 4. A proper submodule A of an R – module E is a WP – 2 – Absorbing if 0 ≠ tsK  A for t , s  R and K is a submodule of E , implies that either tK  A + soc ( E ) or sK  A + soc ( E ) or ts  [ A + soc ( E ) :R E ]. Proof : ( ) R [ A + soc ( E ) : R , K is a submodule of E . Suppose that ts A , for t , s Let 0 ≠ tsK  1K such that te 2 , e1 A + soc ( E ).Then,there exists e A + soc ( E ) and sK E ] , tK E ] , then R [ A + soc ( E ) : A and ts 1 A + soc ( E ). Now 0 ≠ tse 2 A + soc ( E ) and se [ A + soc ( E t ] E[ A + soc ( E ) : ts ] E[ 0 : st ] E [ A : 1 by proposition (3) we have e E [ A + soc ( E ) : 1 t ] .It follows that e E[ A + soc ( E ) : 1ts ] and e E[ 0 : 1s ] . But e E) : [ A + soc  2E ] and e R [ A + soc ( E ) : and ts 2A + soc (E). Again 0 ≠ tse 1se ,s ] , that is [ A + soc ( E A and ts ) 2 + e1 A + soc ( E ). Now, 0 ≠ ts ( e  2s ], it follow tha teE ( E ) : ts ], it follows by proposition ( 3 ) E [ 0 : ) 2 + e 1ts ] and ( e E [ A : ) 2 + e 1E ] , then (e R ) : 1s ]. That is either t(e E[ A + soc ( E ) : ) 2 + e 1t ] or (e E[ A + soc ( E ) : ) 2 + e 1either (e A + soc ( E ) ,  2 + te 1) = te2 + e 1A + soc ( E) . If t(e ) 2 + e 1A + soc ( E ) or s(e ) 2 e+ . is a contradiction A + soc ( E ) which  1A + soc ( E ) , then te  2 and te A + soc ( E )  2A + soc ( E ), then se 1A + soc ( E ) and se  2+ se1 ) = se2 + e 1If s (e which is a contradiction. Hence either tK  A + soc ( E ) or sK  A + soc ( E ) or ts  [ A + soc ( E ) :R E ] . (  ) Trivial , so we omitted it . Proposition 5. A proper submodule A of a cyclic R – module E is a WP – 2 – Absorbing if and only if for each t , s  R with ts  [ A + soc ( E ) :R E ] we have [ A :R tse ]  [ 0 : R tse ]  [ A + soc ( E ) :R te ]  [ A + soc ( E ) :R se ]. Proof : ( ) Let t , s  R ,with ts  [ A + soc ( E ) :R E ] and let r [ A :R tse ], it follows that ts( re )  A. If 0 ≠ ts( re )  A and A is a WP – 2 – Absorbing and ts  [ A + soc ( E ) :R E ], then either tre  A + soc ( E ) or sre  A + soc ( E ) , that is either r  [ A + soc ( E ) :R te ] or r  [ A + soc ( E ) :R se ]. If tsre = 0 , implies that r  [ 0 : tse]. Hence r  [ 0 :R tse ]  [ A + soc ( E ) :R te ]  [ A + soc ( E ) :R se ] . Therefore [ A :R tse ]  [ 0 : R tse ]  [ A + soc ( E ) :R te ]  [ A + soc ( E ) :R se ]. (  ) Since E is cyclic , then E =  e1  for some e1  E . Let 0 ≠ tse  A for t , s  R , e  E with ts  [ A + soc ( E ) :R E ].Since e  E then e = re1 for some r  R , that is 0 ≠ ts( re1 )  A ,it follows that r  [ A :R tse1 ]  [ 0 : R tse1 ]  [ A + soc ( E ) :R te1 ]  [ A + soc ( E ) :R se1 ]. But r  [ 0 : R tse1 ] ( since 0 ≠ tsre1 ) , therefore , r  [ A + soc ( E ) :R te1 ] or r [ A + 91 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 soc ( E ) :R se1 ], it follows that tre1  A + soc (E) or sre1  A + soc (E). That is te  A + soc ( E ) or se  A + soc (E). Therefore A is a WP – 2 – Absorbing submodule of E . Proposition 6. A proper submodule N of an R – module E is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ IJL  N for some ideals I , J of R and some submodule L of E implies that either IL  N + soc ( E ) or JL  N + soc ( E ) or IJ  [ N + soc ( E ) :R E ] . Proof : ( ) Let ( 0 ) ≠ IJL  N for some ideals I,J of R and some submodule L of