78 Zenali Iteration Method For Approximating Fixed Point of A ๐œน๐“ฉ๐“ โˆ’ Quasi Contractive mappings Zena Hussein Maibed Ali Qasem Thajil Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Iraq. mrs_zena.hussein@yahoo.com Ali.Qasem1203a@ihcoedu.uobaghdad.edu.iq Abstract. This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, Noor, D- iterations, and ๐’ฆ*- iteration for new contraction mappings called ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, Noor, D- iterations and ๐’ฆ*- iteration) equivalent to approximate fixed points of ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type ๐›ฟ๐’ต๐’œ by employing zenali iteration also discussed. Keywords: Mann and ๐’ฆ*- iteration, ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mappings. 1. Introduction The fixed point theory is one of the most important theories that play an important and fundamental role to solve many problems in various fields of science and knowledge such as Geometry, game theory, chemistry, etc. numerical calculation of fixed points for nonlinear operators is also an active research problem at present for nonlinear analysis due to its applications in balance problems, variable inequality, image coding, computer simulation and more. For that, many authors have created a large number of algorithms to approximate the fixed point for different types of applications for example see [1-9]. The well-known Banach contraction theorem uses the Picard iteration mechanism for fixed point approximation. This paper consists of three sections section one converges the zenali iteration with all these iterations. In section two rate of converge, section three equivalent, section four numerical example with real datasets. Many of the other well-known iterative methods are those of Mann [10], Ishikawa [11], D- iteration [12], Picard S iteration [13] , ๐’ฆ*-iteration [14] , Noor iteration [15]. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.4.2705 Article history: Received 15 April 2021, Accepted 30 May 20 12 , Published in October 2021. mailto:mrs_zena.hussein@yahoo.com mailto:Ali.Qasem1203a@ihcoedu.uobaghdad.edu.iq Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 79 Let โ„ณ be a uniformly convex Banach space, โˆ… โ‰  ๐’ž be a closed-convex subset of โ„ณ. We recall some definitions of those iterations as: 1- Let < ๐“ˆ๐‘› >, < ๐“‰๐‘› > and < ๐“Š๐‘› > are sequences lies in (0,1). The following iteration โŒฉdnโŒช is called ๐ท- iteration and defined as follows: d0 โˆˆ ๐’ž, sn = ( 1 โˆ’ ๐“Šn)dn + ๐“Šn ๐’ฏdn , tn = ( 1 โˆ’ ๐“‰n)๐’ฏdn + ๐“‰n ๐’ฏsn, dn+1 = ( 1 โˆ’ ๐“ˆn)๐’ฏsn + ๐“ˆn ๐’ฏtn. 2- Let ๐“๐‘› โˆˆ ๐’ž. The following iteration โŒฉ๐“๐‘› โŒช is called ๐‘ƒicard iteration and defined as follows: ๐“๐‘›+1 = ๐’ฏ๐“๐‘› , ๐‘› ๐œ– ๐‘. 3- Let < ๐“ˆ๐‘› > be a sequence in (0,1). The following iteration is called Mann iteration and defined as follows: ๐‘Ÿ0 ๐œ– ๐’ž, ๐‘Ÿ๐‘›+1 = (1 โˆ’ ๐“ˆ๐‘› )๐‘Ÿ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘Ÿ๐‘› , ๐‘› ๐œ–๐‘. 4- Let < ๐“ˆ๐‘› >, < ๐“‰๐‘› > and < ๐“Š๐‘› > be real sequences in (0,1). The following iteration is called Ishikawa iteration and defined as follows ๐‘ค0 โˆˆ ๐’ž, ๐‘ค๐‘›+1 = ( 1 โˆ’ ๐“ˆ๐‘› )๐‘ค๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘‘๐‘› , ๐‘‘๐‘› = ( 1 โˆ’ ๐“‰๐‘› )๐‘ค๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ค๐‘› , ๐‘› โˆˆ. 5- Let < ๐“ˆ๐‘› > and < ๐“‰๐‘› > are sequences lies in (0,1). The following iteration is called Picard ๐’ฎ- iteration and defined as follows: โ„Ž๐‘› โˆˆ ๐’ž, โ„Ž๐‘›+1 = ๐’ฏ๐‘™๐‘› , ๐‘™๐‘› = ( 1 โˆ’ ๐“ˆ๐‘› )๐’ฏโ„Ž๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘’๐‘› , ๏ฟฝฬ†๏ฟฝ๐‘› = ( 1 โˆ’ ๐“‰๐‘› )โ„Ž๐‘› + ๐“‰๐‘› ๐’ฏโ„Ž๐‘›. 