68 Some Topological and Polynomial Indices (Hosoya and Schultz) for the Intersection Graph of the Subgroup of 𝒁𝒓𝒏 Alaa J.Nawaf Akram S.Mohammad alaagamilnawaf@gmail.com akr-tel@tu.edu.iq Department of Mathematics, College of Computer and Mathematics, Tikrit University ,Tikrit, Iraq. Abstract Let π‘π‘Ÿπ‘› be any group with identity element (e) . A subgroup intersection graph of a subset π‘π‘Ÿπ‘› is the Graph with V (ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = π‘π‘Ÿπ‘› - e and two separate peaks c and d contiguous for c and d if and only if |βŒ©π‘βŒͺ∩ βŒ©π‘‘βŒͺ| > 1, Where βŒ©π‘βŒͺ is a Periodic subset of π‘π‘Ÿπ‘› resulting from 𝑐 ∈ π‘π‘Ÿπ‘›. We find some topological indicators in this paper and Multi- border (Hosoya and Schultz) of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) , where π‘Ÿ β‰₯ 2 ,𝑛 > 1 ,π‘Ÿ is aprime number. Keyword: Hosoya Polynomial, Schultz Polynomial. , connectivity index, Sum connectivity index, Forgotten index, first Zagreb index, Harmonic index. 1.Introduction A topological index is a real number associated with the graph, which must be structurally constant. Topological index sometimes called molecular structure descriptor[1]. Many topological indicators have been identified and many applications have been found as a means of nemuls chemical, pharmaceutical and other molecular properties. The Weiner Index is the first topological indicator used in chemistry. More precisely, in 1947, Harold Weiner presented and developed this interesting indicator to determine the physical properties of the hens known as paraffins. In this paper we examine some topological indicators that depend on the degree of examples of Eccentric connectivity index[2], connectivity index[3], sum connectivity index[4], Zagreb index[5], forgotten index[6], The index of geometric- arithmetic [3], Index of Atom-Bond Connectivity [3] and Harmonic index[7]. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.4.2704 Article history: Received 26 January 2021, Accepted 29 March 20 12 , Published in October 2021. mailto:nawaf@gmail.com mailto:akr-tel@tu.edu.iq Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 69 In (2019),Abdussakir [8] introduced topological indices about symmetric group graph, also in (2020) G. R. Roshini [9] studied topological indices of transformation graphs , and in (2021) Alaa .J and Akram.S [10] studied topological indices and (hosoya and Schultz) polynomial about subgroup intersection graph of a group π‘π‘Ÿ . One of the graphic concepts obtained from the group is the concept of a subset cross chart of a group introduced by [11]. In refere to the subgroup intersection graph definition by [11], let Graph group be the intersection (G) where G is a graph with V (ᴦ𝑆𝐼(𝐺))= G-e