108 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Parametric Models in Survival Analysis for Lung Cancer Patients Layla A. Ahmed layla.aziz@garmian.edu.krd Department of Mathematics, College of Education, University of Garmian, Kurdistan Region, Iraq Abstract The aim of this study is to estimate the survival function for the data of lung cancer patients, using parametric methods (Weibull, Gumbel, exponential and log-logistic). Comparisons between the proposed estimation method have been performed using statistical indicator Akaike information Criterion, Akaike information criterion corrected and Bayesian information Criterion, concluding that the survival function for the lung cancer by using Gumbel distribution model is the best. The expected values of the survival function of all estimation methods that are proposed in this study have been decreasing gradually with increasing failure times for lung cancer patients, which means that there is an opposite relationship failure times and survival function. Keywords: Survival analysis, Weibull distribution, Gumbel distribution, Exponential distribution, Log-logistic distribution. 1.Introduction Survival analysis is a branch of statistics which deals with the analysis of time to events, such as death in biological organisms and failure in mechanical systems. The topic of survival analysis is called reliability theory or reliability analysis in engineering, and duration analysis or duration modeling in economics or event history analysis in sociology [1]. In many applied sciences such as medicine, engineering and finance, amongst others, modeling and analyzing lifetime data are crucial. Several lifetime distributions have been used to model such type of data. The quality of the executions and in a statistical analysis depends heavily on the presupposed probability distributions [2]. Parametric methods which involve the exponential, Weibull, lognormal, gamma and extreme value distribution have been widely used for fitting survival data [3]. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.2.2617 Article history: Received, 7,January,2020, Accepted 20 ,Februry,2020, Published in April 2021 mailto:layla.aziz@garmian.edu.krd 109 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Gumbel showed that the Weibull distribution and the type ๐ผ๐ผ๐ผ smallest extreme value distribution are the same [4]. Log- logistic distribution is a very important reliability model as it fits well in many applied situations of reliability data analysis. Another advantage with the log- logistic distribution lies in its closed form expression for survival and failure rate functions that makes it important over log- normal distribution [5]. Salman and Farhan [6] estimated the survival function for the patients of lung cancer; they used several nonparametric estimation methods, and concluded that the shrinkage was the best method. The main objective of this research is to estimate the survival function for the data of lung cancer patients, by using parametric methods and determine the best and most efficient distribution. 