45 Some Games with Soft -แถ…-Pre-Generalized Open Sets Hammood A.A. Esmaeel R.B. Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad,Iraq. Abd.Ali113a@ihcoedu.uobaghdad.edu.iq ranamumosa@yahoo.com Abstract In this paper, the concept of soft closed groups is presented using the soft ideal pre- generalized open and soft pre-open, which are ๐‘ ๐‘œ๐‘“๐‘ก-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-closed sets "๐‘ แถ…๐‘๐‘”-closed", Which illustrating several characteristics of these groups. We also use some games and ๐‘ ๐‘œ๐‘“๐‘ก ๐‘๐‘Ÿ๐‘’-๐‘œ๐‘๐‘’๐‘› Separation Axiom, such as ลžแถƒ(ฦฎ0, ำผ, แถ…) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples. Keywords:Soft ideal, Soft-ฦฎ ๐‘– -๐‘ ๐‘๐‘Ž๐‘๐‘’ , Soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-ฦฎ ๐‘– -๐‘ ๐‘๐‘Ž๐‘๐‘’ , ลžแถƒ(ฦฎ ๐‘– , ำผ, แถ… ). Where i= {0,1,2} 1.Introduction Shaber [1] established the introduced soft topological space in 2011. Through the use of soft sets, such as derived sets, compactness, separation axioms and other characteristics, various studies are introduced to study many topological characteristics. [2-4]. In addition, usesoft ideals as a group of soft sets to study the concept of soft logic functions [5]. This is the starting point for studying the properties of soft ideal topological spaces (ำผ, ฦฎ, ฦ‰, แถ…), and defining new type of near-open soft sets and studies their properties as [6-8 ]. In this paper, we will present new types of games ลžแถƒ(ฦฎ0 , ำผ, แถ…), ลžแถƒ(ฦฎ1 , ำผ, แถ…), ลžแถƒ(ฦฎ2 , ำผ, แถ…)) and determine the winning and losing strategies for any two players. 2.Preliminaries Some basic of soft space (ำผ, ฦฎ, ฦ‰) with soft ideal are presented. Definition 2.1: [9] Let ำผ โ‰  โˆ… and ฦ‰ be a set of ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘ , were ๐“น(ำผ) the collection of ำผ and ๐‘ƒ โ‰  โˆ… such that ๐‘ƒ โŠ† ฦ‰. (F, ฦ‰) (Briefly Fฦ‰) is a soft set over ำผ whenever, F is a function such that ๐น: ฦ‰ โ†’ ๐“น(ำผ). So, Fฦ‰ = { F(๐‘‘): ๐‘‘ โˆˆ ๐‘ƒ โŠ† ฦ‰ , F โˆถ ฦ‰ โ†’ ๐’‘(ำผ) }. The ๐‘๐‘œ๐‘™๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› of all soft sets is (briefly ลžลž(ำผ)ฦ‰). Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.4.2702 Article history: Received 29 , March, 2021, Accepted 11,April, 2021, Published in October 2021. mailto:Abd.Ali113a@ihcoedu.uobaghdad.edu.iq mailto:ranamumosa@yahoo.com Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 46 Definition 2.2: [9] Let (F, ฦ‰) , (๐’ต, ฦ‰) โˆˆ ลžลž(ำผ)ฦ‰. Then (F, ฦ‰) is a soft subset of (๐’ต, ฦ‰), (briefly(F, ฦ‰) โŠ†ฬƒ (๐’ต, ฦ‰)), if F(d) โŠ†ฬƒ ๐’ต(d), for all ๐‘‘ โˆˆ ฦ‰ . Now (F, ฦ‰) is a soft subset of (๐’ต, ฦ‰)and (๐’ต, ฦ‰) is a soft super set of (F, ฦ‰), (F, ฦ‰) โŠ†ฬƒ (๐’ต, ฦ‰). Definition 2.3: [10] The complement of (F, ฦ‰) (briefly (F, ฦ‰)โ€ฒ ) (F, ฦ‰)โ€ฒ = (F โ€ฒ, ฦ‰) , F โ€ฒ: ฦ‰ โ†’ ๐“น(ำผ) is a function such that F โ€ฒ(d) = ำผ โ€’ F(d), for all ๐‘‘ โˆˆ ฦ‰ and F โ€ฒ is namely the soft complement of F. Definition 2.5: [1] (F, ฦ‰) ๐‘–๐‘  ๐‘Ž ๐‘๐‘ˆ๐ฟ๐ฟ ๐‘ ๐‘œ๐‘“๐‘ก ๐‘ ๐‘’๐‘ก (briefly โˆ… ฬƒor ร˜ฦ‰) whenever, โˆ€๐‘‘ โˆˆ ฦ‰, F(๐‘‘) = ร˜. Definition 2.6: [1] (F, ฦ‰) ๐‘–๐‘  ๐‘Ž๐‘› ๐‘Ž๐‘๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ ๐‘ ๐‘œ๐‘“๐‘ก ๐‘ ๐‘’๐‘ก (briefly ำผฬƒ or ำผฦ‰) whenever, โˆ€๐‘‘ โˆˆ ฦ‰, F(๐‘‘) = ำผ. Definition 2.7: [1] ๐ฟ๐‘’๐‘ก ฦฎ is the set of soft sets on ำผ with the same ฦ‰, then ฦฎ โˆˆ ลžลž(ำผ)ฦ‰ is a soft topology on ำผ if; i. ำผฬƒ , โˆ…ฬƒ โˆˆ ฦฎ where, โˆ…ฬƒ(๐‘‘) = ร˜ and ำผฬƒ(๐‘‘) = ำผ, for each ๐‘‘ โˆˆ ฦ‰ ii. โ‹ƒ ฮฑโˆˆษ… (ศ ฮฑ , ฦ‰) โˆˆ ฦฎ whenever, (ศ ฮฑ, ฦ‰) โˆˆ ฦฎ โˆ€ ฮฑ โˆˆ ษ… , iii. ((F, ฦ‰) โˆฉ ฬƒ(๐’ต, ฦ‰)) โˆˆ ฦฎ for each (F, ฦ‰) , (๐’ต, ฦ‰) โˆˆ ฦฎ. The triple (ำผ, ฦฎ, ฦ‰) i๐‘  ๐‘Ž ๐‘ ๐‘œ๐‘“๐‘ก ๐‘ก๐‘œ๐‘๐‘œ๐‘™๐‘œ๐‘”๐‘–๐‘๐‘Ž๐‘™ ๐‘ ๐‘๐‘Žce if (ศ , ฦ‰) โˆˆ ฦฎ, then (ศ , ฦ‰) is an open soft set. Definition 2.8: [11] Let (ำผ, ฦฎ, ฦ‰) be a soft topological space. A soft set (F, ฦ‰) over ำผ is a soft closed set in ำผ , if (F, ฦ‰)โ€ฒ โˆˆ ฦฎ , the collection of each ๐‘ ๐‘œ๐‘“๐‘ก closed sets (briefly ลžC (ำผ) ฦ‰). Definition 2.9: [11] ๐น๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘œ๐‘“๐‘ก space (ำผ, ฦฎ, ฦ‰). Let (F, ฦ‰)โ€ฒ โˆˆ ลžลž(ำผ)ฦ‰, then ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘“๐‘ก ๐‘๐‘™๐‘œ๐‘ ๐‘ข๐‘Ÿ๐‘’ of (F, ฦ‰)โ€ฒ, (briefly cl(F, ฦ‰)), cl((F, ฦ‰)) = โˆฉฬƒ { (โ„ณ, ฦ‰) โˆถ (โ„ณ, ฦ‰) โˆˆ ลžC(ำผ)ฦ‰, (F, ฦ‰) โŠ†ฬƒ (โ„ณ, ฦ‰) }. Definition 2.10: [11] For any (ำผ, ฦฎ, ฦ‰). Let (F, ฦ‰) โˆˆ ลžลž(ำผ)ฦ‰,๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘“๐‘ก ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘–๐‘œ๐‘Ÿ of (๐’ต, ฦ‰), (briefly int(๐’ต, ฦ‰)), int(๐’ต, ฦ‰) = โˆชฬƒ { (โ„ณ, ฦ‰) โˆถ (โ„ณ, ฦ‰) โˆˆ ฦฎ ,(โ„ณ, ฦ‰) โŠ†ฬƒ (๐’ต, ฦ‰)}. Definition 2.11: [5] ๐ฟ๐‘’๐‘ก แถ…โ‰  โˆ…, ๐‘กโ„Ž๐‘’๐‘› แถ… โŠ†ฬƒ ลžลž (ำผ) ฦ‰ is a soft ideal whenever, i. If (F, ฦ‰) โˆˆฬƒ แถ… and (๐’ต, ฦ‰) โˆˆฬƒ แถ… implies, ( F , ฦ‰) โˆชฬƒ ( ๐’ต, ฦ‰) โˆˆฬƒ แถ…. ii. If (F, ฦ‰) โˆˆฬƒ แถ… and (๐’ต, ฦ‰) โŠ†ฬƒ (F, ฦ‰) implies, ( ๐’ต, ฦ‰) โˆˆ ฬƒ แถ…. Any (ำผ,ฦฎ,ฦ‰) with a soft ideal แถ…is a soft ideal topological space (briefly (ำผ,ฦฎ,ฦ‰, แถ…)). Definition 2.12: [5] The space (ำผ, ฦฎ, ฦ‰) with a soft ideal แถ… can be defined as (ำผ,ฦฎ,ฦ‰, แถ…) a soft topological space. Definition 2.13: [12] For any (ำผ, ฦฎ, ฦ‰), then (F, ฦ‰) is a ๐‘ ๐‘œ๐‘“๐‘ก ๐‘๐‘Ÿ๐‘’-open set (briefly ลž๐‘-open set if (F, ฦ‰) โŠ†ฬƒ int(cl(F, ฦ‰)). a ๐‘ ๐‘œ๐‘“๐‘ก ๐‘๐‘Ÿ๐‘’-closed set (briefly (F, ฦ‰)โ€ฒ).The family of each pre ๐‘ ๐‘œ๐‘“๐‘ก-open sets in (ำผ, ฦฎ, ฦ‰) (briefly ลž๐‘O(ำผ)). The ๐‘๐‘œ๐‘™๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› of each ๐‘ ๐‘œ๐‘“๐‘ก ๐‘๐‘Ÿ๐‘’-๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ลž๐‘C(ำผ)). Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 47 Definition 2.14: [2] Let (ำผ, ฦฎ, ฦ‰) be a soft topological space over ำผ is a soft- ฦฎ0-space if for all, แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ such that แถ๐“œ โ‰  แถ๐“. ๐ผ๐‘“ ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก ๐‘ ๐‘œ๐‘“๐‘ก ๐‘œ๐‘๐‘’๐‘› ๐‘ ๐‘’๐‘ก (ศ , ฦ‰) such that แถ๐“œ โˆˆฬƒ (ศ , ฦ‰) , แถ๐“ โˆ‰ฬƒ (ศ , ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ศ , ฦ‰) , แถ๐“ โˆˆฬƒ (ศ , ฦ‰). Definition 2.15: [2] Let (ำผ, ฦฎ, ฦ‰) be a soft topological space over ำผ is a ๐‘ ๐‘œ๐‘“๐‘ก ฦฎ1-space if for all, แถ๐“ โˆˆฬƒ ำผฬƒ ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก แถ๐“œ โ‰  แถ๐“. โˆƒ (F, ฦ‰), (ศ , ฦ‰) โˆˆ ฦฎ whenever, แถ โˆˆฬƒ (F, ฦ‰), แถ๐“ โˆ‰ฬƒ (F, ฦ‰) and แถ๐“œ โˆ‰ฬƒ (ศ , ฦ‰), แถ๐“ โˆˆฬƒ (ศ , ฦ‰). Definition 2.16: [2] ๐ฟ๐‘’๐‘ก (ำผ, ฦฎ, ฦ‰) be a ๐‘ ๐‘œ๐‘“๐‘ก topological ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘ฃ๐‘’๐‘Ÿ ำผ is ๐‘ ๐‘Ž๐‘–๐‘‘ to be ๐‘ ๐‘œ๐‘“๐‘ก- ฦฎ2-space if, for each, แถ๐“ โˆˆฬƒ ำผฬƒ such that แถ๐“œ โ‰  แถ๐“. โˆƒ (F, ฦ‰), (ศ , ฦ‰) โˆˆ ฦฎ whenever, แถ๐“œ โˆˆฬƒ (F, ฦ‰), แถ๐“ โˆˆฬƒ (ศ , ฦ‰) and (F, ฦ‰) โˆฉฬƒ (ศ , ฦ‰) = {โˆ…ฬƒ}. Proposition 2.17: [2] for all soft- ฦฎi +1-space is a soft- ฦฎi-space and i โˆˆ {0,1,2} Definition 2.18:[13] for a soft ideal space (ำผ, ฦฎ, ฦ‰, แถ…), determane a game ลžแถƒ(ฦฎ0 , ำผ ) as follows: Pโ…  and Pโ…ก play an inning for each positive integer numbers in the ๐‘ง-๐‘กโ„Ž inning: The first step, Pโ…  chooses(แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง where, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ .In the second step, P โ…ก chooses ษƒ ๐‘ง a open-soft containing only one of the two elements (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง. Then Pโ…ก wins in the soft game ลžแถƒ(ฦฎ0 , ำผ ) if ษƒ = { ษƒ 1 , ษƒ 2 , ษƒ 3 ,โ€ฆ ษƒ ๐‘ง,โ€ฆ..} is a collection of an open-soft set in ำผ such that โˆ€ , (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผ , โˆƒ ษƒ ๐‘ง โˆˆ ษƒ containing only one of two element (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง. Otherwise, Pโ…  wins. Definition 2.19:[13] for a soft ideal space (ำผ, ฦฎ, ฦ‰, แถ…), determine a game ลžแถƒ(ฦฎ1, ำผ ) as follows: Pโ…  and Pโ…ก are play an inning with each positive integer numbers in the ๐‘งยญ๐‘กโ„Ž inning: The first step, Pโ…  choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง where, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ . In the second step, Pโ…ก chooses (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) are two open-soft sets such that (แถโ„ณ )๐‘ง โˆˆฬƒ ((ฦ‹๐‘ง, ฦ‰) โ€’ (ฦฏ๐‘ง , ฦ‰)) and (แถ๐’ฉ )๐‘ง โˆˆฬƒ ((ฦฏ๐‘ง , ฦ‰) โ€’ (ฦ‹๐‘ง , ฦ‰)).Then, Pโ…ก wins in the soft game ลžแถƒ(ฦฎ1, ำผ ) if ษƒ = {{(ฦ‹1,ฦ‰), (ฦฏ1,ฦ‰)}, {(ฦ‹2,ฦ‰), (ฦฏ2,ฦ‰)}, โ€ฆ , {(ฦ‹๐‘ง,ฦ‰), (ฦฏ๐‘ง,ฦ‰)}, โ€ฆ } is a collection of an open-soft sets in ำผ such that โˆ€ (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง such that, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, โˆƒ{(ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง , ฦ‰)} โˆˆ ษƒ such that (แถโ„ณ )๐‘ง โˆˆฬƒ ((ฦ‹๐‘ง, ฦ‰) โ€’ (ฦฏ๐‘ง , ฦ‰))and (แถ๐’ฉ )๐‘ง โˆˆฬƒ ((ฦฏ๐‘ง, ฦ‰)โ€’ (ฦ‹๐‘ง , ฦ‰)). Otherwise, Pโ…  wins in the soft game ลžแถƒ(ฦฎ1, ำผ ). Definition2.20:[13] For a soft ideal space (ำผ, ฦฎ, ฦ‰, แถ…), determine a game ลžแถƒ(ฦฎ2, ำผ ) as follows: Pโ…  and Pโ…ก are play an inning with each positive integer numbers in the ๐‘งยญ๐‘กโ„Ž inning: The first step, Pโ…  Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ. In the second step, Pโ…ก choose (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) are two open-soft sets such that (แถโ„ณ )๐‘ง โˆˆฬƒ (ฦ‹๐‘ง , ฦ‰) , (แถ๐’ฉ )๐‘ง โˆˆฬƒ (ฦฏ๐‘ง , ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉฬƒ (ฦฏ๐‘ง , ฦ‰) = {โˆ…ฬƒ}. Then Pโ…ก wins in the game ลžแถƒ(ฦฎ2, ำผ ) if ษƒ = {{(ฦ‹, ฦ‰), (ฦฏ, ฦ‰)}, {(ฦฏ, ฦ‰), (ฦ‡, ฦ‰)}, {(ฦ‹, ฦ‰), (ฦ‡, ฦ‰)}} be a collection of a open-soft sets in ำผ such that โˆ€ (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง, (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, โˆƒ{(ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง , ฦ‰) } โˆˆ ษƒ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 48 such that (แถโ„ณ )๐‘ง โˆˆฬƒ ((ฦ‹๐‘ง, ฦ‰) and (แถ๐’ฉ )๐‘ง โˆˆฬƒ((ฦฏ๐‘ง , ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉฬƒ (ฦฏ๐‘ง , ฦ‰ = {โˆ…ฬƒ}. Otherwise, Pโ…  wins in the game ลžแถƒ(ฦฎ2, ำผ ). 