and two distinct peaks A and B are adjacent in the ᴦ𝑆𝐼 (G) if |γ€ˆaγ€‰βˆ©γ€ˆb〉|> 1, whereγ€ˆa〉is a periodic subset of G resulting from a ∈G. 2. Method and Materials In an existing article, all graphs are simple, limited, connected and :directed. For 𝐺 = (𝑉(𝐺),𝐸(𝐺)) graph, the order of 𝐺 is 𝑝(𝐺) = 𝑉(𝐺) and the scale of 𝐺 is π‘ž(𝐺) = 𝐸(𝐺). Let 𝑑𝑒𝑔(𝑒) denote the degree of vertex 𝑒 in 𝐺. If 𝑑𝑒𝑔(𝑒) = 0, then u is an isolated vertices. Let 𝑑(𝑒,𝑣)Indicatex the distance between the peaks 𝑒 and 𝑣 in 𝐺. The eccentricity 𝑒𝑐𝑐(𝑒) of the vertex 𝑒 is 𝑒𝑐𝑐(𝑒) = 𝑠𝑒𝑝{𝑑(𝑒,𝑣):𝑣 ∈ 𝑉(𝐺)}. The following definition refers to a graph 𝐺 = (𝑉(𝐺),𝐸(𝐺)). Eccentric connectivity index of 𝐺 is [2] πœ‰πΆ(𝐺))) = βˆ‘ 𝑑𝑒𝑔(𝑒).𝑒(𝑒)π‘’βˆˆ 𝑉(𝐺) The index of connectivity of 𝐺 is[3] 𝑋(𝐺) = βˆ‘ 1 βˆšπ‘‘π‘’π‘”(𝑒).𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(𝐺) Sum the index of connectivity of 𝐺 is [4] 𝑆(𝐺) = βˆ‘ 1 βˆšπ‘‘π‘’π‘”(𝑒)+𝑑𝑒𝑔(𝑣) π‘’π‘£βˆˆ 𝐸(𝐺) A first zagreb index of G is [5] 𝑀1(𝐺) = βˆ‘ (𝑑𝑒𝑔(𝑒)) 2 π‘’βˆˆ 𝑉(𝐺) A second zagreb index of 𝐺 is [5] 𝑀2(𝐺) = βˆ‘ 𝑑𝑒𝑔(𝑒).𝑑𝑒𝑔(𝑣)𝑒𝑣 𝐸𝐺) The forgotten index of 𝐺 is [6] 𝐹(𝐺) ) = βˆ‘ (𝑑𝑒𝑔(𝑒))3 π‘’βˆˆπ‘‰(𝐺) Atom Bond connectivity index of G is [3] Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 70 𝐴𝐡𝐢(𝐺)) = βˆ‘ √ 𝑑𝑒𝑔(𝑒)+𝑑𝑒𝑔(𝑣)βˆ’2 𝑑𝑒𝑔(𝑒).𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(𝐺) Geometric-Arithmetic index of 𝐺 is [3] 𝐺𝐴(𝐺) = βˆ‘ 2βˆšπ‘‘π‘’π‘”(𝑒).𝑑𝑒𝑔(𝑣) 𝑑𝑒𝑔(𝑒)+𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(𝐺) Harmonic index of 𝐺 is [7] 𝐻(𝐺) = βˆ‘ 2 𝑑𝑒𝑔(𝑒)+ 𝑑𝑒𝑔 (𝑣)π‘’π‘£βˆˆ 𝐸(𝐺) 3. The Main Result To get a good look ,: π‘Ÿ β‰₯ 2,𝑛 > 1 , a subgroup intersection graph of a group π‘π‘Ÿπ‘› is (ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) a graph with V (ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = π‘π‘Ÿπ‘› βˆ’ 𝑒 , any two different vertices a and b are adjacent:|〈aβŒͺ ∩ 〈bβŒͺ| > 1, where 〈aβŒͺ is the subset created by a ∈ π‘π‘Ÿπ‘›. Theorem 3.1 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 ,𝑛 > 1,:then the Eccentric connectivity index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is πœ‰ 𝑐(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (π‘Ÿ 𝑛 βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2) Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 e (𝑣) = 1 ,βˆ€π‘£ ∈ V( ᴦSI(Zπ‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 πœ‰πΆ(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›))) = βˆ‘ 𝑑𝑒𝑔(𝑒).𝑒(𝑒) π‘’βˆˆ 𝑉(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 𝑑𝑒𝑔(1).𝑒(1) + β‹―+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1).