2. Theoretical Part 2.1 Survival Analysis Survival function is the probability that a system or component will survive without failure during a specified time interval [0, ๐‘ก] under given operating conditionals, denoted by ๐‘†, which is defined as [7]: ๐‘†(๐‘ก) = ๐‘ƒ(๐‘‡ > ๐‘ก) = โˆซ ๐‘“(๐‘ข)๐‘‘๐‘ข , ๐‘ก โ‰ฅ 0 โˆž ๐‘ก (1) Where, ๐‘‡ is a random variable, ๐‘ก is the time of death. The survival function ๐‘†(๐‘ก) is the probability that the patient will survival till time ๐‘ก. Survival probability is usually assumed to approach zero as age increases, with: ๐‘†(0) = 1 lim ๐‘กโ†’โˆž ๐‘†(๐‘ก) = 0 ๐‘†(๐‘ก) is decreasing and continuous from right side. It is linked with the failure distribution function ๐น(๐‘ก) and in fact, it is the complement of it, i.e.: ๐‘†(๐‘ก) = 1 โˆ’ ๐น(๐‘ก) (2) ๐‘‘ ๐‘‘๐‘ก ๐‘†(๐‘ก) = โˆ’๐‘“(๐‘ก) (3) 2.2 Life Time Distribution Function The life time distribution function, is defined as the complement of the survival function [1], ๐น(๐‘ก) = ๐‘ƒ(๐‘‡ โ‰ค ๐‘ก) = 1 โˆ’ ๐‘†(๐‘ก) (4) If ๐น(๐‘ก) is differentiable then the derivative, which is the density function of the lifetime distribution is, ๐‘“(๐‘ก) = ๐‘‘ ๐‘‘๐‘ก ๐น(๐‘ก) (5) 110 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 The function ๐‘“(๐‘ก) is sometimes called the event density; it is the rate of death or failure events per unit time. 2.3 Hazard Function Hazard function is also known as the immediate failure rate [8]. This is the limit of the conditional probability that an item will fail in the time interval [๐‘ก, ๐‘ก + โˆ†๐‘ก] when we know that the item is functioning at time t is ๐‘ƒ(๐‘ก < ๐‘‡ โ‰ค ๐‘ก + โˆ†๐‘ก ๐‘‡โ„ > ๐‘ก) = ๐‘ƒ(๐‘ก<๐‘‡โ‰ค๐‘ก+โˆ†๐‘ก) ๐‘ƒ(๐‘‡>๐‘ก) = ๐น(๐‘ก+โˆ†๐‘ก)โˆ’๐น(๐‘ก)) ๐‘†(๐‘ก) (6) By dividing this probability by the length of the time interval, โˆ†๐‘ก, and letting โˆ†๐‘ก โ†’ 0, we get the rate function ( โ„Ž(๐‘ก)) , and it is defined as: โ„Ž(๐‘ก) = lim โˆ†๐‘กโ†’0 ๐น(๐‘ก+โˆ†๐‘ก)โˆ’๐น(๐‘ก) ๐‘†(๐‘ก) โ„Ž(๐‘ก) = ๐‘‘๐น(๐‘ก) ๐‘‘๐‘ก 1 ๐‘†(๐‘ก) โ„Ž(๐‘ก) = ๐‘“(๐‘ก) ๐‘†(๐‘ก) (7) Where ๐‘“(๐‘ก) ๐‘–๐‘  the failure density functions, and ๐‘†(๐‘ก) is the survival function. Then, ๐ป(๐‘ก) = โˆ’๐‘‘๐‘™๐‘›๐‘†(๐‘ก) ๐‘‘๐‘ก (8) ๐‘†(๐‘ก) = exp (โˆ’ โˆซ โ„Ž(๐‘ )๐‘‘๐‘ ) ๐‘ก 0 So hazard is instantaneous mortality rate conditional on previous survival, and the integrated form of cumulative hazard ๐ป(๐‘ก) = โˆซ โ„Ž(๐‘ )๐‘‘๐‘  ๐‘ก 0 = โˆ’ ln ๐‘†(๐‘ก) (9) 3. Parametric Methods 3.1. Weibull Distribution The Weibull distribution is continuous distribution. It is one of the most widely applied life distributions in reliability analysis [9] and [10]. The probability density function