6- Let < ๐“ˆ๐‘› >, < ๐“‰๐‘› > and < ๐“Š๐‘› > are sequences in (0,1). The following iteration โŒฉ๐‘ž๐‘› โŒช is called ๐’ฆ*-iteration, and defined as follows: ๐‘ž0 โˆˆ ๐’ž, ๐‘ž๐‘›+1 = ๐’ฏ๐‘๐‘› , ๐‘๐‘› = ๐’ฏ(( 1 โˆ’ ๐“ˆ๐‘› )๐‘œ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘œ๐‘› ) and ๐‘œ๐‘› = ( 1 โˆ’ ๐“‰๐‘› )๐‘ž๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ž๐‘›. 7- Let < ๐“ˆ๐‘› >, < ๐“‰๐‘› > and < ๐“Š๐‘› > are sequences in (0,1). The following iteration โŒฉynโŒช is called Noor iteration and defined as follows: ๐‘ฆ0 โˆˆ ๐’ž, ๐‘ฆ๐‘›+1 = ( 1 โˆ’ ๐“ˆ๐‘›)๐‘ฆ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ž๐‘›, ๐‘ž๐‘› = ( 1 โˆ’ ๐“ˆ๐‘›)๐‘ฆ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘๐‘›, ๐‘๐‘› = ( 1 โˆ’ ๐“Š๐‘› )๐‘ฆ๐‘› + ๐“Š๐‘› ๐’ฏ๐‘ฆ๐‘› , n โˆˆ ๐‘. Definition1.1 [16]: Let < ๐’ฑ๐‘› >, < ๐’ฐ๐‘› > are sequences lies in R converge to ๐’ฑ and < ๐’ฐ๐‘› > converge to ๐’ฐ, and Let < ๐’ฑ๐‘› > such that ๐’ต = lim ๐‘›โ†’โˆž |๐’ฑ๐‘›โˆ’๐’ฑ| |๐’ฐ๐‘›โˆ’๐’ฐ| 1. If ๐’ต= 0. Then The sequence < ๐’ฑ๐‘› > is converge to ๐’ฑ faster then < ๐’ฐ๐‘› > converge to ๐’ฐ. 2. If 0 โ‰บ ๐’ต โ‰บ โˆž โ†’ < ๐“๐‘› > and < ๐’ฐ๐‘› > have the same rate of convergence. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 80 Lemma 1.2 [17]: Let โ„ณ be a uniformly convex Banach space and โŒฉโ„๐‘›โŒช๐‘›=0 โˆž be any sequence such that 0 < ๐“… โ‰ค โ„๐‘› โ‰ค ๐“‡ < 1, for some ๐“… , ๐“‡ โˆˆ ๐‘… and for all ๐‘› โ‰ฅ 1, Let โŒฉ๐’ฑ๐‘›โŒช๐‘›=0 โˆž and โŒฉ๐’ฐ๐‘› โŒช๐‘›=0 โˆž , be a nonnegative real sequences of โ„ณ such that lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ•‘ ๐’ฑ๐‘›โ•‘ โ‰ค ๐“‡, lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ•‘ ๐’ฐ๐‘›โ•‘ โ‰ค ๐“‡ and ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘ โ„๐‘› ๐’ฑ๐‘›โ€“ (1 โˆ’ โ„๐‘›) ๐’ฐ๐‘›โ•‘ = ๐‘Ÿ for some ๐“‡ โ‰ฅ 0. Then, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘ ๐’ฑ๐‘› โ€“ ๐’ฐ๐‘›โ•‘ = 0. Lemma 1.3 [18]: Let โŒฉ๐’ฑ๐‘› โŒช๐‘›=0 โˆž and โŒฉ๐’ฐ๐‘› โŒช๐‘›=0 โˆž be nonnegative real sequences satisfying the following condition: ๐’ฑ๐‘›+1 โ‰ค (1 โˆ’ ๏ญ๐‘› )๐’ฑ๐‘› + ๐’ฐ๐‘›, where ๏ญ๐‘›๏ƒŽ (0,1), for all ๐‘› โ‰ฅ ๐‘›0, โˆ‘ ๏ญ๐‘› = โˆž โˆž ๐‘›=1 and ๐’ฐ๐‘› ๏ญ๐‘› ๏‚ฎ 0 as n ๏‚ฎ ๏‚ฅ. Then ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐’ฑ๐‘› = 0. 2. Main Results In this section, we introduced a new iteration process known as Zenali Iteration and new contraction mappings called a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mappings. Definition 2.1: Let < ๐“ˆ๐‘› >, < ๐“‰๐‘› > and < ๐“Š๐‘› > are sequences in (0,1) and ๐’ฏ: ๐’ž โ†’ ๐’ž. The following iteration is called Zenali iteration and defined as follows ๐‘ฅ0 โˆˆ ๐’ž, ๐‘ฅ๐‘›+1 = ๐’ฏ๐‘ฆ๐‘› ๐‘ฆ๐‘› = ๐’ฏ(( 1 โˆ’ ๐“ˆ๐‘›)๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›), ๐‘ง๐‘› = ๐’ฏ(( 1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘› ). Definition 2.2: Let ๐’ฏ be a self mapping on ๐’ž, then ๐’ฏ called a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction for all ๐“ , ๐“Ž โˆˆ ๐’ž, if || ๐’ฏ๐“ โ€“ ๐’ฏ๐“Ž || โ‰ค ๐›ฟ|| ๐“โ€“ ๐“Ž || + ๐’ต๐’œ (๐“ƒ๐“, ๐“‚๐“Ž) where ๐’œ(๐“ƒ๐“, ๐“‚๐“Ž) = ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐“ โˆ’ ๐’ฏ๐“โ•‘, ๐“‚โ•‘๐“Ž โˆ’ ๐’ฏ๐“Žโ•‘, ๐“ƒ๐“‚โ•‘๐“ โˆ’ ๐’ฏ๐“Žโ•‘, ๐“‚๐“ƒโ•‘๐“Ž โˆ’ ๐’ฏ๐“โ•‘} for some 0 < ๐›ฟ โ‰ค 1, ๐’ต โ‰ฅ 0 and ๐“ƒ, ๐“‚ โ‰ฅ 0 . Lemma 2.3 : Let ๐’ž be a nonempty convex and closed subset of a Banach space โ„ณ and let ๐’ฏ: ๐’ž โ†’ ๐’ž a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping. Suppose that โŒฉ๐‘ฅ๐‘› โŒช the Zenali iteration in ๐’ž. If โ„ฑ(๐’ฏ ) โ‰  โˆ…, then 1- โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ and โ•‘๐‘ฆ๐‘› โ€“ ๐“… โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘. 2- ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘›โ€“ ๐“… โ•‘ exists, for all n โˆˆ N. Proof. Let ๐“… be a fixed point of ๐’ฏ. Then the following inequalities hold โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ = โ•‘๐’ฏ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›]โ€“ ๐“… โ•‘ โ‰ค ๐›ฟโ•‘(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›โ€“ ๐“… โ•‘ + ๐’ต๐’œ (๐“ƒ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›], ๐“‚ ๐“…). Since โ•‘๐’ฏ๐“…โ€“ ๐“… โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž then, ๐’ต๐’œ (๐“ƒ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›], ๐“‚ ๐“…) = 0 โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ โ‰ค (1 โˆ’ ๐“‰๐‘› )โ•‘๐‘ฅ๐‘›โ€“ ๐“…โ•‘ + ๐›ฟ๐“‰๐‘›โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ + ๐“‰๐‘› ๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 81 โ‰ค (1 โˆ’ ๐“‰๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ + ๐’ต ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘ฅ๐‘›โ€“ ๐’ฏ๐‘ฅ๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘} โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ (2.1) And, โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ = โ•‘๐’ฏ[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›] โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ โ•‘(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘› โˆ’ ๐‘ โ•‘ + ๐’ต๐’œ (๐“ƒ[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›], ๐“‚๐“…) Sinceโ•‘๐’ฏ๐“…โ€“ ๐“… โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž. Then, ๐’ต๐’œ(๐“ƒ[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘› ], ๐“‚๐“…) = 0 โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ + ๐›ฟ๐“ˆ๐‘›โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“…) โ‰ค (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ + ๐’ต๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘ง๐‘›โ€“ ๐’ฏ๐‘ง๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘} โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ โ‰ค โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘. (2.2) Using inequality (2.1) in (2.2), it follows that: โ•‘๐‘ฆ๐‘› โ€“ ๐“… โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ (2.3) And, โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐“…โ•‘ = โ•‘๐’ฏ๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ โ‰ค ๐›ฟโ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฆ๐‘› , ๐“‚๐“…) โ‰ค โ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ (2.4) Using inequality (2.3), inequality (2.4) becomes โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐“…โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ for all n โˆˆ N. (2.5) So, {โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘} is decreasing, for each ๐“… โˆˆ โ„ฑ(๐’ฏ ), this implies that the sequence ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ exists. โˆŽ Theorem 2.4 : Let โ„ณ be a uniformly convex Banach space, ๐’ž be nonempty convex and closed subset of โ„ณ and let ๐’ฏ: ๐’ž โ†’ ๐’ž a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping. Suppose