𝑒(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’1)π‘‘π‘–π‘šπ‘’π‘  =(π‘Ÿπ‘› βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2) Theorem 3.2 Let Zπ‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 , n > 1 then the connectivity index of ᴦSI(Zπ‘Ÿπ‘›) is 𝑋(ᴦ𝑆𝐼 ((π‘π‘Ÿπ‘›)) = 1 + βˆ‘ (π‘Ÿπ‘›βˆ’π‘–)π‘Ÿβˆ’1𝑖=3 (π‘Ÿπ‘›βˆ’2) Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 71 𝑋(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ 1 βˆšπ‘‘π‘’π‘”(𝑒).𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 1 βˆšπ‘‘π‘’π‘”(1).𝑑𝑒𝑔(2) + β‹―+ 1 βˆšπ‘‘π‘’π‘”(1).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + 1 βˆšπ‘‘π‘’π‘”(2).𝑑𝑒𝑔(3) +β‹―+ 1 βˆšπ‘‘π‘’π‘”(3).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  + 1 βˆšπ‘‘π‘’π‘”(3).𝑑𝑒𝑔(4) + β‹―+ 1 βˆšπ‘‘π‘’π‘”(3).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  +β‹―..+ 1 βˆšπ‘‘π‘’π‘”(π‘Ÿπ‘› βˆ’ 2).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) = (π‘Ÿπ‘› βˆ’ 2) (π‘Ÿπ‘› βˆ’ 2) + (π‘Ÿπ‘› βˆ’3) (π‘Ÿπ‘› βˆ’2) + (π‘Ÿπ‘› βˆ’ 4) (π‘Ÿπ‘› βˆ’ 2) + β‹―+ 1 (π‘Ÿπ‘› βˆ’ 2) = 1 + βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=3 (π‘Ÿπ‘› βˆ’ 2) Theorem 3.3 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2,𝑛 > 1,:then the Sum connectivity index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is S(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ (π‘Ÿπ‘›βˆ’π‘–)π‘Ÿ π‘›βˆ’1 𝑖=2 √2π‘Ÿπ‘›βˆ’4 Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . , π‘Ÿ 𝑛 βˆ’ 1 𝑆(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ 1 βˆšπ‘‘π‘’π‘”(𝑒)+ 𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 1 βˆšπ‘‘π‘’π‘”(1)+ 𝑑𝑒𝑔(2) + β‹―+ 1 βˆšπ‘‘π‘’π‘”(1) + 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + 1 βˆšπ‘‘π‘’π‘”(2) + 𝑑𝑒𝑔(3) + β‹―+ 1 βˆšπ‘‘π‘’π‘”(3)+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  + 1 βˆšπ‘‘π‘’π‘”(3) + 𝑑𝑒𝑔(4) + β‹―+ 1 βˆšπ‘‘π‘’π‘”(3)+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  +β‹―..+ 1 βˆšπ‘‘π‘’π‘”(π‘Ÿπ‘› βˆ’ 2) + 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 72 = (π‘Ÿπ‘› βˆ’ 2) √2π‘Ÿπ‘› βˆ’4 + (π‘Ÿπ‘› βˆ’3) √2π‘Ÿπ‘› βˆ’ 4 + (π‘Ÿπ‘› βˆ’ 4) √2π‘Ÿπ‘› βˆ’ 4 + β‹―+ 1 √2π‘Ÿπ‘› βˆ’ 4 = βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=2 √2π‘Ÿπ‘› βˆ’ 4 Theorem 3.4 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2,𝑛 > 1 then the first zegrab index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is 𝑀1(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) =(π‘Ÿ 𝑛 βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2)2 Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 𝑀1(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ (𝑑𝑒𝑔(𝑒)) 2 π‘’βˆˆ 𝑉(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) (𝑑𝑒𝑔(1))2 + β‹―+(𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1))2⏟ (π‘Ÿπ‘›βˆ’1)π‘‘π‘–π‘šπ‘’π‘  = = (π‘Ÿπ‘› βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2)2 Theorem 3.5 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 ,𝑛 > 1 then the second zegrab index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is 𝑀2(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (π‘Ÿ 𝑛 βˆ’ 2)3 +(π‘Ÿπ‘› βˆ’ 2)2 βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=3 Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . , π‘Ÿ 𝑛 βˆ’ 1 𝑀2(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ 𝑑𝑒𝑔(𝑒).