3.On Softู€ แถ… ู€๐’‘๐’“๐’† ู€ ๐’ˆู€ closed Set Definition 3.1: for the soft ideal topological space (ำผ, ฦฎ, ฦ‰, แถ… ), let ( F, ฦ‰) โˆˆ ลžลž(ำผ)ฦ‰ then, ( F , ฦ‰) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-closed set (briefly sแถ…๐‘๐‘”-closed). If (๐น, ฦ‰) - (ศ , ฦ‰) โˆˆ แถ… then, cl(F, ฦ‰) โ€“ (ศ , ฦ‰) โˆˆ แถ… for each (ศ , ฦ‰) โˆˆ ลž๐‘O(ำผ), and ำผฬƒ โ€“ (F, ฦ‰) is a ๐‘ ๐‘œ๐‘“๐‘ก-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”- open set (briefly ๐‘ แถ…๐‘๐‘”-open set). The family of all ๐‘ แถ…๐‘๐‘”- closed sets (briefly ๐‘ แถ…๐‘๐‘”-C(ำผ)) and the family of all sแถ…๐‘๐‘”-open soft sets (briefly ๐‘ แถ…๐‘๐‘”-O(ำผ)). Example 3.2: For a space (ำผ, ฦฎ, ฦ‰, แถ…), whenever ำผ = {แถ’, แถ†}, ฦ‰ ={d1, d2}, ฦฎ={โˆ…ฬƒ,Xฬƒ,( F, ฦ‰), (ศ , ฦ‰)}, แถ… = {โˆ…ฬƒ, โ„ณ} such ๐‘กโ„Ž๐‘Ž๐‘ก (F, ฦ‰)={(d1, {โˆ…}), (d2, {แถ’})}, and (ศ , ฦ‰)= {( d1,{แถ’}),(d2,{แถ’})} and (๐‘€, ฦ‰)={(d1, {ร˜}) , (d2, {แถ’})} then, ลž๐‘O(ำผ) = { โˆ…ฬƒ, ำผฬƒ, (๐น, ฦ‰), (ศ , ฦ‰), (๐’ต, ฦ‰) , (โ„‹, ฦ‰), (โ„ฐ, ฦ‰), (๐’ฉ, ฦ‰), (๐’ข, ฦ‰)}, sแถ…๐‘๐‘”-๐ถ(ำผ)={ ำผ,ฬƒ โˆ…ฬƒ , (Fโ€ฒ, ฦ‰), (ศ โ€ฒ, ฦ‰)} ; (Fโ€ฒ, ฦ‰))={(d1, {ำผ}), (d2, {แถ†})}, (ศ โ€ฒ, ฦ‰)={( d1,{แถ†}),(d2,{แถ†})} such that, (๐’ต, ฦ‰)={(๐‘‘1,โˆ…),(๐‘‘2, ำผ)}, (โ„‹, ฦ‰)= {(d1, {แถ’}), (d2, ำผ)}, (โ„ฐ, ฦ‰) ={(๐‘‘1,{แถ†}),(๐‘‘2,{แถ’})}, (๐’ฉ, ฦ‰)={(๐‘‘1,{แถ†}),(๐‘‘2, ำผ)} and (๐’ข, ฦ‰) = {(๐‘‘1, ำผ),(๐‘‘2,{แถ’})}, and ๐‘ แถ…๐‘๐‘”-O(ำผ) =ฦฎ. Remark 3.3: For any (ำผ, ฦฎ, ฦ‰, แถ…) then i. Every closed ๐‘ ๐‘œ๐‘“๐‘ก ๐‘ ๐‘’๐‘ก is a sแถ…๐‘๐‘”-closed. ii. Every ๐‘œ๐‘๐‘’๐‘› ๐‘ ๐‘œ๐‘“๐‘ก ๐‘ ๐‘’๐‘ก is a sแถ…๐‘๐‘”-open. Proof (i) Let (โ„ณ, ฦ‰) be any closed soft set in (ำผ, ฦฎ, ฦ‰, แถ…) and (ศ , ฦ‰) be a soft-๐‘๐‘Ÿ๐‘’-open set such that (โ„ณ, ฦ‰) โ€“ (ศ , ฦ‰) โˆˆ แถ… , but cl(โ„ณ, ฦ‰) = (โ„ณ, ฦ‰), since (โ„ณ, ฦ‰) is a closed soft set so, cl(โ„ณ, ฦ‰)- (ศ , ฦ‰) = (โ„ณ, ฦ‰)โ€“ (ศ , ฦ‰) โˆˆ แถ…; this implies (โ„ณ, ฦ‰) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-closed soft set. (ii) Let (ศ , ฦ‰) be any open soft set in (ำผ, ฦฎ, ฦ‰, แถ…) then ำผฬƒ โ€“ (ศ , ฦ‰)is a closed soft set this implies by (i) (ำผ ฬƒ - (โ„ณ, ฦ‰))is a sแถ…๐‘๐‘”-closed set; thus (โ„ณ, ฦ‰)is a sแถ…๐‘๐‘”-open soft set . The converse of Remark 3.3 is not hold. See Example 3.4 Example 3.4: ๐ถ๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ำผ = {แถ’, แถ†}, ฦ‰ ={๐‘‘1, d2},ฦฎ={โˆ…ฬƒ,ฯ‡ฬƒ, F(d) = {แถ’} โˆ€d}then ลž๐‘O(ำผ)= {( โˆ…) ฬƒ, ำผ ฬƒ, (๐‘€, ฦ‰), (ศ , ฦ‰), (๐‘, ฦ‰), (๐ป, ฦ‰), (๐ธ, ฦ‰), (๐‘, ฦ‰), (๐บ, ฦ‰), (ศป, ฦ‰), (๐œ”, ฦ‰), (ฦ‹, ฦ‰), (๐›ผ, ฦ‰)}, such that (โ„ณ, ฦ‰)={(๐‘‘1,โˆ…),(d2, {แถ’})},(ศ , ฦ‰)={(๐‘‘1,โˆ…),(d2,{ำผ})}, (๐’ต, ฦ‰)={(๐‘‘1,{แถ’}),(d2,{ โˆ…})}, (โ„‹, ฦ‰) ={(๐‘‘1,{แถ’}),(d2,{แถ’})}, (โ„ฐ, ฦ‰)={( ๐‘‘1,{ แถ’ }),(d2,{แถ†})}, (๐’ฉ, ฦ‰)={(๐‘‘1, {แถ’}),(d2,{ำผ})}, (๐’ข, ฦ‰)={(๐‘‘1,{แถ†}),(d2,{แถ’})}, (ศป, ฦ‰)={(๐‘‘1,{แถ†}),(d2,{ำผ})}, (๐œ”, ฦ‰)={(๐‘‘1,ำผ),(d2,{โˆ…})}, (ฦ‹, ฦ‰)={(๐‘‘1,ำผ),(d2,{แถ’})}, (๐›ผ, ฦ‰)={(๐‘‘1,ำผ),(d2,{แถ†})}, แถ… = ลžลž(ำผ)ฦ‰, ๐‘ แถ…๐‘๐‘”-c(ำผ)= ๐‘ แถ…๐‘๐‘”-o(ำผ)= ลžลž(ำผ)ฦ‰. i. Let (โ„ฐ, ฦ‰) = {(d1, {แถ’}), (d2, {แถ†})} is a sแถ…๐‘๐‘”-closed set, but (โ„ฐ, ฦ‰) is not ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ softset. ii. Let (๐’ข, ฦ‰)= {(d1, {แถ†}), (d2, {แถ’})} is a sแถ…๐‘๐‘”-open set, but (๐’ข, ฦ‰) โˆ‰ ฦฎ. 1. ๐’๐ž๐ฉ๐š๐ซ๐š๐ญ๐ข๐จ๐ง ๐€๐ฑ๐ข๐จ๐ฆ๐ฌ ๐ฐ๐ข๐ญ๐ก ๐ฌ๐จ๐Ÿ๐ญ-แถ…- ๐ฉ๐ซ๐ž-๐ -๐จ๐ฉ๐ž๐ง ๐’๐ž๐ญ๐ฌ. Definition 4.1. A space (ำผ, ฦฎ, ฦ‰, แถ…) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-ฦฎ0-space (briefly sแถ…๐‘๐‘”-ฦฎ0-space), if for each แถ๐“œโ‰  แถ๐“ and แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ, โˆƒ (ิฑ, ฦ‰) โˆˆ ๐‘ แถ…๐‘๐‘”-O(ำผ) whenever, แถ๐“œ โˆˆฬƒ (ิฑ, ฦ‰) โˆง แถ๐“ โˆ‰ฬƒ (ิฑ, ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ิฑ, ฦ‰) โˆง แถ๐“ โˆˆฬƒ (ิฑ, ฦ‰). Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 49 Example 4.2. In (ำผ, ฦฎ, ฦ‰, แถ…) Let ำผ= { แถ’ , แถ†, แถ‰}, ฦ‰= {แถ1 , แถ2}, ฦฎ= { ำผฬƒ , โˆ…ฬƒ , (ิธ, ฦ‰), (๐’ต, ฦ‰)} where, ((ิธ, ฦ‰) = {(แถ1,{แถ’ }) , (แถ2 ,{แถ’ })}, (๐’ต, ฦ‰) = {(แถ1,{แถ’ , แถ†}), (แถ2 ,{แถ’ , แถ† })} and แถ…= {โˆ…ฬƒ} . Then ลž๐‘๐‘‚(ำผ)= { (F, ฦ‰) ; แถ’ โˆˆ (F, ฦ‰) for some แถ โˆˆ ฦ‰}. So, ๐‘ แถ…๐‘๐‘”-๐ถ(ำผ) = { โˆ…ฬƒ , ๐œ’ ฬƒ,(ิธโ€ฒ, ฦ‰) , (๐’ตโ€ฒ, ฦ‰) } and ๐‘ แถ…๐‘๐‘”-๐‘‚(๐œ’) = ฦฎ, hence, ((ำผ, ฦฎ, ฦ‰, แถ…)) is a ๐‘ แถ…๐‘๐‘”-ฦฎ0-space. Since โˆ€ แถ๐“œ โ‰  แถ , โˆƒ (ศ , ฦ‰) โˆˆ ๐‘ แถ…๐‘๐‘”-O(ำผ) whenever, แถ๐“œ โˆˆฬƒ (ศ , ฦ‰, ) โˆง แถ๐“ โˆ‰ฬƒ (ศ , ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ศ , ฦ‰) โˆง แถ๐“ โˆˆฬƒ (ศ , ฦ‰). Proposition 4.3. If (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ0-space then (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ0-space. Proof : Let แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ such that แถ๐“œ โ‰  แถ๐“ since (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ0-space, then โˆƒ (ศ , ฦ‰) โˆˆ ฦฎ whenever, แถ๐“œ โˆˆฬƒ (ศ , ฦ‰), แถ๐“ โˆ‰ฬƒ (ศ , ฦ‰) or d๐“œ โˆ‰ฬƒ (ศ , ฦ‰), แถ๐“ โˆˆฬƒ (ศ , ฦ‰) . By ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 3.3, (ศ , ฦ‰) is a ๐‘ แถ…๐‘๐‘”-open set ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก แถ๐“œ โˆˆฬƒ (ศ , ฦ‰) and แถ๐“ โˆ‰ฬƒ (ศ , ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ศ , ฦ‰) and แถ๐“ โˆˆฬƒ (ศ , ฦ‰). Definition 4.4. (ำผ, ฦฎ, ฦ‰, แถ…) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-ฦฎ1-space (briefly ๐‘ แถ…๐‘๐‘”-ฦฎ1-space),If for each แถ๐“œ , แถ๐“ โˆˆฬƒ ำผฬƒฬƒ and แถ๐“œ โ‰  แถ๐“. Then there are ๐‘ โ„๐‘ ๐‘”-open sets (ศ 1,ฦ‰), (ศ 2,ฦ‰) whenever, ฦ‰๐“œ โˆˆฬƒ ((ศ 1,ฦ‰) โ€“ (ศ 2,ฦ‰)) and แถ๐“ โˆˆฬƒ ((ศ 2,ฦ‰) โ€“ (ศ 1,ฦ‰)). Example 4.5. A topological space (ำผ, ฦฎ, ฦ‰, แถ…) when