that โŒฉ๐‘ฅ๐‘› โŒช the Zenali iteration in ๐’ž. Then F(๐’ฏ ) โ‰  โˆ… if and only if โŒฉ๐‘ฅ๐‘› โŒช is bounded and ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘› โ€“ ๐’ฏ๐‘ฅ๐‘› โ•‘ = 0. Proof. Since ๐“… โˆˆ F(๐’ฏ ), from (2.5) we get โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐“…โ•‘ โ‰ค โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ โ‰ค โ‹ฏ โ‰ค โ•‘๐‘ฅ0 โˆ’ ๐“…โ•‘ for all n โˆˆ N.Thus, โŒฉ๐‘ฅ๐‘› โŒช is bounded set in ๐’ž. Put, ๐‘Ÿ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ (2.6) And, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐’ฏ๐‘ฅ๐‘›โ€“ ๐“… โ•‘ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ( ๐›ฟโ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…)) โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ( โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘ฅ๐‘›โ€“ ๐’ฏ๐‘ฅ๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘}) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 82 ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐’ฏ๐‘ฅ๐‘› โ€“ ๐“… โ•‘ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ (2.7) Using inequality (2.6) in (2.7) becomes, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐’ฏ๐‘ฅ๐‘›โ€“ ๐“… โ•‘ โ‰ค ๐‘Ÿ (2.8) From Equations(2.3) and (2.6), we have ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“โ•‘y๐‘› โ€“ ๐“… โ•‘ โ‰ค r. (2.9) Similarly by using (2.1) and (2.6),we have ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ•‘z๐‘›โ€“ ๐“… โ•‘ โ‰ค r (2.10) Now, ๐‘Ÿ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“โ•‘๐‘ฅ๐‘›+1โ€“ ๐“… โ•‘= ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“โ•‘๐’ฏy๐‘›โ€“ ๐“… โ•‘ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“( ๐›ฟโ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฆ๐‘› , ๐“‚๐“…)) โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“( โ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘ฆ๐‘› โ€“ ๐’ฏ๐‘ฆ๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘}) Then, we get ๐‘Ÿ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“โ•‘๐‘ฆ๐‘›โ€“ ๐“… โ•‘. (2.11) Having in mind (2.2), inequality (2.11) becomes, ๐‘Ÿ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘–๐‘›๐‘“โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ (2.12) From Eqs (2.10) and (2.12), we obtain ๐‘Ÿ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ง๐‘› โ€“ ๐“… โ•‘ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž (โ•‘๐’ฏ((1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘› )โ€“ ๐“… โ•‘ ) โ‰ค ๐›ฟ ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘(1 โˆ’ ๐“‰๐‘› )(๐‘ฅ๐‘› โˆ’ ๐“… ) โˆ’ ๐“‰๐‘› ( ๐’ฏ๐‘ฅ๐‘› โ€“ ๐“…) โ•‘ +๐’ต๐’œ (๐“ƒ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›] , ๐“‚ ๐“…). Sinceโ•‘๐’ฏ๐“…โ€“ ๐“… โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž then, ๐’ต๐’œ (๐“ƒ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›] , ๐“‚ ๐“…) = 0 โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐›ฟ(1 โˆ’ ๐“‰๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โ€“ ๐“… โ•‘ + ๐’ตmin {๐“ƒโ•‘๐‘ฅ๐‘›โ€“ ๐’ฏ๐‘ฅ๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘} โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘›โ€“ ๐“… โ•‘ = ๐‘Ÿ So, ๐‘Ÿ โ‰ค โ•‘(1 โˆ’ ๐“‰๐‘› )(๐‘ฅ๐‘› โˆ’ ๐“… ) โˆ’ ๐“‰๐‘› ( ๐’ฏ๐‘ฅ๐‘› โ€“ ๐“…) โ•‘ โ‰ค ๐‘Ÿ Then โ•‘(1 โˆ’ ๐“‰๐‘› )(๐‘ฅ๐‘› โˆ’ ๐“… ) โˆ’ ๐“‰๐‘› ( ๐’ฏ๐‘ฅ๐‘›โ€“ ๐“…)โ•‘ = ๐‘Ÿ (2.13) Thus From Eqs (2.6), (2.8), (2.13) and lemma(1.2 ) we obtain, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘ฅ๐‘› โ€“ ๐’ฏ๐‘ฅ๐‘› โ•‘ = 0. Now, we prove that F(๐’ฏ ) โ‰  โˆ… Let ๐“… โˆˆ A(๐’ž , โŒฉ๐‘ฅ๐‘› โŒช ) โ‡’ r(๐’ž , โŒฉ๐‘ฅ๐‘› โŒช ) = r(๐“… , โŒฉ๐‘ฅ๐‘› โŒช ) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 83 r(๐’ฏ๐“… , โŒฉ๐‘ฅ๐‘› โŒช ) = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ•‘๐‘ฅ๐‘› โ€“ ๐’ฏ๐“…โ•‘ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘[โ•‘๐‘ฅ๐‘› โ€“ ๐’ฏ๐‘ฅ๐‘› โ•‘ + โ•‘๐’ฏ๐‘ฅ๐‘› โ€“ ๐’ฏ๐“… โ•‘] โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘[๐›ฟโ•‘๐‘ฅ๐‘› โ€“ ๐’ฏ๐‘ฅ๐‘› โ•‘ + ๐’ต๐’œ(๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ•‘๐‘ฅ๐‘›โ€“ ๐“… โ•‘ = r(๐“… , โŒฉ๐‘ฅ๐‘› โŒช ) = r(๐’ž , โŒฉ๐‘ฅ๐‘› โŒช ) ๐’ฏ๐“… โˆˆ A(๐’ž , โŒฉ๐‘ฅ๐‘› โŒช ) C a uniformly convex โ‡’ A(C , โŒฉ๐‘ฅ๐‘› โŒช ) is a singleton โ‡’ ๐“… = ๐’ฏ๐“… โ‡’ ๐“… โˆˆ F(๐’ฏ ) โ‡’ F(๐’ฏ ) โ‰  โˆ…. โˆŽ Lemma 2.5: Let ๐’ž be a nonempty convex and closed subset of a Banach space โ„ณ and let ๐’ฏ: ๐’ž โ†’ ๐’ž a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping. Suppose that โŒฉ๐‘Ÿ๐‘›โŒช the Mann iteration in ๐’ž If โ„ฑ(๐’ฏ ) โ‰  โˆ…, then ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘›โ€“ ๐“… โ•‘ exists. Proof: Let ๐“… be a c fixed point of. The following inequalities hold โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐“… โ•‘ = โ•‘(1 โˆ’ ๐‘Ž๐‘› )๐‘Ÿ๐‘› + ๐‘Ž๐‘› ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค (1 โˆ’ ๐‘Ž๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐‘Ž๐‘›โ•‘๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค (1 โˆ’ ๐‘Ž๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ๐‘Ž๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐‘Ž๐‘› ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐“…) โ‰ค (1 โˆ’ ๐‘Ž๐‘› (1 โˆ’ ๐›ฟ)โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐“… โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ (2.14) So, {โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘} is decreasing, for each ๐“… โˆˆ โ„ฑ(๐’ฏ ), this implies that the sequence ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘› โ€“ ๐“… โ•‘ exists. โˆŽ Theorem 2.6: Let โ„ณ be a uniformly convex Banach space, ๐’ž be nonempty convex and closed subset of โ„ณ and let ๐’ฏ: ๐’ž โ†’ ๐’ž a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping. Suppose that โŒฉ๐‘Ÿ๐‘›โŒช the Mann iteration in ๐’ž. Then F(๐’ฏ) โ‰  โˆ… if and only if โŒฉ๐‘Ÿ๐‘›โŒช is bounded and ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘›โ€“ ๐’ฏ๐‘Ÿ๐‘›โ•‘ = 0. Proof. Since ๐“… โˆˆ F(๐’ฏ ), from(2.14) we get : โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐“…โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค โ‹ฏ โ‰ค โ•‘๐‘Ÿ0 โˆ’ ๐“…โ•‘ for all n โˆˆ N. Thus, โŒฉ๐‘Ÿ๐‘› โŒช is bounded set in ๐’ž. Put, ๐‘Ÿ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘› โ€“ ๐“… โ•‘ (2.15) ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ•‘๐’ฏ๐‘Ÿ๐‘› โ€“ ๐“… โ•‘ โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘(๐›ฟโ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐“…)) โ‰ค ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ•‘๐‘Ÿ๐‘›โ€“ ๐“… โ•‘ (2.16) Having in mind (2.15), inequality(2.16)becomes: ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ•‘๐’ฏ๐‘Ÿ๐‘› โ€“ ๐“… โ•‘ โ‰ค ๐‘Ÿ (2.17) Now, ๐‘Ÿ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘›+1โ€“ ๐“… โ•‘ = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘(1 โˆ’ ๐“ˆ๐‘› )๐‘Ÿ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 84 = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘(1 