is: ๐‘“(๐‘ก) = { ๐›ผ ๐œ† ( ๐‘ก ๐œ† )๐›ผโˆ’1๐‘’ โˆ’( ๐‘ก ๐œ† )๐›ผ ๐‘ก > 0 0 ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (10) 111 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Where ( ๐›ผ > 0) is shape parameter and ( ๐œ† > 0) is the scale parameter of the distribution. The mean and variance of Weibull distribution are respectively: ๐ธ(๐‘ก) = ๐œ†ฮ“(1 + 1 ๐›ผ ) (11) ๐‘‰(๐‘ก) = ๐œ†2[ฮ“ (1 + 1 ๐›ผ ) โˆ’ ฮ“2(1 + 1 ๐›ผ ) (12) The cumulative distribution function is defined as: ๐น(๐‘ก) = 1 โˆ’ ๐‘’ โˆ’( ๐‘ก ๐œ† )๐›ผ , ๐‘ก > 0 (13) The survival function is defined as: ๐‘†(๐‘ก) = ๐‘’ โˆ’( ๐‘ก ๐œ† )๐›ผ (14) The failure rate (or hazard rate) function is given by: โ„Ž(๐‘ก) = ๐›ผ ๐œ† ( ๐‘ก ๐œ† )๐›ผโˆ’1 = ๐›ผ๐œ†โˆ’๐›ผ ๐‘ก๐›ผโˆ’1 (15) 3.2. Gumbel Distribution Gumbel (1958) denotes this distribution of the type I distribution of the smallest extreme, called the Gumbel distribution of the smallest extreme [8]. The Gumbel distribution is a very common distribution due to its global applicability in several fields and its wide applications [11] and [13]. The probability density function is: ๐‘“(๐‘ก) = { 1 ๐›ฝ exp [โˆ’(๐‘ง + exp(โˆ’๐‘ง))] โˆ’โˆž < ๐‘ก < โˆž 0 ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (16) where ๐‘ง = ๐‘กโˆ’๐œ‡ ๐›ฝ , ๐œ‡ is the location parameter, and ๐›ฝ is the scale parameter of the distribution. The mean and variance of ๐‘Š๐‘’๐‘–๐‘๐‘ข๐‘™๐‘™ distribution are respectively: ๐ธ(๐‘ก) = ๐œ‡ + ๐›ฝ๐›พ , (17) ๐›พ is Euler's constant (0.577215) ๐‘‰(๐‘ก) = (๐›ฝ๐œ‹)2/6 (18) The cumulative distribution function is defined as: ๐น(๐‘ก) = 1 โˆ’ exp[โˆ’ exp(โˆ’๐‘ง)] , โˆ’โˆž < ๐‘ก < โˆž (19) The survival function is defined as: ๐‘†(๐‘ก) = exp [โˆ’ exp(โˆ’๐‘ง)] (20) The failure rate (or hazard rate) function is given by: โ„Ž(๐‘ก) = 1 ๐›ฝ exp [โˆ’(๐‘ง+exp(โˆ’๐‘ง))] exp [โˆ’ exp(โˆ’๐‘ง)] (21) 112 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 3.3.Exponential Distribution The exponential distribution is a special case of two- parameter ๐‘Š๐‘’๐‘–๐‘๐‘ข๐‘™๐‘™ distribution (or gamma distribution) when the shape parameter is (๐›ผ = 1) in equation 10, then the probability density function is [11]: ๐‘“(๐‘ก) = { 1 ๐œ† ๐‘’ โˆ’ ๐‘ก ๐œ† ๐‘ก > 0 0 ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (22) where ๐œ† > 0 is the scale parameter of the distribution, and the mean and variance of exponential distribution are respectively: ๐ธ(๐‘ก) = ๐œ† (23) ๐‘‰(๐‘ก) = ๐œ†2 (24) The cumulative distribution function is defined as: ๐น(๐‘ก) = 1 โˆ’ ๐‘’ โˆ’ ๐‘ก ๐œ† , ๐‘ก > 0 (25) The survival function is defined as: ๐‘†(๐‘ก) = ๐‘’ โˆ’ ๐‘ก ๐œ† (26) The failure rate (or hazard rate) is given by: โ„Ž(๐‘ก) = 1 ๐œ† (27) 3.4. Log- Logistic Distribution Log- logistic distribution is widely used in survival analysis when the failure rate function presents an unmoral shape [5]: ๐‘“(๐‘ก) = { ๐›ฝ ๐›ผ ( ๐‘ก ๐›ผ )๐›ฝโˆ’1[1 + ( ๐‘ก ๐›ผ )๐›ฝ]โˆ’2 ๐‘ก > 0 0 ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (28) where ( ๐›ผ > 0) is scale parameter and ( ๐›ฝ > 0) is the shape parameter of the distribution. The mean and variance are respectively [12], ๐ธ(๐‘ก) = ๐œ‹๐›ผ๐›ฝโˆ’1 sin(๐œ‹๐›ฝโˆ’1) , ๐›ฝ > 0 (29) And ๐‘‰(๐‘ก) = 2๐œ‹๐›ผ2๐›ฝโˆ’1 sin(2๐œ‹๐›ฝโˆ’1) โˆ’ [ ๐œ‹๐›ผ๐›ฝโˆ’1 sin(๐œ‹๐›ฝโˆ’1) ]2 , ๐›ฝ > 2 (30) The cumulative distribution function is defined as: ๐น(๐‘ก) = 1 โˆ’ [1 + ( ๐‘ก ๐›ผ )๐›ฝ]โˆ’1 (31) Also the survival function is defined as: 113 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 ๐‘†(๐‘ก) = [1 + ( ๐‘ก ๐›ผ )๐›ฝ]โˆ’1 (32) The hazard function is given by: โ„Ž(๐‘ก) = ๐›ฝ ๐›ผ ( ๐‘ก ๐›ผ )๐›ฝโˆ’1[1 + ( ๐‘ก ๐›ผ )๐›ฝ ]โˆ’1 (33) 4. Goodness of Fit Test In order to compare the distributions, we consider some other criterion like Akaike information Criterion (๐ด๐ผ๐ถ), Akaike information criterion corrected (๐ด๐ผ๐ถ๐ถ) and Bayesian information Criterion (๐ต๐ผ๐ถ) for the real data set [2]. The best distribution corresponds to lower ๐ด๐ผ๐ถ, ๐ด๐ผ๐ถ๐ถ, and ๐ต๐ผ๐ถ values [7] and [13]: ๐ด๐ผ๐ถ = โˆ’2 log ๐ฟ + 2๐‘˜ (34) ๐ด๐ผ๐ถ๐ถ = ๐ด๐ผ๐ถ + 2๐‘˜(๐‘˜+1) ๐‘›โˆ’๐‘˜โˆ’1 (35) ๐ต๐ผ๐ถ = โˆ’2 log ๐ฟ + ๐‘˜ log ๐‘› (36) Where k is the number of parameters in the statistical model, ๐‘› the sample size and ๐ฟ is the maximized value of the likelihood function for the estimated model. 5. Data Analysis and Results The dataset used in this study consists of a sample of (118) lung cancer patients obtained from Salman and Farhan [6] and given in Table 2. We can find the estimated value of the parameters and its confidence intervals for the distributions by using maximum likelihood estimation method as follows: Table1: Maximum likelihood estimates parameters of the distributions ๐‘€๐‘œ๐‘‘๐‘’๐‘™ ๐ธ๐‘ ๐‘ก๐‘–๐‘š๐‘Ž๐‘ก๐‘’๐‘  95% ๐ถ. ๐ผ ๐‘Š๐‘’๐‘–๐‘๐‘ข๐‘™๐‘™ ๐›ผ = 3.05 ๐œ† = 373.58 [2.62 โˆ’ 3.54] [351.30 โˆ’ 397.28] ๐บ๐‘ข๐‘š๐‘๐‘’๐‘™ ๐ธ๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐œ‡ = 394.02 ๐›ฝ = 102.78 ๐œ† = 337.15 [374.42 โˆ’ 413.61] [89.521 โˆ’ 118.01] [281.49 โˆ’ 403. 82] ๐ฟ๐‘œ๐‘” โˆ’ ๐‘™๐‘œ๐‘”๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐›ฝ = 5.80 ๐›ผ = 0.26 [5.72 โˆ’ 5.88] [0.22 โ€“ 0.30] The survival function estimations of time are obtained by substituting these estimated values of the parameters in equations (14), (20), (26), and (32) as shown in table 2. And the survival plots of the W.D, G.D, E.D and L.L.D are shown in figures 1, 2, 3, and 4 respectively. 