𝑑𝑒𝑔(𝑣)𝑒𝑣 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 𝑑𝑒𝑔(1).𝑑𝑒𝑔(2)+ β‹―+𝑑𝑒𝑔(1).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + 𝑑𝑒𝑔(2) .𝑑𝑒𝑔(3) + β‹―+𝑑𝑒𝑔(2).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’3)times + 𝑑𝑒𝑔(3) .𝑑𝑒𝑔(4) + β‹―+𝑑𝑒𝑔(3).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  + β‹―+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’2).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) = (π‘Ÿπ‘› βˆ’ 2)3 + (π‘Ÿπ‘› βˆ’ 3)(π‘Ÿπ‘› βˆ’ 2)2 + (π‘Ÿπ‘› βˆ’ 4)(π‘Ÿπ‘› βˆ’ 2)2 + β‹―+ (π‘Ÿπ‘› βˆ’2)2 = (π‘Ÿπ‘› βˆ’ 2)3 + (π‘Ÿπ‘› βˆ’ 2)2 βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖) π‘Ÿπ‘›βˆ’1 𝑖=3 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 73 Theorem 3.6 Let π‘π‘Ÿπ‘› be a group with r β‰₯ 2 ,𝑛 > 1 then the forgotten index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is F(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (π‘Ÿ 𝑛 βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2)3 Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . , π‘Ÿ 𝑛 βˆ’ 1 F(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) ) = βˆ‘ (𝑑𝑒𝑔(𝑒)) 3 π‘’βˆˆπ‘‰(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (𝑑𝑒𝑔(1))3 + β‹―+ (𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1))3⏟ (π‘Ÿπ‘›βˆ’1) π‘‘π‘–π‘šπ‘’π‘  =(π‘Ÿπ‘› βˆ’ 1)(π‘Ÿπ‘› βˆ’ 2)3 Theorem 3.7 Let Zπ‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 ,𝑛 > 1,:then the Atom Bond connectivity index of ᴦSI(Zπ‘Ÿπ‘›) is ABC(ᴦSI(Zπ‘Ÿπ‘›))) = √2π‘Ÿ 𝑛 βˆ’ 6+ √2π‘Ÿπ‘› βˆ’ 6βˆ‘ (π‘Ÿπ‘› βˆ’ i)π‘Ÿ π‘›βˆ’1 i=3 (π‘Ÿπ‘› βˆ’ 2) Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . , π‘Ÿ 𝑛 βˆ’ 1 𝐴𝐡𝐢(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = βˆ‘ √ 𝑑𝑒𝑔(𝑒)+ 𝑑𝑒𝑔(𝑣) βˆ’ 2 𝑑𝑒𝑔(𝑒).𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = √ 𝑑𝑒𝑔(1) + 𝑑𝑒𝑔(2) βˆ’ 2 𝑑𝑒𝑔(1).𝑑𝑒𝑔(2) + β‹―+√ 𝑑𝑒𝑔(1) + 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) βˆ’ 2 𝑑𝑒𝑔(1).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’1) ⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  +√ 𝑑𝑒𝑔(2) + 𝑑𝑒𝑔(3) βˆ’ 2 𝑑𝑒𝑔(2).𝑑𝑒𝑔(3) + β‹―+ √ 𝑑𝑒𝑔(2)+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) βˆ’ 2 𝑑𝑒𝑔(2) .𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) ⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  +√ 𝑑𝑒𝑔(3) + 𝑑𝑒𝑔(4) βˆ’ 2 𝑑𝑒𝑔(3).𝑑𝑒𝑔(4) + β‹―+ √ 𝑑𝑒𝑔(3)+ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) βˆ’ 2 𝑑𝑒𝑔(3) .𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) ⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  + β‹― +√ 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 2) + 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) βˆ’ 2 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 2).𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 74 = √2π‘Ÿπ‘› βˆ’ 6+ (π‘Ÿπ‘› βˆ’ 3)√2π‘Ÿπ‘› βˆ’ 6 (π‘Ÿπ‘› βˆ’ 2) + (π‘Ÿπ‘› βˆ’4)√2π‘Ÿπ‘› βˆ’ 6 (π‘Ÿπ‘› βˆ’ 2) + β‹―+ √2π‘Ÿπ‘› βˆ’ 6 (π‘Ÿπ‘› βˆ’ 2) = √2π‘Ÿπ‘› βˆ’ 6 + √2π‘Ÿπ‘› βˆ’ 6βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=3 (π‘Ÿπ‘› βˆ’ 2) Theorem 3.8 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 ,𝑛 > 1 then the Geometric –Arithmetic index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is 𝐺𝐴(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (π‘Ÿ 𝑛 βˆ’ 2)+ βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=3 Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . , π‘Ÿ 𝑛 βˆ’ 1 𝐺𝐴(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›))) = βˆ‘ 2βˆšπ‘‘π‘’π‘”(𝑒).𝑑𝑒𝑔(𝑣) 𝑑𝑒𝑔(𝑒) + 𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 2βˆšπ‘‘π‘’π‘”(1).𝑑𝑒𝑔 (2) 𝑑𝑒𝑔(1) + 𝑑𝑒𝑔 (2) + β‹―+ 2βˆšπ‘‘π‘’π‘”(1).𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’1) 𝑑𝑒𝑔(1)+ 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + 2βˆšπ‘‘π‘’π‘”(2).𝑑𝑒𝑔 (3) 𝑑𝑒𝑔(2)+ 𝑑𝑒𝑔 (3) + β‹―+ 2βˆšπ‘‘π‘’π‘”(2).𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1) 𝑑𝑒𝑔(2) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  + 2βˆšπ‘‘π‘’π‘”(3).𝑑𝑒𝑔 (4) 𝑑𝑒𝑔(3)+ 𝑑𝑒𝑔 (4) + β‹―+ 2βˆšπ‘‘π‘’π‘”(3).𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1) 𝑑𝑒𝑔(3) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  + β‹―.+ 2βˆšπ‘‘π‘’π‘”(π‘Ÿπ‘› βˆ’ 2).𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1) 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 2) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1) = 2(π‘Ÿπ‘› βˆ’ 2)2 2π‘Ÿπ‘› βˆ’ 4 + 2(π‘Ÿπ‘› βˆ’ 3)(π‘Ÿπ‘› βˆ’ 2) 2π‘Ÿπ‘› βˆ’ 4 + 2(π‘Ÿπ‘› βˆ’ 4)(π‘Ÿπ‘› βˆ’ 2) 2π‘Ÿπ‘› βˆ’ 4 + β‹―+ 2(π‘Ÿπ‘› βˆ’ 2) 2π‘Ÿπ‘› βˆ’ 4 = (π‘Ÿπ‘› βˆ’ 2)+ βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖) π‘Ÿπ‘›βˆ’1 𝑖=3 Theorem 3.9 Let π‘π‘Ÿπ‘› be a group with π‘Ÿ β‰₯ 2 ,𝑛 > 1 then the Harmonic index of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is 1 + 2 2π‘Ÿπ‘›βˆ’4 βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)π‘Ÿ π‘›βˆ’1 𝑖=3 𝐻(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›))) = Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 75 𝐻(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›))) = βˆ‘ 2 𝑑𝑒𝑔(𝑒) +𝑑𝑒𝑔(𝑣)π‘’π‘£βˆˆ 𝐸(ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 2 𝑑𝑒𝑔(1)+ 𝑑𝑒𝑔 (2) + β‹―+ 2 𝑑𝑒𝑔(1)+ 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + 2 𝑑𝑒𝑔(2) + 𝑑𝑒𝑔 (3) + β‹―+ 2 𝑑𝑒𝑔(2)+ 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  + 2 𝑑𝑒𝑔(3)+ 𝑑𝑒𝑔 (4) + β‹―+ 2 𝑑𝑒𝑔(3)+ 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1)⏟ (π‘Ÿπ‘›βˆ’4)π‘‘π‘–π‘šπ‘’π‘  + β‹―.