E with IJ  [ N + soc ( E ) :R E ]. To prove that IL  N + soc ( E ) or JL  N + soc ( E ) .Suppose that IL  N + soc ( E ) and JL  N + soc ( E ) , that is there exist a1  I and a2 J such that a1L  N + soc ( E ) and a2L  N + soc ( E ) .Now , ( 0 ) ≠ a1a2L  N , and N is aWP – 2 – Absorbing submodule of E , then by proposition ( 4 ) either a1 L  N + soc ( E ) or a2L  N + soc ( E ) or a1a2 [ N + soc ( E ) :R E ]. Since IJ  [ N + soc ( E ) :R E ] , there exists b1  I and b2  J such that b1b2  [ N + soc ( E ) :R E ].But ( 0 ) ≠ b1b2L  N and N is a WP – 2 – Absorbing submodule of E , and b1b2  [ N + soc ( E ) :R E ] , then by proposition ( 4 ) either b1L  N + soc ( E ) or b2L  N + soc ( E ). Now : -- ( 1 ) If b1L  N + soc ( E ) and b2L  N + soc ( E ) . Since (0) ≠ a1b2L  N and b2L  N + soc ( E ) and a1L  N + soc ( E ) , then by proposition ( 4 ) a1b2  [N + soc ( E ) :R E ]. Since b1L  N + soc ( E ) and a1L  N + soc ( E ) , we get ( a1 + b1 ) L  N + soc ( E ) .For there more ( 0 ) ≠ ( a1 + b1 )b2 L  N and N is a WP – 2 – Absorbing with ( a1 + b1 ) L  N + soc ( E ) , b2L  N + soc ( E ) , it follows that by proposition ( 4 ) ( a1 + b1 ) b2 = a1b2 + b1b2  [ N + soc ( E ) :R E ] , but a1b2  [ N + soc ( E ) :R E ] , then b1b2  [ N + soc ( E ) :R E ] , this is a contradiction . ( 2 ) If b2L  N + soc ( E ) and b1L  N + soc ( E ) , so by similar steps of ( 1 ) we get a contradiction . ( 3 ) If b1L  N + soc ( E ) and b2L  N + soc ( E ) , since b2L  N + soc ( E ) and a2L  N + soc ( E ) , we get (a2 + b2 )L  N + soc ( E ) . But ( 0 ) ≠ a1 (a2 + b2 ) L  N and N is a WP – 2 – Absorbing with a1L  N + soc ( E ) and (a2 + b2 ) L  N + soc ( E ) then , we get a1 (a2 + b2 )  [ N + soc ( E ) :R E ] . Since a1a2  [ N + soc ( E ) :R E ] and a1a2 + a1b2  [ N + soc ( E ) :R E ] , it follows that a1b2  [ N + soc ( E ) :R E ]. Now , ( 0 ) ≠ (a1 + b1 ) a2  N and a2L  N + soc ( E ) and ( a1 + b1 ) L  N + soc ( E ) , it follows by proposition ( 4 ) ( a1 + b1 )a2 = a1a2 + b1a2  [ N + soc ( E ) :R E ] and since a1a2 [ N + soc ( E ) :R E ] , we get b1a2  [ N + soc ( E ) :R E ]. Since ( 0 ) ≠ ( a1 + b1 ) (a2 + b2 ) L  N and ( a1 + b1 ) L  N + soc ( E ) and (a2 + b2 ) L  N + soc ( E ) then by proposition ( 4 ) we have ( a1 + b1 ) (a2 + b2 ) = a1a2 + a1b2 + b1a2 + b1b2  [ N + soc ( E ) :R E ]. But a1a2 , b1a2 , a1b2  [ N + soc ( E ) :R E ] , we get b1b2  [ N + soc ( E ) :R E ] which is a contradiction . Thus IL  N + soc ( E ) or JL  N + soc ( E ) . 92 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 (  ) Trivial, so we omittedit The following corollaries are adirect consequence of proposition ( 6 ) . Corollary 7. A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ IJx  A for some ideals I , J of R and x  E , implies that either Ix  A + soc ( E ) or Jx  A + soc ( E ) or IJ  [A + soc ( E ) :R E ] . Corollary 8. A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ sIL  A for some s  R and ideal I of R and some submodule L of E , implies that either sL  A + soc ( E ) or IL  A + soc ( E ) or sI  [ A + soc ( E ) :R E ] . Corollary 9. A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ sIx  A for some s  R , ideal I of R and some x  E , implies that either sx  A + soc ( E ) or Ix  A + soc ( E ) or sI  [A + soc ( E ) :R E ] . Proposition 10. Let A be a WP – 2 – Absorbing submodule of an R – module E and B is a submodule of E with B  A then A B is a WP – 2 – Absorbing submodule of an R – module E B . Proof : Let 0 ≠ ts ( x + B ) = stx + B  A B for s , t  R , x + B  E B , x  E .It follows that tsx  A. If tsx = 0 then ts( x + B ) = 0 which is a contradiction . thus 0 ≠ tsx  A implies that either tx  A + soc ( E ) or sx  A + soc ( E ) or tsE  A + soc ( E ) .It follow that either t( x + B )  A +soc ( E ) B or s(x + B )  A +soc ( E ) B or tsE B  𝐴 +𝑠𝑜𝑐 ( 𝐸 ) 𝐵 . That is either t( x + B )  A B + A +soc ( E ) B  A B + soc ( E B ) or s( x + B )  A B + A +soc ( E ) B  A B + soc ( E B ) or ts E B  A B + A +soc ( E ) B  A B + soc ( E B ). Hence , A B is a WP – 2 – Absorbing submodule of an R – module E B . Proposition .11. Let A , B be submodules of semi simple R – module E with B  A. If B and A B are WP – 2 – Absorbing submodules of E , E B respectively , then A is a WP – 2 – Absorbing submodule of E . Proof : Let 0 ≠ tsx  A for t , s  R , x  E , then 0 ≠ ts ( x + B ) = tsx + B  A B . If 0 ≠ tsx  B and B is a WP – 2 – Absorbing , implies that either tx  B + soc ( E )  A + soc ( E ) or sx  B + soc ( E )  A + soc ( E ) or tsE  B + soc ( E )  A + soc ( E ) .Thus A is a WP – 2 – 93 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Absorbing submodule of E . Assume that tsx  B , it follows that 0 ≠ ts( x + B )  A B . But A B is a WP – 2 – Absorbing submodule of E B implies that either t( x + B )  A B + soc ( E B ) or s (x + B ) A B + soc ( E B ) or 𝑡 𝑠 𝐸 𝐵  A B + soc ( E B ) . Since E is a semi simple then soc ( E B ) = soc ( E )+B B . It follows that either t( x + B )  A B + B+soc ( E ) B or s ( t + B )  A B + B+soc ( E ) B or t s E B  A B + B+soc ( E ) B . But B  A , implies that B + soc ( E )  A + soc ( E ) , hence A B + B+soc ( E ) B  A B + A + soc ( E ) B . Since A B  A + soc ( E ) B implies that A B + A + soc ( E ) B = A +soc ( E ) B . that is either t ( x + B )  A +soc ( E ) B or s(x + B )  A + soc ( E ) B , t s E B  A + soc ( E ) B , it follows that either tx  A + soc ( E ) or sx  A + soc ( E ) or tsE  A + soc ( E ) . Thus A is WP – 2 – Absorbing submodule of E . Proposition 12. Let A be a proper submodule of an R – module E with soc ( E )  A. Then A is a WP – 2 – Absorbing submodule of E so if and only if [ A :E I ] is a WP – 2 – Absorbing submodule of E for each ideal I of R . Proof : (  ) Let (0) ≠ tsB  [ A :E I ] for t , s  R , B is a submodule of E , then ( 0 ) ≠ tsIB  A , implies that either tIB  A + soc ( E ) or sIB  A + soc ( E ) or tsE  A + soc ( E ) . But soc ( E )  A , then A + soc ( E ) = A . that is either tIB  A or sIB  A or tsE  A. Thus , either tB  [ A :E I] or sB  [ A :E I] or tsE  A  [ A :E I] . It follows that either tB  [ A :E I]  [ A :E I] + soc ( E ) or sB  [ A :E I]  [ A :E I] + soc ( E ) or tsE  [ A :E I]  [ A :E I] + soc ( E ). Hence , [ A :E I] is a WP – 2 – Absorbing submodule of E . (  )Since [ A :E I ] is a WP – 2 – Absorbing subodule for every non zero ideal I of R . Put I = R , we get [ A :E R ] = A is a WP – 2 – Absorbing submodule of E . We need to introduce the following definition. Definition 13. Let A be a WP – 2 – Absorbing submodule of an R – module E and r, s  R , e  E , we say that ( r , s , e ) is WP – triple zero of A if rse = 0 , re  A + soc ( E ) , se  A + soc ( E ) and rs  [A + soc ( E ) :R E ] . Proposition 14. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – trible zero of A for some r, s  R , e  E . Then rsA = ( 0 ) . Proof : Suppose rsA ≠ ( 0 ) , then rsa ≠ 0 for some a  A. Since ( r , s , e ) is a WP – triple zero of A then rse = 0 , re  A + soc ( E ) , se  A + soc ( E ) and rs  [A + soc ( E ) :R E ]. Since 0 ≠ rsa  A and A is a WP – 2 – Absorbing submodule of E and rs  [A + soc ( E ) :R E ], then either ra A + soc ( E ) or sa  A + soc ( E). 94 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Now, 0 ≠ rs ( e + a ) = rse + rsa = rsa  A , and rs  [A + soc ( E ) :R E ], then either r( e + a ) = re + ra  A + soc ( E ) or s( e + a ) = se + sa  A + soc ( E ). If re + sa  A + soc ( E ) and ra  A + soc ( E ) implies that re  A + soc ( E ) contradiction. If se + sa  A + soc ( E ) and sa  A + soc ( E ) , implies that se A + soc ( E) contradiction . Hence , rsA = ( 0 ) . Proposition 15. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E , then [ A :R E ]re = [ A :R E ]se = ( 0 ) . Proof : Suppose that [ A :R E ]se ≠ ( 0 ) then yse ≠ o for some y  [ A :R E ]. Since ( r , s , e ) is a WP – triple zero of A, rse = 0 and re  A + soc ( E ) , se  A + soc ( E ) and rs  [A + soc ( E ) :R E ]. We have 0 ≠ yse  A and A is a WP – 2 – Absorbing submodule of E , then either ye  A + soc ( E ) or se  A + soc ( E ) or ys  [A + soc ( E ) :R E ]. Now , 0 ≠ ( r + y ) se = rse + yse = yse  A and A is a WP – 2 – Absorbing submodule , then either ( r + y )e = re + ye  A + soc ( E ) or se  A + soc ( E ) or ( r + y )s  [A + soc ( E ) :R E ].Since ye  A + soc ( E ) and if re + ye  A + soc ( E ), it follows that re  A + soc ( E ) a contradiction . If ( r + y )s = rs + ys  [A + soc ( E ) :R E ] and ys  [A + soc ( E ) :R E ], then rs  [A + soc ( E ) :R E ] a contradiction . Thus [ A :R E ]se = ( 0 ) . Similarly we can prove [ A :R E ]re = ( 0 ) . Proposition 16. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E . Then r[ A :R E ]e = s[ A :R E ]e = ( 0 ). Proof : Suppose that r[ A :R E ]e ≠ ( 0 ) , then there exists x [ A :R E ] such that rxe ≠ 0 . But ( r , s , e ) is a WP – triple zero of A , rse = 0 , re  A + soc ( E ) or se  A + soc ( E ) and rs  [A + soc ( E ) :R E ]. For 0 ≠ rxe  A and A is a WP – 2 – Absorbing submodule of E, then either re  A + soc ( E ) or xe  A + soc ( E ) or rx  [A + soc ( E ) :R E ]. Now , 0 ≠ r( s + x )e = rse + rxe = rxe  A , and A is a WP – 2 – Absorbing submodule , then either re  A + soc ( E ) or ( s + x ) e = se + xe  A + soc ( E ) or r( s + x ) = rs + rx  [A + soc ( E ) :R E ]. That is re  A + soc ( E ) a contradiction. If ( s + x )e = se + xe  A + soc ( E ), implies that se  A + soc ( E ) a contradiction. If rs + rx [A + soc ( E ) :R E ], implies that rs  [A + soc ( E ) :R E ] a contradiction. Thus r[ A :R E ]e = ( 0 ) . In similary way s[ A :R E ]e = ( 0 ) . As direct consequence of proposition ( 16 ) , we get the following corollary : Corollary 17. If A is a WP – 2 – Absorbing submodule of an R – module E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E , then r [ A :R E ] A = s [ A :R E ]A = ( 0 ) . Proposition 18. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E , then [ A :R E ] sA = [ A :R E ] rA = ( 0 ). Proof : Suppose that [ A :R E ] sA ≠ ( 0 ) , then xsa ≠ ( 0 ) for some x  [ A :R E ], a  A . Since ( r , s , e ) is a WP – triple zero of A, then rse = 0 , re  A + soc ( E ) , se  A + soc ( E ) and rs  [ A + soc ( E ) :R E ]. For 0 ≠ xsa  A , it follows that either xa  A + soc ( E ) or sa  A + soc ( E ) or xs [ A + soc ( E ) :R E ]. We have ( r + x ) s ( a + e ) = rsa + rse + 95 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 xsa + xse = xsa  A ( since rse = 0 , and rsa = 0 for proposition ( 14 ) and xsa = 0 from proposition ( 16 )). That is 0 ≠ ( r + x )( a + e ) = ra + re + xa + xe  A , implies that re  A + soc ( E) a contradiction or s( a + e ) = sa + se  A + soc ( E ) implies that se  A + soc ( E ) a contradiction or ( r + x )s = rs + xs [ A + soc ( E ) :R E ], implies that rs [ A + soc ( E ) :R E ] a contradiction .Thus [ A :R E ] sA = ( 0 ) . In similar steps , we can show that [ A :R E ]rA = ( 0 ) . Proposition 19. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E , then [ A :R E ] [ A :R E ] e = ( 0 ) . Proof : Suppose that [ A :R E ] [ A :R E ] e ≠ ( 0 ), then 0 ≠ xye  A for some x , y  [ A :R E ]. For ( r , s , e ) is a WP – triple zero of A, then rse = 0, re  A + soc ( E ) , se  A + soc ( E ) and rs  [ A + soc ( E ) :R E ]. Now, 0 ≠ xye  A , implies that either xe  A + soc ( E ) or ye  A + soc ( E ) or xy  [ A + soc ( E ) :R E ]. Now , 0 ≠ ( r + x )( s + y )e = rse + rye + xse + xye = xye  A (since rse = 0 , rye = 0 , xse = 0 by proposition (16)).It follows that either ( r + x )e = re + xe  A + soc ( E ), implies that re  A + soc ( E ) a contradiction . or ( s + y )e = se + ye  A + soc ( E ), implies that se  A + soc ( E ) a contradiction, or ( r + x )( s + y ) = rs + ry + xs + xy [ A + soc ( E ) :R E ], implies that rs [ A + soc ( E ) :R E ] a contradiction. Hence [ A :R E ] [ A :R E ] e = ( 0 ) . Proposition 20. If A is a WP – 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some r, s  R , e  E , then [ A :R E ] [ A :R E ]A = ( 0 ) . Proof : By proposition ( 14 ) and proposition ( 19 ) . Proposition 21 . Let A be a WP – 2 – Absorbing submodule of E and rsB  A for some r, s  R, and some submodule B of E with ( r , s , x ) is not WP – triple zero of A for every x  B . If rs  [A + soc ( E ) :R E ], then rx  A + soc ( E ) or sx  A + soc ( E ) . Proof : Suppose that ( r , s , x ) is not WP – triple zero of A for every x  B and suppose that rB  A + soc ( E ) and sB  A + soc ( E ), then ry1  A + soc ( E ) or sy2  A + soc ( E ) for some y1, y2  B. If 0 ≠ rsy1 A with rs  [A + soc ( E ) :R E ] and since ry1  A + soc ( E ) then sy1  A + soc ( E ) ( for A is a WP – 2 – Absorbing submodule ) . If rsy1 = 0 and ry1  A + soc ( E ) , rs  [A + soc ( E ) :R E ] and ( r , s , y1 ) is not WP – triple zero of A , we get sy1 A + soc ( E ). By similar arguments since ( r , s , y2 ) is not WP – triple zero of A , we get ry2  A + soc ( E ). Now , rs (y1 + y2 )  A and ( r 1 s , y1 + y2 ) is not WP – triple zero of A and rs  [A + soc ( E ) :R E ], we get r (y1 + y2 )  A + soc ( E ) or s(y1 + y2 )  A + soc ( E ) . If r (y1 + y2 ) = ry1 + ry2  A + soc ( E ) and ry2  A + soc ( E ), we get ry1  A + soc ( E ) is a contradiction . 