114 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Figure 1: The curve of Weibull distribution for survival function Figure 2: The curve of Gumbel distribution for survival function Figure 3: The curve of exponential distribution for survival function 600500400300200100 100 80 60 40 20 0 Shape 3.04788 Scale 373.580 Mean 333.835 StDev 119.621 Median 331.253 IQR 167.610 Failure 118 Censor 0 Table of Statistics T ime P e rc e n t 6005004003002001000-100 100 80 60 40 20 0 Loc 394.015 Scale 102.781 Mean 334.688 StDev 131.821 Median 356.344 IQR 161.626 Failure 118 Censor 0 Table of Statistics T ime P e rc e n t 16001400120010008006004002000 100 80 60 40 20 0 Mean 337.153 StDev 337.153 Median 233.696 IQR 370.400 Failure 118 Censor 0 Table of Statistics T ime P e rc e n t 115 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Figure 4: The curve of log logistic distribution for survival function Table 2: Estimated values of the survival function [6] 120010008006004002000 100 80 60 40 20 0 Loc 5.80194 Scale 0.256581 Mean 369.695 StDev 200.104 Median 330.940 IQR 189.054 Failure 118 Censor 0 Table of Statistics T ime P e rc e n t No. Time /Day ๏ฟฝฬ‚๏ฟฝ(๐‘พ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ฎ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ฌ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ณ. ๐‘ซ) No. Time /Day ๏ฟฝฬ‚๏ฟฝ(๐‘พ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ฎ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ฌ. ๐‘ซ) ๏ฟฝฬ‚๏ฟฝ(๐‘ณ. ๐‘ซ) 1 3 1.000 0.978 0.991 1.000 60 341 0.469 0.550 0.364 0.471 2 37 0.999 0.969 0.896 0.999 61 342 0.466 0.547 0.363 0.468 3 72 0.993 0.957 0.808 0.997 62 345 0.456 0.538 0.359 0.460 4 75 0.993 0.956 0.801 0.997 63 349 0.444 0.524 0.355 0.448 5 91 0.987 0.949 0.763 0.994 64 354 0.428 0.508 0.349 0.435 6 100 0.982 0.944 0.743 0.991 65 357 0.419 0.498 0.347 0.427 7 103 0.981 0.943 0.737 0.989 66 363 0.400 0.477 0.341 0.411 8 121 0.968 0.932 0.699 0.981 67 364 0.397 0.474 0.339 0.408 9 127 0.964 0.928 0.686 0.977 68 364 0.397 0.474 0.339 0.408 10 140 0.951 0.919 0.660 0.966 69 366 0.391 0.467 0.338 0.403 11 154 0.935 0.908 0.633 0.952 70 367 0.388 0.464 0.337 0.401 12 156 0.933 0.906 0.629 0.949 71 368 0.385 0.460 0.336 0.398 13 164 0.922 0.899 0.615 0.939 72 371 0.376 0.449 0.333 0.391 14 186 0.888 0.876 0.576 0.904 73 373 0.369 0.443 0.331 0.386 15 211 0.839 0.845 0.535 0.853 74 380 0.349 0.419 0.324 0.369 16 212 0.837 0.844 0.533 0.850 75 387 0.328 0.393 0.317 0.352 17 213 0.835 0.842 0.532 0.848 76 387 0.328 0.393 0.317 0.352 18 217 0.826 0.836 0.525 0.838 77 392 0.314 0.375 0.313 0.341 19 218 0.824 0.835 0.524 0.836 78 393 0.311 0.372 0.312 0.339 20 221 0.817 0.831 0.519 0.828 79 397 0.300 0.357 0.308 0.330 21 221 0.817 0.831 0.519 0.828 80 399 0.295 0.350 0.306 0.325 22 233 0.789 0.812 0.501 0.797 81 400 0.292 0.346 0.305 0.323 116 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 23 240 0.772 0.789 0.491 0.778 82 400 0.292 0.346 0.305 0.323 24 241 0.769 0.798 0.489 0.775 83 401 0.289 0.343 0.304 0.321 25 243 0.764 0.794 0.486 0.769 84 402 0.286 0.339 0.304 0.319 26 249 0.748 0.784 0.478 0.752 85 407 0.273 0.322 0.299 0.309 27 254 0.735 0.774 0.471 0.737 86 409 0.268 0.314 0.297 0.305 