ำผ= โ„• ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก of all ๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘ , ฦฎ = ฦฎScof = { F๐“ : Fโ€ฒ(แถ) is finite set โˆ€ แถ } โ‹ƒฬƒ {โˆ…ฬƒ } and แถ… = {โˆ…ฬƒ}. so (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space. If แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ and แถ๐“œ โ‰  แถ๐“. Then there are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets (ำผฬƒ โ€“ ศด๐“) , (ำผฬƒ โ€“ ศด๐“œ) whenever, ศด๐“ and ศด๐“œ are two ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ sets such that ศด๐“โŠ† แถ๐“, ศด๐“œโŠ† แถ๐“œ such that แถ๐“œ โˆˆฬƒ (ำผฬƒ โ€“ ศด๐“) and แถ๐“ โˆˆฬƒ (ำผฬƒ โ€“ ศด๐“œ) and (ำผฬƒ โ€“ ศด๐“) โˆฉฬƒ (ำผฬƒ โ€“ ศด๐“œ) โ‰  {โˆ…}. ๐๐ซ๐จ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐จ๐ง ๐Ÿ’. ๐Ÿ”. If (ำผ, ฦฎ, ฦ‰) is a ๐‘ ๐‘œ๐‘“๐‘ก-ฦฎ1-space , then, (ำผ, ฦฎ, ฦ‰, แถ…) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-ฦฎ1- space. Proof : Let แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ such that แถ๐“œ โ‰ แถ๐“ since (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ1-space, then โˆƒ (ศ 1,ฦ‰), (ศ 2,ฦ‰) โˆˆ ฦฎ such that แถ๐“œ โˆˆฬƒ ((ศ 1,ฦ‰) โ€“ (ศ 2,ฦ‰)) and แถ๐“ โˆˆฬƒ ((ศ 2,ฦ‰) โ€“ (ศ 1,ฦ‰)). ๐ต๐‘ฆ ๐‘…๐‘’๐‘š๐‘Ž๐‘Ÿ๐‘˜ 3.3, (ศ 1,ฦ‰) and (ศ 2,ฦ‰) are ๐‘ แถ…๐‘๐‘”-open sets, and the proof is over. Proposition 4.7. If (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space then it is a ๐‘ แถ…๐‘๐‘”-ฦฎ0-๐‘ ๐‘๐‘Ž๐‘๐‘’. Proof: Let แถ , แถ๐“ โˆˆฬƒ ำผฬƒ such that แถ๐“œ โ‰  แถ๐“ since (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-๐‘ ๐‘๐‘Ž๐‘๐‘’, then โˆƒ(ศ 1, ฦ‰), (ศ 2, ฦ‰) โˆˆ ๐‘ แถ…๐‘๐‘”-O(ำผ) such that, แถ๐“œ โˆˆฬƒ ((ศ 1, ฦ‰) โ€“ (ศ 2, ฦ‰)) and แถ๐“ โˆˆฬƒ ((ศ 2, ฦ‰) โ€“ (ศ 1, ฦ‰)). Then โˆƒ (ศ  , ฦ‰) โˆˆ ๐‘ แถ…๐‘๐‘”-O(ำผ)-open set ๐‘คโ„Ž๐‘’๐‘›๐‘’๐‘ฃ๐‘’๐‘Ÿ, แถ๐“œโˆˆฬƒ (ศ  , ฦ‰) , แถ๐“ โˆ‰ฬƒ (ศ  , ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ศ  , ฦ‰), แถ๐“ โˆˆฬƒ (ศ  , ฦ‰) . The conclusions in Proposition 4.7, is not ๐‘Ÿ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘๐‘™๐‘’ by ๐‘’๐‘ฅ๐‘Ž๐‘š๐‘๐‘™๐‘’ 4.8 Example 4.8. In the space (ำผ, ฦฎ, ฦ‰, แถ…) ; ำผ= {แถ’ , แถ† , แถ‰}, ฦฎ= {ำผฬƒ,โˆ…ฬƒ, (ศ , ฦ‰)} such that (ศ , ฦ‰) ={(แถ1 ,{แถ’ , แถ†}),(แถ2 ,{แถ’ , แถ†})} and แถ… =ลžลž({แถ†, แถ‰})ฦ‰. Then ลžpO(ำผ)={ลžลž(ำผ)ฦ‰{(ศ  โ€ฒ, ฦ‰), (๐’ต, ฦ‰), (โ„ณ, ฦ‰)}} such that (๐’ต, ฦ‰) ={(แถ1,{โˆ…}), (แถ2,{แถ‰})}, and (โ„ณ,ฦ‰)={(แถ1,{แถ‰}),(แถ2, {โˆ…})}. So, sแถ…pg- C(ำผ) ={ โˆ…ฬƒ , ำผ ฬƒ, (ศ โ€ฒ, ฦ‰), (๐’ต, ฦ‰), (โ„ณ, ฦ‰)} and sแถ…pg-O(ำผ) = {โˆ…ฬƒ, ำผฬƒ,(ศ , ฦ‰), (๐’ต โ€ฒ, ฦ‰),(โ„ณโ€ฒ, ฦ‰)}. Implies (ำผ, ฦฎ, ฦ‰, แถ…) is a soft- ฦฎ0-space, which is not sแถ…pg- ฦฎ1-space . Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 50 ๐ƒ๐ž๐Ÿ๐ข๐ง๐ข๐ญ๐ข๐จ๐ง 4.9. (ำผ, ฦฎ, ฦ‰, แถ…) is a soft-แถ…-๐‘๐‘Ÿ๐‘’-๐‘”-ฦฎ2-space (briefly ๐‘ แถ…๐‘๐‘”-ฦฎ2-space). If for any two ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  แถ๐“œ โ‰  แถ๐“ there are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets (ฦ‹1,ฦ‰), (ฦ‹2,ฦ‰) such that แถ๐“œ โˆˆฬƒ (ฦ‹1,ฦ‰), แถ๐“ โˆˆฬƒ (ฦ‹2,ฦ‰)and (ฦ‹1,ฦ‰) โˆฉ (ฦ‹2,ฦ‰) = {โˆ…ฬƒ}. Example 4.10. A ๐‘ก๐‘œ๐‘๐‘œ๐‘™๐‘œ๐‘”๐‘–๐‘๐‘Ž๐‘™ space (ำผ, ฦฎ, ฦ‰, แถ…); ำผ = {แถ’ , แถ† , แถ‰}, ฦฎ= {ำผฬƒ, โˆ…ฬƒ} and แถ…= ลžลž(ำผ)ฦ‰. Then ลž๐‘๐‘‚(ำผ)= ลžลž(ำผ)ฦ‰. So, ๐‘ แถ…๐‘๐‘”-๐ถ(ำผ)=๐‘ แถ…๐‘๐‘”-๐‘‚(ำผ)=ลžลž(ำผ)ฦ‰. Then (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ2- ๐‘ ๐‘๐‘Ž๐‘๐‘’. Remark 4.11. If (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’, then (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’. Proof : Let แถ๐“œ , แถ๐“ โˆˆฬƒ ำผฬƒ whenever, แถ๐“œ โ‰  แถ๐“ since (ำผ, ฦฎ, ฦ‰, แถ…) is a soft-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’ , then โˆƒ (ฦ‹1,ฦ‰),(ฦ‹2,ฦ‰) โˆˆ ฦฎ such that แถ๐“œ โˆˆฬƒ (ฦ‹1,ฦ‰), แถ๐“ โˆˆฬƒ (ฦ‹2,ฦ‰) and (ฦ‹1,ฦ‰) โˆฉฬƒ(ฦ‹2,ฦ‰) = {โˆ…ฬƒ}. By Remark 3.3, there are ๐‘ แถ…๐‘๐‘”-open sets (ฦ‹1,ฦ‰), (ฦ‹2,ฦ‰), such that แถ๐“œ โˆˆฬƒ (ฦ‹1,ฦ‰), แถ๐“ โˆˆฬƒ (ฦ‹2,ฦ‰) and (ฦ‹1,ฦ‰) โˆฉฬƒ (ฦ‹2,ฦ‰) = {โˆ…ฬƒ}. Remark 4.12. If (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’ then it is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-๐‘ ๐‘๐‘Ž๐‘๐‘’. Proof: Let แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ whenever, แถ๐“œ โ‰  แถ๐“ since (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’ ,then there are ๐‘ แถ…๐‘๐‘”-open sets (ฦ‹1,ฦ‰) , (ฦ‹2,ฦ‰) such that แถ๐“œ โˆˆฬƒ (ฦ‹1,ฦ‰), แถ๐“ โˆˆฬƒ (ฦ‹2,ฦ‰) and (ฦ‹1,ฦ‰) โˆฉ(ฦ‹2,ฦ‰) = { โˆ…ฬƒ }. Implies, d๐“œ โˆˆฬƒ ((ฦ‹1,ฦ‰) โ€“ (ฦ‹2,ฦ‰)) and d๐“ โˆˆฬƒ ((ฦ‹2,ฦ‰) โ€“ (ฦ‹1,ฦ‰)). The ๐‘๐‘œ๐‘›๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘›๐‘  in Remark 4.12 are not ๐‘Ÿ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘๐‘™๐‘’ by example 4.5. A space (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space. If for each, แถ๐“œ, แถ๐“ โˆˆฬƒ ำผฬƒ and แถ๐“œ โ‰  แถ๐“. Then there are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets (ำผฬƒ โ€“ ศด๐“), (ำผฬƒ โ€“ ศด๐“œ) whenever, ศด๐“ and ศด๐“œ are two ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ sets such that ศด๐“ โŠ† แถ๐“, ศด๐“œ โŠ† แถ๐“œ such that แถ๐“œ โˆˆฬƒ (ำผฬƒ โ€“ ศด๐“) and แถ๐“ โˆˆฬƒ (ำผฬƒ โ€“ ศด๐“œ) and (ำผฬƒ โ€“ ศด๐“) โˆฉฬƒ (ำผฬƒ โ€“ ศด๐“œ) โ‰  {โˆ…}. So, (ำผ, ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’. We