96 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 If s (y1 + y2 ) = sy1 + sy2  A + soc ( E ) and sy1 A + soc ( E ) then sy2  A + soc ( E )is a contradiction . Hence rB  A + soc ( E ) or sB  A + soc ( E ) . Proposition 22. Let A , B be WP – 2 – Absorbing submodule of E with B is not contained in A and either soc ( E )  A or soc ( E )  B . Then A ∩ B is a WP – 2 – Absorbing submodule of E . Proof : It is clear that A ∩ B is a proper submodule of B and B is a proper submodule of E , implies that A ∩ B is a proper submodule of E. Let ( 0 ) ≠ rsL  A ∩ B for r , s  R , L is a submodule of E, it follows that ( 0 ) ≠ rsL  A and ( 0 ) ≠ rsL  B . But A, B are WP – 2 – Absorbing submodule of E, then either rL  A + soc ( E ) or sL  A + soc ( E ) or rsE  A + soc ( E ) and rL  B+ soc ( E ) or sL  B+ soc ( E ) or rsE  B+ soc ( E ). Thus , either rL  ( A + soc ( E )) ∩ (B+ soc ( E )) or sL  ( A + soc ( E )) ∩ (B+ soc ( E )) or rsE  ( A + soc ( E )) ∩ (B+ soc ( E )). If soc( E )  B then B + soc( E ) = B, it follows that either rL  (A + soc( E )) ∩ B or sL  (A + soc( E )) ∩ B or rsE  (A + soc( E )) ∩ B. Again Since soc( E )  B, then by Modular Law ( A + soc( E )) ∩ B = ( A ∩ B ) + soc ( E ). Thus either rL  ( A ∩ B ) + soc ( E ) or sL  ( A ∩ B ) + soc ( E ) or rsE  ( A ∩ B ) + soc ( E ). Thus A ∩ B is a WP – 2 – Absorbing submodule of E . Recall that for any submodules A , K a multiplication R – module E with A = IE , B = JE , for some ideals I, J of R, the product AB = IJE = IB. In particular AE = IEE = IE = A, and for any x  E , A = Ix [2] . The following propositions are characterizations of WP – 2 – Absorbing submodules is class of multiplication modules. Proposition 23. Let E be a multiplication R – module, and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ L1L2L3  A for some submodules L1 , L2 , L3 of E implies that either L1L3  A + soc( E ) or L2L3  A + soc( E ) or L1 L2  A + soc( E ) . Proof : (  ) Let ( 0 ) ≠ L1L2L3  A for some submodules L1 , L2 , L3 of E . But E is a multiplication , then L1 = I1E , L2 = I2E , L3 = I3E for some ideals I1 , I2 , I3 of R . That is (0) ≠ L1L2L3 = I1 I2 I3 E  A. But A is a WP – 2 – Absorbing submodule of E, then by proposition ( 6 ) either I1 I3E  A + soc ( E ) or I2 I3E  A + soc (E) or I1I2  [A + soc ( E ) : R E ] ( ie I1 I2E  A + soc ( E ) ). It follows that either L1L3  A + soc( E ) or L2L3  A + soc( E ) or L1 L2  A + soc( E ) . (  ) Let ( 0 ) ≠ I1 I2L  A for I1 , I2 are ideals of R , L is submodule of E. Since E is a multiplication, then L = I3E for some ideal I3 of R. That is (0) ≠ I1 I2 I3 E  A. Put L1 = I1E and L2 = I2E, then ( 0 ) ≠ L1L2L  A, it follows by hypothesis that either L1L  A + soc ( E ) or L2L  A + soc ( E ) or L1L2  A + soc ( E ). That is either I1L  A + soc ( E ) or I2L  A + soc ( E ) or I1I2E  A + soc ( E ), ( ie I1I2  [ A + soc ( E ) :R E ]. Thus , by proposition ( 6 ) A is a WP – 2 – Absorbing submodule of E . 