28 266 0.701 0.749 0.454 0.701 87 419 0.242 0.279 0.289 0.285 29 273 0.681 0.735 0.445 0.679 88 421 0.237 0.272 0.287 0.281 30 276 0.672 0.728 0.441 0.669 89 421 0.237 0.272 0.287 0.281 31 277 0.669 0.726 0.440 0.667 90 422 0.235 0.269 0.286 0.279 32 278 0.666 0.724 0.438 0.664 91 422 0.235 0.269 0.286 0.279 33 281 0.657 0.717 0.435 0.654 92 423 0.232 0.266 0.285 0.278 34 290 0.630 0.695 0.423 0.626 93 427 0.222 0.252 0.282 0.270 35 301 0.596 0.667 0.410 0.591 94 428 0.220 0.247 0.281 0.269 36 301 0.596 0.667 0.410 0.591 95 430 0.215 0.242 0.279 0.265 37 301 0.596 0.667 0.410 0.591 96 446 0.179 0.191 0.266 0.238 38 302 0.593 0.665 0.408 0.588 97 450 0.171 0.178 0.263 0.232 39 304 0.587 0.659 0.406 0.582 98 454 0.163 0.167 0.260 0.226 40 304 0.587 0.659 0.406 0.582 99 416 0.249 0.289 0.291 0.291 41 306 0.581 0.654 0.404 0.576 100 463 0.146 0.141 0.253 0.213 42 307 0.577 0.651 0.402 0.573 101 470 0.133 0.123 0.248 0.203 43 307 0.577 0.651 0.402 0.573 102 477 0.122 0.106 0.243 0.194 44 308 0.574 0.649 0.401 0.569 103 481 0.115 0.097 0.240 0.189 45 313 0.558 0.635 0.395 0.554 104 481 0.115 0.097 0.240 0.189 46 313 0.558 0.635 0.395 0.554 105 483 0.112 0.093 0.239 0.186 47 314 0.555 0.632 0.394 0.551 106 483 0.112 0.093 0.239 0.186 48 318 0.542 0.621 0.389 0.539 107 497 0.092 0.066 0.229 0.170 49 330 0.504 0.585 0.376 0.503 108 511 0.074 0.044 0.220 0.155 50 331 0.501 0.582 0.375 0.499 109 512 0.073 0.043 0.219 0.154 51 332 0.498 0.579 0.374 0.497 110 512 0.073 0.043 0.219 0.154 52 332 0.498 0.579 0.374 0.497 111 516 0.069 0.038 0.216 0.150 53 334 0.491 0.573 0.371 0.491 112 517 0.068 0.037 0.216 0.149 54 334 0.491 0.573 0.371 0.491 113 519 0.066 0.034 0.215 0.148 55 335 0.488 0.569 0.370 0.488 114 533 0.052 0.021 0.206 0.135 56 335 0.488 0.569 0.370 0.488 115 534 0.051 0.021 0.205 0.134 57 335 0.488 0.569 0.370 0.488 116 535 0.050 0.19 0.205 0.133 58 335 0.488 0.569 0.370 0.488 117 540 0.046 0.016 0.202 0.129 59 338 0.479 0.560 0.367 0.479 118 550 0.039 0.010 0.196 0.121 117 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 Table 3. Criteria for comparison ๐‘€๐‘œ๐‘‘๐‘’๐‘™ โˆ’๐ฟ๐ฟ ๐ด๐ผ๐ถ ๐ด๐ผ๐ถ๐ถ ๐ต๐ผ๐ถ ๐‘Š๐‘’๐‘–๐‘๐‘ข๐‘™๐‘™ 737.89 1479.78 1479.88 1479.92 ๐บ๐‘ข๐‘š๐‘๐‘’๐‘™ ๐ธ๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ 729.93 804.82 1463.86 1611.65 1463.96 1611.68 1464.00 1611.71 ๐ฟ๐‘œ๐‘” โˆ’ ๐‘™๐‘œ๐‘”๐‘–๐‘ ๐‘ก๐‘–๐‘ 757.03 1518.06 1518.16 1518.20 The results in Table 3 indicate that the ๐บ๐‘ข๐‘š๐‘๐‘’๐‘™ distribution has the lowest ๐ด๐ผ๐ถ, ๐ด๐ผ๐ถ๐ถ and ๐ต๐ผ๐ถ values than the Weibull, log- logistic, and exponential. Hence Gumbel distribution leads to a better fit than the other three distributions. 