+ 2 𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 2) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1) = 2(π‘Ÿπ‘› βˆ’ 2) 2π‘Ÿπ‘› βˆ’ 4 + 2(π‘Ÿπ‘› βˆ’ 3) 2π‘Ÿπ‘› βˆ’ 4 + 2(π‘Ÿπ‘› βˆ’4) 2π‘Ÿπ‘› βˆ’4 +β‹―+ 2 2π‘Ÿπ‘› βˆ’ 4 = 1+ 2 2π‘Ÿπ‘› βˆ’ 4 βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖) π‘Ÿπ‘›βˆ’1 𝑖=3 4.( Hosoya and Schultz) Polynomial of ᴦ𝑺𝑰(𝒁𝒓𝒏) In this section, we find the (Hosoya and Schultz ) Polynomial of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) . Definition 4.1(12): Let G be a connected graph , then a Hosoya Polynomial of graph G is defined by H(G;x) = βˆ‘ 𝑑(𝐺,π‘˜) xk π‘‘π‘–π‘Žπ‘š(𝐺) k=0 , where 𝑑(𝐺,π‘˜) is the number of pairs of vertices of a graph G that are at distance k apart , for π‘˜ = 0,1,2,…,π‘‘π‘–π‘Žπ‘š(𝐺),where π‘‘π‘–π‘Žπ‘š(𝐺) = maxu,v∈V(G)d(u,v). 𝑑(𝐺,0) = 𝑝(𝐺) -1 :Note 4.2(13) 2- 𝑑(𝐺,1) = π‘ž(𝐺) Definition 4.3(14): Let G be a connected graph , then a Schultz Polynomial of a graph G is defined by Sc(G;x) = βˆ‘ (𝑑𝑒𝑔(𝑒)+ 𝑑𝑒𝑔(𝑣))xd(u,v)u,v∈V(G) uβ‰ v , where 𝑑𝑒𝑔(𝑒) is the degree of the vertices u and 𝑑𝑒𝑔(𝑣) is the degree of vertices 𝑣, 𝑑(𝑒,𝑣) is the distance between 𝑒 and 𝑣. Theorem 4.4: H( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›);π‘₯) = 𝑐0 + 𝑐1π‘₯ , where π‘Ÿ β‰₯ 2 , 𝑛 > 1, 𝑐0 = π‘Ÿ 𝑛 βˆ’ 1, 𝑐1 = βˆ‘ (π‘Ÿ 𝑛 βˆ’π‘–)π‘Ÿ π‘›βˆ’1 𝑖=2 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 76 Proof: For every π‘Ÿ β‰₯ 2 ,𝑛 > 1 , we note that every vertices of graph ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) is adjacent of all vertices of graph ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) , then diam( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = 1 , its mean is H( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›),π‘₯) = 𝑐0 + 𝑐1π‘₯ where 𝑐𝑖 = 𝑑( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›), 𝑖) ,βˆ€ 𝑖 = 0,1 It is clear that 𝑐0 = 𝑑( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›),0) = | ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)| = π‘Ÿ 𝑛 βˆ’ 1 Now we find the size of ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) , we note that there is π‘šπ‘Ÿπ‘›βˆ’1 of edges s.t π‘š1 = π‘Ÿ 𝑛 βˆ’ 2 ,π‘š2 = π‘Ÿ 𝑛 βˆ’ 3,…. ,π‘šπ‘Ÿπ‘›βˆ’1 = 1 Then,: 𝑐1 = π‘š1 + π‘š2 + β‹―+ π‘šπ‘Ÿπ‘›βˆ’1 We can write: 𝑐1 = βˆ‘ (π‘Ÿ 𝑛 βˆ’ 𝑖 π‘Ÿπ‘›βˆ’1 𝑖=2 ) Theorem 4.5: 𝑆𝑐( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›);π‘₯) = βˆ‘ (π‘Ÿ 𝑛 βˆ’ 𝑖)(2π‘Ÿπ‘› βˆ’ 4)π‘₯π‘Ÿ π‘›βˆ’1 𝑖=2 , where π‘Ÿ β‰₯ 2 , 𝑛 > 1. Proof: 𝑑𝑒𝑔(𝑣) = π‘Ÿπ‘› βˆ’ 2 ,βˆ€π‘£ ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)), 𝑣 = 1,2, . . . ,π‘Ÿ 𝑛 βˆ’ 1 𝑑(𝑒,𝑣) = 1 ,βˆ€π‘’,𝑣 ∈ 𝑉( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›) 