have ๐‘๐‘Ÿ๐‘’๐‘ฃ๐‘–๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ ๐‘›๐‘œ๐‘ก๐‘’๐‘‘ that ำผ is a ๐‘ แถ…๐‘๐‘”- ฦฎi-๐‘ ๐‘๐‘Ž๐‘๐‘’ whenever, it is a ฦฎi+1-๐‘ ๐‘๐‘Ž๐‘๐‘’ (โˆ€ ๐‘– = 0 , 1 ๐‘Ž๐‘›๐‘‘ 2). The opposite is not necessarily true by the following example: Example 4.13. (ำผ, ฦฎ, ฦ‰, แถ…) ๐‘–๐‘  ๐‘Ž ๐‘ แถ…๐‘๐‘”-ฦฎi -๐‘ ๐‘๐‘Ž๐‘๐‘’ ( ๐‘– โˆˆ {0,1,2}) , where, ำผ= {แถ’ ,แถ† ,แถ‰}, ฦฎ= {โˆ…ฬƒ, ๏ฟฝฬƒ๏ฟฝ} and แถ…= ลžลž(ำผ)ฦ‰ So, ๐‘ แถ…๐‘๐‘”-๐ถ(ำผ) = ๐‘ แถ…๐‘๐‘”-๐‘‚(ำผ) = ลžลž(ำผ)ฦ‰. But the space (ำผ, ฦฎ, ฦ‰) ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘ ๐‘œ๐‘“๐‘ก- ฦฎi-๐‘ ๐‘๐‘Ž๐‘๐‘’ ( i โˆˆ {0,1,2}) . The following chart shows the relationships among the various types of notions of our previously mentioning Figure 1. Separation Axioms with soft-แถ…- pre-g-open Sets (ำผ, ฦฎ, ฦ‰) is ๐‘Ž๐‘ ๐‘๐‘Ž๐‘๐‘’ -2ฦฎ-๐‘ ๐‘œ๐‘“๐‘ก (ำผ, ฦฎ, ฦ‰) is ๐‘Ž ๐‘ ๐‘๐‘Ž๐‘๐‘’-0ฦฎ-๐‘ ๐‘œ๐‘“๐‘ก (ำผ, ฦฎ, ฦ‰)is ๐‘Ž ๐‘ ๐‘๐‘Ž๐‘๐‘’-1ฦฎ-๐‘ ๐‘œ๐‘“๐‘ก (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘Ž ๐‘ แถ…๐‘๐‘” ๐‘ ๐‘๐‘Ž๐‘๐‘’ -2ฦฎ- (ำผ, ฦฎ, ฦ‰, แถ…)is ๐‘Ž ๐‘ แถ…๐‘๐‘” ๐‘ ๐‘๐‘Ž๐‘๐‘’-1ฦฎ- (ำผ, ฦฎ, ฦ‰, แถ…)is ๐‘Ž ๐‘ แถ…๐‘๐‘” ๐‘ ๐‘๐‘Ž๐‘๐‘’-0ฦฎ- Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 51 5. Games in soft -แถ…-Pre-generalized Open sets topological spaces In this section, a new game that connects them with soft separation axioms through ๐‘ แถ…๐‘๐‘” open sets is inserted. Definition 5.1. In the space (ำผ, ฦฎ, ฦ‰, แถ…), define a game ลžแถƒ(ฦฎ0 , ำผ, แถ…) as follows: Pโ…  and Pโ…ก are play an inning for every natural number in the ๐‘ง-๐‘กโ„Ž inning: The first step, Pโ…  Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ . In the second step, Pโ…ก chooses(ษƒ ๐‘ง,ฦ‰) is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set s.t แถ๐“œ โˆˆฬƒ ษƒ ๐‘ง โˆง แถ๐“ โˆ‰ฬƒ ษƒ ๐‘ง or แถ๐“œ โˆ‰ฬƒ ษƒ ๐‘ง โˆง แถ๐“ โˆˆฬƒ ษƒ ๐‘ง.Then Pโ…ก wins in the game ลžแถƒ(ฦฎ0 , ำผ, แถ… ) if ษƒ = {( ษƒ 1 ,ฦ‰), (ษƒ 2 ,ฦ‰),โ€ฆ ( ษƒ ๐‘ง,ฦ‰)โ€ฆ..} is a collection of a soft-แถ…- ๐‘๐‘Ÿ๐‘’ open set in ำผsuch that โˆ€ (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผ, โˆƒ (ษƒ ๐‘ง,ฦ‰) โˆˆ ษƒ s.t (แถโ„ณ )๐‘ง โˆˆฬƒ (ษƒ ๐‘ง,ฦ‰) , (แถ๐’ฉ )๐‘ง โˆ‰ฬƒ (ษƒ ๐‘ง,ฦ‰) or (แถโ„ณ )๐‘ง โˆ‰ฬƒ (ษƒ ๐‘ง,ฦ‰), (แถ๐’ฉ )๐‘ง โˆˆฬƒ ( ษƒ ๐‘ง,ฦ‰) . Otherwise, Pโ…  wins. Example 5.2. Let ำผ= { แถ’, แถ†, แถ‰}, Let ลžแถƒ(ฦฎ0 , ำผ, แถ… ) be a soft game and ฦ‰= {แถ1 , แถ2}, ฦฎ= { ำผฬƒ , โˆ…ฬƒ , (ฦ‹, ฦ‰), (๐’ต, ฦ‰) } where, ((ฦ‹, ฦ‰) = {(แถ1,{แถ’ }) , (แถ2 ,{แถ’ })}, (๐’ต, ฦ‰) = {(แถ1,{แถ’ , แถ† }) , (แถ2 ,{แถ’ , แถ† })} and แถ…= {โˆ…ฬƒ} . Then, ลž๐‘๐‘‚(ำผ)= { (F, ฦ‰) ; แถ’ โˆˆ (F, ฦ‰) for some แถ โˆˆ ฦ‰}. So, ๐‘ แถ…๐‘๐‘”- ๐ถ(ำผ) = { โˆ…ฬƒ , ำผ ฬƒ,(ฦ‹โ€ฒ, ฦ‰) , (๐’ตโ€ฒ, ฦ‰) } and ๐‘ แถ…๐‘๐‘”-๐‘‚(ำผ) = ฦฎ. Then in the first inning: The first step, Pโ…  chooses แถ๐“œ โ‰  แถ๐’ฉ whenever, แถ , แถ๐’ฉ โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐’ฉ = {แถ†}. In the second step, P โ…ก chooses (ฦ‹, ฦ‰) = {(แถ1,{แถ’}),(แถ2,{แถ’})} is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. In the second inning: The first step, Pโ…  chooses แถ๐“œ โ‰  แถ๐“ž whenever, แถ , แถ๐“ž โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐’ช = {แถ‰}. In the second step, Pโ…ก chooses (ฦ‹, ฦ‰) = {(แถ1,{แถ’}),(แถ2,{แถ’})} which is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. In the third inning: The first step, Pโ…  chooses แถ๐“ โ‰  แถ๐’ช whenever, แถ , แถ๐’ช โˆˆฬƒ ำผฬƒ s.t แถ๐“ = {แถ†} and d๐’ช = {แถ‰}. In the second step, Pโ…ก choose๐‘  (๐’ต, ฦ‰) = {(แถ1,{แถ’ , แถ† }) , (แถ2 ,{แถ’ , แถ† })} which is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. In the fourth inning: The first step, Pโ…  chooses แถ๐“œ โ‰  แถ๐“ก whenever, แถ , แถ๐“ก โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐“ก = {แถ†, แถ‰}. In the second step, Pโ…ก choose๐‘  (ฦ‹, ฦ‰) = {(แถ1,{แถ’}),(แถ2,{แถ’})} which is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. In the fifth inning: The first step, Pโ…  Choose แถ๐“ž โ‰  แถ๐“ข whenever, แถ , แถ๐“ข โˆˆฬƒ ำผฬƒ s.t แถ๐“ž = {แถ‰} and แถ๐“ข = {แถ’,แถ†}. In the second step, Pโ…ก Choose (๐’ต, ฦ‰) = {(แถ1,{แถ’ , แถ† }) , (แถ2 ,{แถ’ , แถ† })} which is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. In the sixth inning: Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 52 The first step, Pโ…  Choose แถ๐“œ โ‰  แถ๐“› whenever, แถ๐“œ, แถ๐“› โˆˆฬƒ ำผฬƒ such that แถ๐“œ = {แถ†} and แถ๐“› = {แถ’ , แถ‰}. In the second step, Pโ…ก Choose(๐’ต, ฦ‰) = {(แถ1,{แถ’ , แถ† }) , (แถ2 ,{แถ’ , แถ† })}which is a ๐‘ แถ…๐‘๐‘”-๐‘‚ set. Then ษƒ = {(ฦ‹, ฦ‰), (๐’ต, ฦ‰)} is the winning strategy for Pโ…ก in ลžแถƒ(ฦฎ0 , ำผ, แถ…). Hence Pโ…ก โ†‘ ลžแถƒ(ฦฎ0 , ำผ, แถ… ). Remark 5.4. In the space (ำผ, ฦฎ, ฦ‰, แถ…): i. If Pโ…ก โ†‘ ลžแถƒ(ฦฎ0 , ำผ) then Pโ…ก โ†‘ ลžแถƒ(ฦฎ0, ำผ , แถ…). ii. If Pโ…  โ†‘ ลžแถƒ(ฦฎ0 , ำผ , แถ…) then Pโ…  โ†‘ ลžแถƒ (ฦฎ0 , ำผ). Remark 5.5. In the space (ำผ, ฦฎ, ฦ‰, แถ…), if Pโ…ก โ†“ ลžแถƒ(ฦฎ0 , ำผ) then Pโ…ก โ†“ ลžแถƒ(ฦฎ0, ำผ , แถ…) Theorem 5.6. A space (ำผ, ฦฎ, ฦ‰, แถ…) is ๐’ฏ0-space if and only if Pโ…ก โ†‘ ลžแถƒ(ฦฎ0 , ำผ, แถ… ). Proof: ( โ‡’ ) in the ๐‘ง-๐‘กโ„Ž inning Pโ… in ลžแถƒ(ฦฎ0 , ำผ, แถ… ) Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, Pโ…ก in ลžแถƒ(ฦฎ0 , ำผ, แถ… ) Choose (ฦ‹๐‘ง, ฦ‰) is a ๐‘ แถ…๐‘๐‘”-open set