97 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 The following corollary is a direct consequence of proposition ( 23 ) . Corollary 24. Let E be a multiplication R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if ( 0 ) ≠ L1L2 e  A for some submodules L1 , L2 of E and e  E, implies that either L1e  A + soc ( E ) or L2e  A + soc ( E ) or L1 L2  A + soc ( E ) . It is well known that if E is a faithful multiplication R – module then soc (E) = soc (R)E [11,coro. (2.14) (i)]. Proposition 25. Let E be a faithful multiplication R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if [ A :R E ] is a WP – 2 – Absorbing ideal of R . Proof : (  ) Let (0) ≠ I1I2 I3  [ A :R E ] for I1 , I2, I3 are ideals of R , it follows that (0) ≠ I1I2 I3 E  A. But E is a multiplication then (0) ≠ I1I2 I3 E = L1L2L3  A by taking L1 = I1E , L2 = I2E and L3 = I3E . Now since A is a WP – 2 – Absorbing , then by proposition (23) either L1 L3  A + soc ( E ) or L2L3  A + soc ( E ) or L1L2  A + soc ( E ) . But E is a faithful multiplication then soc (E) = soc (R)E . Thus either I1 I3E  [ A :R E ]E + soc ( R )E or I2 I3 E  [ A :R E ]E + soc ( R )E or I1I2E  [ A :R E ]E + soc ( R )E . That is either I1 I3  [ A :R E ] + soc (R) or I2 I3  [ A :R E ] + soc (R) or I1I2  [ A :R E ] + soc ( R ) =[ [A :R E ] + soc ( R ) :E R ]. Therefore by proposition ( 6 ) [ A :R E ] is a WP – 2 – Absorbing ideal of R . (  ) Let ( 0 ) ≠ I1I2L  A for I1 , I2 are ideals of R and L is submodule of E. Since E is a multiplication , then L = I3E for some ideal I3 of R . That is ( 0 ) ≠ I1 I2 I3 E  A , it follows that (0) ≠ I1 I2 I3  [ A:R E ] . But [ A:R E ] is a WP – 2 – Absorbing ideal of R , then by proposition (6) either I1 I3  [ A :R E ] + soc ( R ) or I2 I3  [ A :R E ] + soc ( R ) or I1I2  [ A :R E ] + soc ( R ) .Thus either I1 I3E  [ A :R E ]E + soc ( R )E or I2 I3 E  [ A :R E ]E + soc ( R )E or I1I2E  [ A :R E ]E + soc ( R )E . That is either I1L  A + soc ( E ) or I2L  A + soc ( E ) or I1I2E  A + soc ( E ), ( ie I1I2  [ A + soc ( E ) :R E ]. Hence by proposition (6) A is a WP – 2 – Absorbing submodule of E . It is well known that cyclic R- module is multiplication [10]. We get the following corollary: Corollary 26. Let E be faithful cyclic R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing if and only if [ A :R E ] is a WP – 2 – Absorbing ideal of R . Proposition .27. Let E be a faithful finitely generated multiplication R – module and I be a WP – 2 – Absorbing ideal of R . Then , IE is a WP – 2 – Absorbing submodule of E . Proof : Let (0) ≠ rI1K  IE for r  R , I1 be an ideal of R , K is a submodule of E. It follows that 0 ≠ rI1I2E  IE f or some ideal I2 of R. Since E is a finitely generated multiplication , then by[2 coro. of Theo. ( 9 )] we have 0 ≠ r I1I2  I + ann( E ) = I . But I is a WP – 2 – Absorbing , then,by corollary (8) either rI2  I + soc ( R ) or I1I2  I + soc ( R ) or rI1  [ I + soc ( R ) :R R] = I + soc ( R ). That is either rI2E  IE + soc ( R )E or I1I2E  IE + soc ( R )E or rI1E  IE + soc ( R )E . Thus either rK  IE + soc ( E ) 98 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 or I1K  IE + soc ( E ) or r I1  [ IE + soc ( E ) :R E ]. Therefore ,by corollary (8) IE is a WP – 2 – Absorbing submodule of E . It is well known that cyclic R – modules are finitely generated [8], we get the following corollary which is a direct consequence of proposition (27) Corollary 28. Let E be a faithful cyclic R – module , and I be a WP – 2 – Absorbing ideal of R. Then , IE is a WP – 2 – Absorbing submodule of E . 