𝑆𝑐( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›);π‘₯) = βˆ‘ (𝑑𝑒𝑔(𝑒)+ 𝑑𝑒𝑔(𝑣))π‘₯ 𝑑(𝑒,𝑣) 𝑒,π‘£βˆˆπ‘‰( ᴦ𝑆𝐼(π‘π‘Ÿπ‘›)) = (𝑑𝑒𝑔(1)+ 𝑑𝑒𝑔(2))π‘₯ + β‹―+(𝑑𝑒𝑔(1) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1))π‘₯⏟ (π‘Ÿπ‘›βˆ’2)π‘‘π‘–π‘šπ‘’π‘  + (𝑑𝑒𝑔(2)+ 𝑑𝑒𝑔(3))π‘₯ + β‹―+ (𝑑𝑒𝑔(2) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 1))π‘₯⏟ (π‘Ÿπ‘›βˆ’3)π‘‘π‘–π‘šπ‘’π‘  +β‹― + (𝑑𝑒𝑔(π‘Ÿπ‘› βˆ’ 1) + 𝑑𝑒𝑔 (π‘Ÿπ‘› βˆ’ 2))π‘₯ = βˆ‘ (π‘Ÿπ‘› βˆ’ 𝑖)(2π‘Ÿπ‘› βˆ’ 4)π‘₯ π‘Ÿπ‘›βˆ’1 𝑖=2 5. Conclusions This article has presented the formulae of some degree-based and eccentric-based topological indices of subgroup intersection graph of a group π‘π‘Ÿπ‘› , where π‘Ÿ β‰₯ 2 ,𝑛 > 1. For further research, Revise on subgroup intersection graph of a group π‘π‘Ÿπ‘› , where π‘Ÿ β‰₯ 2 ,𝑛 > 1, π‘Ÿ is a prime number. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 77 References 1. H.Q u ; S. Cao. On the adjacent eccentric distance sum index of graphs . PLos One , 1-12 2015 2. Morgan, M .J., Mukwembi S. and Swart H.C. On the eccentric Connectivity index of Graph , Discrete Mathematics . 2011 , 311. 2009, 1229-1234. 3. Abdelgader, M.S.; Wang, C. ; Mohamed, S.A. Computation of Topological indices of some Special Graphs , mathematics . 2018,6(33). 4. Kinkar, Ch.D; Das, S. ; Zkou, B. Sum-connectivity index of Graph, Frontiers of mathematics in china . 2016, 11(1),47-54. 5. Khalifeh, M.H.; Yousefi- Azari, H. ; Ashrafi, A.R . The first and second Zagreb indices of some Graph operations , Discrete applied mathematics .2009, 157, 2008, 804-811. 6. Khaksari, A.; Ghorbain, M. The Forgotten Topological index, Iranian Journal of mathematical chemistry . 2017, 8(3), 327-338. 7. Zhong, L. The Harmonic index for Graphs, applied mathematics letters, 2012,25(3),561- 566. 8. Abdussakir, Some Topological Indices of Subgroup Graph of Symmetric Group, Mathematics and Statistics,2019,7(4),98-105. 9. Roshini, G. R. Some Degree Based Topological Indices of Transformation Graphs, Bull. Int. Math .Virtual Inst. 2020, 10(2), 225-237. 10. Alaa, J. Nawaf ; Akram, S. Mohammad, Some Topological Indices and ( Hosoya and Schultz) Polynomial of Subgroup intersection graph of a group π‘π‘Ÿ , Journal of Al-Qadisiyah for computer and Mathematics .2021, 13(1),120-130. 11. Tamizh Chelvam,T. ; Sattanathan , M. Subgroup intersection graph of a group .J . Adv. Research in pure Math (doi: 10.5373/ jarpm. 2011, 3(4),44-49. 594.100910, issN:1943- 2380). 12.Hosoya,H.On Some Counting Polynomials in Chemistry , πŸπŸ—πŸ–πŸ“. 13. Chartrand, G.; Lesniak ., Graph and Diagraphs , 6th ed ., Wadsworth and Brooks/Cole . California. 2016. 14.Gutman.Selected properties of the Schultz molecular Topological index, .J.Chem. Inf. Comput. Sci. πŸπŸ—πŸ—πŸ’,34, 1087-1089 .