s.t แถ๐“œ โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) โˆง แถ๐“ โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) or แถ๐“œ โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) โˆง แถ๐“ โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰). Since (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ0-space. Hence Pโ…ก โ†‘ ลžแถƒ(ฦฎ0 , ำผ, แถ… ). (โ‡ ) Clear. Corollary 5.7. A space (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ0-space if and only if Pโ…  โค‰ ลžแถƒ (ฦฎ0 , ำผ, แถ… ). Proof: By Theorem 5.6, the proof is over. Theorem 5.8. In the space (ำผ, ฦฎ, ฦ‰, แถ…) : A space (ำผ, ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ0-space if and only if Pโ…  โ†‘ ลžแถƒ (ฦฎ0 , ำผ, แถ… ). Proof:(โŸน)in the ๐‘ง-th inning Pโ…  in ลžแถƒ (ฦฎ0 , ำผ, แถ… )choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, Pโ…ก in ลžแถƒ (ฦฎ0 , ำผ, แถ… )cannot find (ฦ‹๐‘ง, ฦ‰) is a ๐‘ แถ…๐‘๐‘”ยญ๐‘œ๐‘๐‘’๐‘› set (แถโ„ณ )๐‘ง โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰), (แถ๐’ฉ )๐‘ง โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) or (แถโ„ณ )๐‘ง โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰), (แถ๐’ฉ )๐‘ง โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰), because (ำผ, ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”- ฦฎ0-space. Hence Pโ…  โ†‘ ลžแถƒ (ฦฎ0 , แถ…). (โŸธ) Clear. Corollary 5.9. A space (ำผ, ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ0-space if and only if Pโ…ก โค‰ ลžแถƒ (ฦฎ0 , ำผ, แถ… ). Proof: By Theorem 5.8, the proof is over. Definition 5.10. In the space (ำผ, ฦฎ, ฦ‰, แถ…), define a game ลžแถƒ(ฦฎ1 , ำผ, แถ…) as follows: Pโ…  and Pโ…ก are play an inning for every natural number in the ๐‘ง-๐‘กโ„Ž inning: The first step, Pโ…  Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 53 In the second step, Pโ…ก Choose (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-Open soft sets s.t ( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) โ‹€ ( แถ๐“ )z โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) and (แถ๐“œ )z โˆ‰ฬƒ (ฦฏ๐‘ง, ฦ‰) โˆง ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰). Then Pโ…ก wins in the game ลžแถƒ(ฦฎ0 , ำผ, แถ… ) if ษƒ = {{(ฦ‹1, ฦ‰), (ฦฏ1, ฦ‰)},{(ฦ‹2, ฦ‰), (ฦฏ2, ฦ‰)},โ€ฆ{ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰)}โ€ฆ...} is a collection of a soft-แถ…- ๐‘๐‘Ÿ๐‘’ open sets in ำผ s.t โˆ€ (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผ, โˆƒ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) โˆˆ ษƒ s.t( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) โ‹€ ( แถ๐“ )z โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) and (แถ๐“œ )z โˆ‰ฬƒ (ฦฏ๐‘ง, ฦ‰) โˆง ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰). Otherwise, Pโ…  wins in the game ลžแถƒ(ฦฎ1 , ำผ, แถ…). Example 5.11. Let ลžแถƒ(ฦฎ1 , ำผ, แถ…) be a game whenever, ำผ = {แถ’, แถ†, แถ‰} , ฦฎ= ลžลž(ำผ)ฦ‰, แถ… = {โˆ…ฬƒ}, ฦ‰ ={ แถ1, แถ2}. Then ลž๐‘๐‘œ(ำผ) = ๐‘ แถ…๐‘๐‘”-๐ถ(ำผ) = ๐‘ แถ…๐‘๐‘”-๐‘‚(ำผ) = ลžลž(ำผ)ฦ‰. In the first inning: The first step, P โ…  Choose แถ๐“œ โ‰  แถ๐’ฉ whenever, แถ๐“œ , แถ๐’ฉ โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐’ฉ ={แถ†} In the second step, Pโ…ก Choose (ฦ‹,ฦ‰), (ฦฏ,ฦ‰) s.t ฦ‹(แถ) = {แถ’}โˆ€ แถ, ฦฏ(แถ) = {แถ†} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. In the second inning: The first step, Pโ…  Choose แถ๐’ฉ โ‰  แถ whenever, แถ๐’ฉ, แถ ๐“ž โˆˆฬƒ ำผฬƒ s.t แถ๐’ฉ= {แถ†} and แถ ๐’ช = {แถ‰}. In the second step, Pโ…ก Choose (ฦฏ,ฦ‰), (ฦ‡,ฦ‰) s.t ฦฏ(แถ) = {แถ†}โˆ€ แถ, ฦ‡(แถ) = {แถ‰} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. In the third inning: The first step, Pโ…  Choose แถ๐“œ โ‰  แถ ๐’ช whenever, แถ , แถ๐’ช โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐’ช = {แถ‰}. In the second step, Pโ…ก chooses (ฦ‹,ฦ‰), (ฦ‡,ฦ‰) s.t ฦ‹(แถ) = {แถ’}โˆ€ แถ, ฦ‡(แถ) = {แถ‰} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. In the fourth inning: The first step, Pโ…  chooses แถ๐“œ โ‰  แถ๐“ก whenever, แถ , แถ๐“ก โˆˆฬƒ ำผฬƒ s.t แถ๐“œ = {แถ’} and แถ๐“ก = {แถ†,แถ‰}. In the second step, P โ…ก chooses (ฦ‹,ฦ‰), (F,ฦ‰) s.t ฦ‹(แถ) = {แถ’}โˆ€ แถ, F(แถ) = {แถ†,แถ‰} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. In the fifth inning: The first step, Pโ…  chooses แถ๐“ โ‰  แถ๐“ข whenever, แถ , แถ๐“ข โˆˆฬƒ ำผฬƒ s.t แถ๐“ = {แถ†} and แถ๐“ข = {แถ’,แถ‰}. In the second step, Pโ…ก chooses (ฦฏ,ฦ‰), (ศ ,ฦ‰) s.t ฦฏ(แถ) = {แถ†}โˆ€ แถ, ศ (แถ) = {แถ’,แถ‰} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. In the sixth inning: The first step, Pโ…  chooses แถ๐“ž โ‰  แถ๐“› whenever, แถ , แถ๐“› โˆˆฬƒ ำผฬƒ s.t แถ๐’ช = {แถ‰} and แถ๐“› = {แถ’,แถ†}. In the second step, Pโ…ก chooses (ฦ‡,ฦ‰), (ฦฅ,ฦ‰) s.t ฦ‡(แถ) = {แถ‰}, ฦฅ(แถ) = {แถ’ ,แถ†} โˆ€ แถ which are ๐‘ แถ…๐‘๐‘”-๐‘œ๐‘๐‘’๐‘› sets. Then ษƒ = {{(ฦ‹, ฦ‰), (ฦฏ, ฦ‰)}, {(ฦฏ, ฦ‰), (ฦ‡, ฦ‰)}, {(ฦ‹, ฦ‰), (ฦ‡, ฦ‰)},{(ฦ‹,ฦ‰),(F,ฦ‰)}, {(ฦฏ, ฦ‰), (ศ , ฦ‰)}, {(ฦ‡, ฦ‰), (ฦฅ, ฦ‰)}}. Is the winning strategy for Pโ…ก in ลžแถƒ(ฦฎ1 , ำผ, แถ…). Hence Player โ…ก โ†‘ ลžแถƒ(ฦฎ1 ,ำผ, แถ…). By the same way in Example 5.3, Pโ…  โ†‘ ลžแถƒ(ฦฎ1 , ำผ, แถ…). Remark 5.12. For a space (ำผ , ฦฎ, ฦ‰, แถ…) : i- If Pโ…ก โ†‘ ลžแถƒ(ฦฎ1 , ำผ ) then Pโ…ก โ†‘ ลžแถƒ(ฦฎ1,ำผ , แถ…). ii- If Pโ…  โ†‘ ลžแถƒ(ฦฎ1 ำผ,, แถ…) then Pโ…  โ†‘ ลžแถƒ(ฦฎ1 , ำผ ). Remark 5.13. For a space (ำผ , ฦฎ, ฦ‰, แถ…), if Pโ…ก โ†“ ลžแถƒ(ฦฎ1 , ำผ ) then Pโ…ก โ†“ ลžแถƒ(ฦฎ1,ำผ , แถ…). Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 54 Theorem 5.14. A space (ำผ , ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space) if and only if Pโ…ก โ†‘ ลžแถƒ(ฦฎ1 , ำผ, แถ…). Proof: (โŸน) in the ๐‘ง-th inning Pโ…  in ลžแถƒ(ฦฎ1 , ำผ, แถ…) choose(แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, Pโ…ก in ลžแถƒ(ฦฎ0 , ำผ, แถ… ) Choose (ฦ‹๐‘ง, ฦ‰) , (ศ ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-open sets s.t (แถโ„ณ )๐‘ง โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) โˆง (แถ๐’ฉ )๐‘ง โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) and (แถ๐’ฉ )๐‘ง โˆˆฬƒ, (ศ ๐‘ง, ฦ‰) โˆง (แถโ„ณ )๐‘ง โˆ‰ฬƒ (ศ ๐‘ง, ฦ‰) Since(ำผ , ฦฎ, ฦ‰, แถ…)is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space. Then ษƒ = {{(ฦ‹1, ฦ‰), (ศ 1, ฦ‰)}, {(ฦ‹2, ฦ‰) , (ศ 2, ฦ‰)}, โ€ฆ , {(ฦ‹๐‘ง, ฦ‰), (ศ ๐‘ง, ฦ‰)}, โ€ฆ } is the winning strategy for Pโ…ก in ลžแถƒ(ฦฎ1 , ำผ, แถ…). Hence Pโ…ก โ†‘ ลžแถƒ(ฦฎ1 , ำผ, แถ…). (โŸธ) Clear. Corollary 5.15. A space (ำผ , ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ1-space if and only if Pโ…  โค‰ ลžแถƒ(ฦฎ1, ำผ ,แถ…). Proof: By Theorem 5.14, the proof is over. Theorem 5.16. For a space (ำผ , ฦฎ, ฦ‰, แถ…): A space (ำผ , ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ1-space if and only if Pโ…  โ†‘ ลžแถƒ(ฦฎ1, ำผ,แถ…). Proof:(โŸน) in the ๐‘ง-th inning ๐‘ƒโ…  in ลžแถƒ(ฦฎ1 , ำผ, แถ…) choose(แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, ๐‘ƒโ…ก in ลžแถƒ(ฦฎ1 , ำผ, แถ… ) cannot find (ฦ‹๐‘ง, ฦ‰) , (ศ ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-open sets s.t (แถโ„ณ )๐‘ง โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) โˆง (แถ๐’ฉ )๐‘ง โˆ‰ฬƒ (ฦ‹๐‘ง, ฦ‰) and (แถ๐’ฉ )๐‘ง โˆˆฬƒ, (ศ ๐‘ง, ฦ‰) โˆง (แถโ„ณ )๐‘ง โˆ‰ฬƒ (ศ ๐‘ง, ฦ‰) because (ำผ , ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ1-space. Hence Pโ…  โ†‘ ลžแถƒ(ฦฎ1 , ำผ, แถ…). (โŸธ) Clear. Corollary 5.17. If a space (ำผ , ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ1-space if and only if ๐‘ƒโ…ก โค‰ ลžแถƒ(ฦฎ1 ำผ, , แถ…). Proof: Similar way of proof Theorem 4.16. Definition 5.18. In the space (ำผ, ฦฎ, ฦ‰, แถ…), define a game ลžแถƒ(ฦฎ2 , ำผ, แถ…) as follows: Pโ…  and Pโ…ก are playing an inning for every natural number in the ๐‘ง-๐‘กโ„Ž inning: The first step, Pโ…  Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ. In the second step, Pโ…ก Choose (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-Open soft sets s.t ( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) , ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉ ฬƒ (ฦฏ๐‘ง, ฦ‰)={ โˆ…ฬƒ }. Then Pโ…ก wins in the game ลžแถƒ(ฦฎ0 , ำผ, แถ… ) if ษƒ = {{(ฦ‹1, ฦ‰), (ฦฏ1, ฦ‰)},{(ฦ‹2, ฦ‰), (ฦฏ2, ฦ‰)},โ€ฆ{ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰)}โ€ฆ...} be a collection of a soft-แถ…- ๐‘๐‘Ÿ๐‘’ open set in ำผ s.t โˆ€ (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผ, โˆƒ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) โˆˆ ษƒ s.t( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) , ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉ ฬƒ (ฦฏ๐‘ง, ฦ‰)={ โˆ…ฬƒ }. Otherwise, Pโ…  wins in the game ลžแถƒ(ฦฎ2 , ำผ, แถ…). For Example, 5.11. โˆ€(แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผ, โˆƒ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) โˆˆ ษƒ s.t( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) , ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉ ฬƒ (ฦฏ๐‘ง, ฦ‰)={ โˆ…ฬƒ }. So ษƒ = {{(ฦ‹, ฦ‰), (ฦฏ, ฦ‰)},{(ฦฏ,ฦ‰),(ฦ‡,ฦ‰)},{(ฦ‹,ฦ‰),(ฦ‡,ฦ‰)},{(ฦ‹,ฦ‰),(F,ฦ‰)}, {(ฦฏ, ฦ‰),(ศ ,ฦ‰)}, {(ฦ‡, ฦ‰), (ฦฅ, ฦ‰)}}. Is the winning startegy for Pโ…ก in ลžแถƒ(ฦฎ2 , ำผ, แถ…). Hence Pโ…ก โ†‘ ลžแถƒ(ฦฎ2 , ำผ, แถ…). By the same way in Example 5.3, Pโ…  โ†‘ ลžแถƒ(ฦฎ2 , ำผ, แถ…). Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 55 Remark 5.19. For a space (ำผ, ฦฎ, ฦ‰, แถ…): i- If Pโ…ก โ†‘ ลžแถƒ(ฦฎ2 , ำผ) then Pโ…ก โ†‘ ลžแถƒ(ฦฎ2, ำผ , แถ…). ii- If Pโ…  โ†‘ ลžแถƒ(ฦฎ2, ำผ , แถ…) then Pโ…  โ†‘ ลžแถƒ(ฦฎ2 , ำผ). Remark 5.20. For a space (ำผ, ฦฎ, ฦ‰, แถ…), if Playerโ…ก โ†“ ลžแถƒ(ฦฎ2 , ำผ) then Pโ…ก โ†“ ลžแถƒ(ฦฎ2 ำผ, , แถ…). Theorem 5.21. A space (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘ แถ…๐‘๐‘”-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’ if and only if Pโ…ก โ†‘ ลžแถƒ(ฦฎ2 , ำผ, แถ…). Proof: (โŸน) in the ๐‘ง-th inning , Pโ… in ลžแถƒ(ฦฎ2 , ำผ, แถ…) Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง , (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, Pโ…ก in ลžแถƒ(ฦฎ2 , ำผ, แถ…) Choose (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-Open sets s.t ( แถ๐“œ )z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰) , ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉ ฬƒ (ฦฏ๐‘ง, ฦ‰)={ โˆ…ฬƒ }. Since (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘ แถ…๐‘๐‘”- ฦฎ2-space. Then ษƒ = {{(ฦ‹1, ฦ‰), (ฦฏ1, ฦ‰)},{(ฦ‹2, ฦ‰), (ฦฏ2, ฦ‰)},โ€ฆ{ (ฦ‹๐‘ง, ฦ‰), (ฦฏ๐‘ง, ฦ‰)}โ€ฆ...