3 . Conclusion . … A new generalization of weakly – 2 – Absorbing submodule was introduced , and many characterizations were given. The definition of WP – triple zero of WP – 2 – Absorbing submodules were introduced. A lot of basic properties of these concepts were established. Among the main new characterizations of WP – 2 – Absorbing submodules are the following   A proper submodule A of E is a WP- 2 – Absorbing if and only if for any t , s  R with ts  [ A + soc( E ) :R E ] ; we have [ A :E ts ]  [ 0 :E ts ]  [ A + soc ( E ) :E t ]  [ A + soc ( E ) :E s ].  A proper submodule A of E is a WP- 2 – Absorbing if and only if 0 ≠ tsK  A for t , s  R and K is a submodule of E , implies that either tK  A + soc ( E ) or sK  A + soc ( E ) or ts  [ A + soc( E ) :R E ].  A proper submodule A of a cyclic R – module E is a WP- 2 – Absorbing if and only if for each t , s  R with ts  [ A + soc( E ) :R E ] , we have [ A :R tse ]  [ 0 :R tse ]  [ A + soc ( E ) :R te ]  [ A + soc ( E ) :R se ].  A proper submodule N of E is a WP- 2 – Absorbing if and only if ( 0 ) ≠ IJL  N for some ideal I , J of R and submodule L of E implies that either IL  N+ soc( E) or JL N+ soc( E) or IJ  [ N+ soc( E) :R E ] .  If A is a WP- 2 – Absorbing submodule of E with ( r , s , e ) is a WP – triple zero of A for some t , s  R, e  E. Then , rsA = (0) , [ A :R E ] re = (0), r [ A :R E ]e = (0), r [ A :R E ] A = (0), [ A :R E ]sA = (0) and [ A :R E ] [ A :R E ] A = (0) .  A proper submodule A of multiplication module E is a WP- 2 – Absorbing if and only if ( 0 ) ≠ L1L2L3  A for some submodules L1 , L2 , L3 of E implies that either L1L3  A + soc ( E ) or L2L3  A + soc ( E ) or L1L2  A + soc ( E ) . References 1. Be hboodi M. ; Koohy H. Weakly Prime Modules .Vietnam J. Math., 2004 ,32,2,185– 196. 2. Darani, A.Y.; Soheilniai. F. 2 – Absorbing and Weakly – 2 – Absorbing Submodules , Tahi Journal Math, 2011 , 9 , 577 – 584 . 3. Haibat, K.M. ; Khalaf, H. A. Weakly Semi – 2 – Absorbing Submodules . Journal of Anbar For Pure Science , 2018 , 12 , 2 , 57 – 62 . 99 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 4. Wissam, A. H. ; Haibat, K. M. WN – 2 – Absorbing Submodules and WNS – 2 – Absorbing Submodules , Ibn Al – Haitham Journal For Pure and Appl. Sci. 2018 , 31, 3 ,118 –125 . 5. Haibat, K.M. ; Khalaf, H. A. Weakly Quasi – 2 – Absorbing Submodules ,Tikrit Journal or Pure Science , 2018 ,13 ,7 ,101 – 104 . 6. Goodearl, K. R. Ring Theory , Marcel Dekker, Inc. New York , 1976 . 7. Khalaf, H. A. Some Generalizations Of 2 – Absorbing Submodules , M. Sc.Thesis , Universiy of Tikrit , 2018 . 8. Kash, F.Modules and Rings , London Math. Soc. Monographs New York, Academic Press 1982. 9. Sharpe, D. W. ; Vomos , P. Injective Modules ,Cambridge University, press, 1972 . 10. Barnard, A. Multiplication , Journal of Alscbra , 1981 ,7 , 174 – 178 . 11. El – Bast, Z. A.;Smith, P. F. Multiplication Modules ,Comm. In Algebra,1988 ,16,4,755 – 779. 12. Smith P. F. Some Remarks of Multiplication Modules , Arch. Math, 1988 , 50 , 233 – 235.