6. Conclusions From the practical work, it is concluded that the Gumbel distribution has the lowest ๐ด๐ผ๐ถ, ๐ด๐ผ๐ถ๐ถ and ๐ต๐ผ๐ถ values than the Weibull, exponential, and log- logistic distributions. We conclude that the survival function for the lung cancer by using Gumbel distribution model is the best. And the expected values of the survival function of all estimation methods which are proposed in this article has been decreasing progressively with increasing failure times for lung cancer patients: this means that there is an opposite relationship failure times and survival function. References 1. Mohammed, A. M., Shao T., Expected the Life Time for Heart Patients by Using Cox Regression Model, International Journal of Applied Research, 2015, 1, 9, 883-889. 2. Merovci, F., Transmuted Generalized Rayleigh Distribution, Journal of Statistics Applications and Probability, 2014, 3, 1, 9-20, htt://dx.doi.org/10.12785/jsap/030102. 3. Zhu, H. P. et al., Application of Weibull Model for Survival of Patients with Gastric Cancer, BMC Gastro enter bogy, 2011, 11,. 1, http://www.biomdcentral. 4. Abernethy, R. B., The New Weibull Hand Book, Ch.1, an over View of Weibull analysis, 2006, http://www.barringer1.com/pdf/Chpt1-5th-edition.pdf 5. Akhtar, M. ; Khan, A., A. Log- Logistic Distribution as a Reliability Model: A Bayesian Analysis, American Journal of Mathematics and Statistics, 2014, 4, 3, 162- 170, doi:10.5923/j.ajms20140403.05. 6. Salman, A. N. ; Farhan, I. H., Estimate Complete the Survival Function for Real Data of Lung Cancer Patients, Ibn Al-Haitham Journal for Pure &Applied Sciences, 2014, 27, 3, 531-541. 7. Yong, T., Extended Weibull Distributions in Reliability Engineering, PhD. Theses, 2004, National University of Singapore. http://www.biomdcentral/ http://www.barringer1.com/pdf/Chpt1-5th-edition.pdf 118 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (2) 2021 8. Rausand, M. ; Hoyland, A., System Reliability Theory models, Statistical Methods, and Applications, 2nd Edition, 2004, John Wiley &Sons, INC, Canada, ISBN 0-471- 47133-X. 9. Chen, M.; Zhang, Z.; Cui, C., On the Bias of the Maximum Likelihood Estimators of Parameters of the Weibull Distribution, Mathematical and Computational Application, 2017, 22, 19, 1-18, 2017, doi: 103390/mca2210019. 10. Varela, J. Gorgoso ; Rojo-Alboreca, A., Use of Gumbel and Weibull Functions to Model Extreme Values of Diameter Distribution in Forest Stands, Annals of Forest Science, 2014, 71, 741-750. 11. Deka, D., Bhanita Das, B. ; Baruah, B. K., Transmuted Exponential Gumbel Distribution and its Application to Water Quality DATA, pak.j.stat.oper.res, 2017, 13, 1, 115-126. 12. Santana, T. V.; Ortega, E. M. M. Cordeiro, G. M ; Silva, G. O., The Kumaraswamy- Log- Logistic Distribution, Journal of Statistical Theory and Applications, 2012, 11, 3, 265-291. 13. Vllah, E. ; Shahazad, M. N., Transmutation of the Two Parameters Rayleigh Distribution, International Journal of Advanced Statistics and Probability, 2016, 4, 2, 95-101, doi:10.1419/ijasp.v4i2.6100