} is the winning strategy for Pโ…ก in ลžแถƒ(ฦฎ2 , ำผ, แถ…). Hence Pโ…ก โ†‘ ลžแถƒ(ฦฎ2 , ำผ, แถ…). (โŸธ) Clear. Corollary 5.22. A space (ำผ, ฦฎ, ฦ‰, แถ…) is a ๐‘ แถ…๐‘๐‘”-ฦฎ2-space if and only if Pโ…  โค‰ ลžแถƒ(ฦฎ2, ำผ, , แถ…). Proof: By Theorem 5.21, the proof is over. Theorem 5.23. For a space (ำผ, ฦฎ, ฦ‰, แถ…): A space (ำผ, ฦฎ, ฦ‰, แถ…) is not a ๐‘ แถ…๐‘๐‘”-ฦฎ2-space if and only if Pโ…  โ†‘ ลžแถƒ(ฦฎ2,ำผ , แถ…). Proof: (โŸน) in the ๐‘ง-th inning, Pโ… in ลžแถƒ(ฦฎ2 , ำผ, แถ… Choose (แถโ„ณ )๐‘ง โ‰  (แถ๐’ฉ )๐‘ง whenever, (แถโ„ณ )๐‘ง, (แถ๐’ฉ )๐‘ง โˆˆฬƒ ำผฬƒ, Pโ…ก in ลžแถƒ(ฦฎ2 , ำผ, แถ…) cannot find (ฦ‹๐‘ง, ฦ‰),(ฦฏ๐‘ง, ฦ‰) are two ๐‘ แถ…๐‘๐‘”-Open sets s.t( แถ๐“œ)z โˆˆฬƒ (ฦ‹๐‘ง, ฦ‰), ( แถ๐“ )z โˆˆฬƒ (ฦฏ๐‘ง, ฦ‰) and (ฦ‹๐‘ง, ฦ‰) โˆฉ ฬƒ (ฦฏ๐‘ง, ฦ‰)={ โˆ…ฬƒ }, because(ำผ, ฦฎ, ฦ‰, แถ…) is not ๐‘ แถ…๐‘๐‘”-ฦฎ2-space. Hence Pโ…  โ†‘ ลžแถƒ(ฦฎ2 , ำผ, แถ…). (โŸธ) Clear. Corollary 5.24. A space (ำผ, ฦฎ, ฦ‰, แถ…) is not a ๐‘ แถ…๐‘๐‘”-ฦฎ2-space if and only if Pโ…ก โค‰ ลžแถƒ(ฦฎ2, ำผ , แถ…). Proof: By Theorem 5.23, the proof is over. Remark 5.25. For a space (ำผ, ฦฎ, ฦ‰, แถ…) : i. If Pโ…ก โ†‘ ลžแถƒ(ฦฎ๐’Š+๐Ÿ, ำผ, แถ…) then Pโ…ก โ†‘ ลžแถƒ(ฦฎ๐’Š, ำผ, แถ…), where ๐‘– = {0,1}. ii. If Pโ…ก โ†‘ ลžแถƒ(ฦฎ๐’Š, ำผ); then Pโ…ก โ†‘ ลžแถƒ(ฦฎ๐’Š, แถ…), where ๐‘– = {0,1,2}. The following (Figure) clarifies relationships in Theorem 5.6, Theorem 5.14, Theorem 5.21 and Remark 5.25. Pโ…ก โ†‘ ลžแถƒ(ฦฎ2, ำผ) Pโ…ก โ†‘ ลžแถƒ(ฦฎ 1 , ำผ) Pโ…ก โ†‘ ลžแถƒ(ฦฎ 0 , ำผ) (ำผ, ฦฎ, ฦ‰ ) is a soft-ฦฎ2ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ1ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰) is a soft-ฦฎ0ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ Pโ…  โค‰ ลžแถƒ(ฦฎ2, ำผ) Pโ…  โค‰ ลžแถƒ(ฦฎ1, ำผ) Pโ…  โค‰ ลžแถƒ(ฦฎ0, ำผ) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 56 Figure 2.The winning and losing strategy for any player in ลžแถƒ(ฦฎ๐‘– , ำผ) and ลžแถƒ(ฦฎ๐‘– , แถ…) where i={0,1,2}. Remark 5.26. For a space (ำผ, ฦฎ, แถ…): i- If Pโ…  โ†‘ ลžแถƒ(ฦฎ๐‘– , ำผ, แถ…) then Pโ…  โ†‘ ลžแถƒ(ฦฎ๐‘–+1, ำผ, แถ…), where ๐‘– = {0,1}. ii- If Pโ…  โ†‘ ลžแถƒ(ฦฎ๐‘– , ำผ, แถ…) then Pโ…  โ†‘ ลžแถƒ(ฦฎ๐‘– , ำผ), where ๐‘– = {0,1,2}. The following (Figure) clarifies relationships in Theorem 5.8, Theorem 5.16, Theorem 5.23 and Remark 5.26. Figure 3.The winning and losing strategy where ำผ is not ๐‘ แถ…๐‘๐‘”-ฦฎi-space and not soft ฦฎi-space. Pโ…ก โ†‘ ลžแถƒ(ฦฎ 2 , ำผ, แถ…) Pโ…ก โ†‘ ลžแถƒ(ฦฎ 1 , ำผ, แถ…) Pโ…ก โ†‘ ลžแถƒ(ฦฎ 0 , ำผ, แถ…) Plโ…ก โค‰ ลžแถƒ(ฦฎ2, ำผ) Pโ…ก โค‰ ลžแถƒ(ฦฎ1, ำผ) Pโ…ก โค‰ ลžแถƒ(ฦฎ0, ำผ) (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘ แถ…๐‘๐‘”ยญฦฎ2ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘ แถ…๐‘๐‘”ยญฦฎ1ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰, แถ…) is ๐‘ แถ…๐‘๐‘”ยญฦฎ0ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ Pโ…ก โค‰ ลžแถƒ(ฦฎ2, ำผ, แถ…) Pโ…  โค‰ ลžแถƒ(ฦฎ 2 , ำผ, แถ…) Pโ…  โค‰ ลžแถƒ(ฦฎ 1 , ำผ, แถ…) Pโ…  โค‰ ลžแถƒ(ฦฎ 0 , ำผ, แถ…) Pโ…ก โค‰ ลžแถƒ(ฦฎ1, ำผ, แถ…) Pโ…ก โค‰ ลžแถƒ(ฦฎ0, ำผ, แถ…) Pโ…  โ†‘ ลžแถƒ(ฦฎ2, ำผ) Pโ…  โ†‘ ลžแถƒ(ฦฎ1, ำผ) Pโ…  โ†‘ ลžแถƒ(ฦฎ0, ำผ) Pโ…  โ†‘ ลžแถƒ(ฦฎ2, ำผ, แถ…) Pโ…  โ†‘ ลžแถƒ(ฦฎ1, ำผ, แถ…) Pโ…  โ†‘ ลžแถƒ(ฦฎ0, ำผ, แถ…) (ำผ, ฦฎ, ฦ‰) is not a soft-ฦฎ2-๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰) is not a soft-ฦฎ1ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰) is not a soft-ฦฎ0ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰, แถ…) is not a ๐‘ แถ…๐‘๐‘”ยญฦฎ2ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰, แถ…) is not a ๐‘ แถ…๐‘๐‘”ยญฦฎ1ยญ๐‘ ๐‘๐‘Ž๐‘๐‘’ (ำผ, ฦฎ, ฦ‰, แถ…) is not a ๐‘ แถ…๐‘๐‘”ยญฦฎ0-๐‘ ๐‘๐‘Ž๐‘๐‘’ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 57 ๐‘๐ž๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž๐ฌ 1. Shabir, M; Naz,M. On Soft to topological spaces. Com put Math .Appl. 2011, 61:1786-1799. 2. Hussain,S. ; Ahmad, B. Soft separation axioms in soft topological spaces. HJMS. 2015, 44(3): 559-568. 3. Kadil, A.; Tantawy, O. A. E.; El-Sheikn, S. A ; Abd El-latif, A. M. ฮณ- operation and decompositions of some forms of soft continuity in soft topological spaces, AFMI. 2014 7:181-196. 4. Abd El-latif, A.M. Supra soft topological spaces Jo ฬˆ kull journal. 2014, 8(4): 1731- 1740. 5. Kandil, A.; Tantawy, O. A. E.; El-Sheikh, S.A ; Abd El-latif, A .M. (Soft ideal theory, soft local function and generated soft topological spaces ,Appl .Math . Inf .Sci . 2014,8(4): 1595-1603. 6. Nasaf ,A. A.; Radwan, A. E.; Ibrahem, F. ; Esmaeel, R. B. () Soft ฮฑ-compactness, via soft ideals, Jou. of Advances in Math, June. 2016, 12(4): 6178-6184. 7. Esmaeel, R. B.; Naser, A. I. some properties of-ฤจ-semi open soft sets with respect to soft Ideals, IJpAM. 2016,4: 545-561. 8. Esmaeel, R. B.; Nasir, A. I. ; Bayda Atiya Kalaf. () on ฮฑ-gฤจ-closed soft sets, Sci. Inter. (Lahore), 2018, 30(5): 703-705. 9. Maji ,P. K.; Biswas , R .; Roy ,A.R. () soft set theory. Comput. Math. Appl . 2003,45: 555-562. 10. Ali, M. I.; Feng ,F.; Liu ,X.; Min ,W. K .; Shaber .M. () On Some new operations in soft set theory .com put. Math. Appl . 2009,57(9):1547-1553. 11. Zorlutuna, I.;Akdag ,M.; Min ,W . K.; Atmaca .S. () Remark On soft topological spaces, Ann. fuzzy Math. Inform. 2012, 3(2): 171-185. 12. Subhashini, J. Soft Pre Generalized closed sets in a soft topological space, International Journal of Engineering Trends and Technology, 2014 , 12, Number 7- Jun. 13. Mohammad, R.J. ; Esmaeel, R.B. New Games Via soft- โ„-Semi-g-Separation axioms, Ibn Al-Haitham Journal for pure and Applied Science. 2020,33(4): 12.