โˆ’ ๐“ˆ๐‘› )(๐‘Ÿ๐‘› โˆ’ ๐“… ) + ๐“ˆ๐‘›( ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…)โ•‘ (2.18) Thus From Eqs (2.15), (2.17), (2.18) and lemma(1.2) we obtain, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž โ•‘๐‘Ÿ๐‘›โ€“ ๐’ฏ๐‘Ÿ๐‘›โ•‘ = 0. Now, we prove that F(๐’ฏ ) โ‰  โˆ…. By the same proof way of the previous theorem. โˆŽ Now, we will study the equivalent between many of iterations by using a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mappings. Theorem 2.7: Let ๐’ž closed a nonempty convex and subset of a Banach space ๐‘‹, ๐’ฏ be a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping on ๐’ž and has a unique fixed point ๐“…. Consider the Zenali iteration and Mann iteration with real sequences. Then the following a assertions are equivalent: The Mann iteration converges to ๐“… . The Zenali iteration converges to ๐“…. Proof. We show that (i) โ†’ (ii) that is, if the Mann iteration converges, then the Zenali iteration does too. Since, the Mann iteration converges to ๐“… โŸน โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0 ๐‘Ž๐‘  ๐‘› โŸถ โˆž. Now, consider Mann and the Zenali iterations, we have: โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐‘ฅ๐‘›+1 โ•‘ = โ•‘(1 โˆ’ ๐“ˆ๐‘› )๐‘Ÿ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘ โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘ + ๐›ฟ๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘›โ•‘ + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฆ๐‘› ) โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘›โ•‘ +(1 โˆ’ ๐“ˆ๐‘› )๐ฟ๐“‚ (๐‘Ÿ๐‘› , ๐‘ฆ๐‘› ) + ๐›ฟ๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘›โ•‘ + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฆ๐‘› ) = (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟโ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘›โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฆ๐‘› ) (2.19) โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘› โ•‘ = โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ[(1 โˆ’ ๐“ˆ๐‘› )๐‘ง๐‘› โˆ’ ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›]โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + โ•‘๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐’ฏ[(1 โˆ’ ๐“ˆ๐‘› )๐‘ง๐‘› โˆ’ ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›]โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟโ•‘๐‘Ÿ๐‘› โˆ’ (1 โˆ’ ๐“ˆ๐‘› )๐‘ง๐‘› โˆ’ ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›โ•‘ +๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›]) โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ง๐‘›โ•‘ + ๐›ฟ๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +๐›ฟ 2๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ง๐‘›โ•‘ + ๐›ฟ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘ง๐‘› ) + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›]) = (1 + ๐›ฟ ๐“ˆ๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ง๐‘›โ•‘ +๐›ฟ๐“ˆ๐‘› ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘ง๐‘› ) + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›]) (2.20) โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ง๐‘›โ•‘ = โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘› ]โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + โ•‘๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐’ฏ[(1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘› ]โ•‘ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 85 โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟโ•‘๐‘Ÿ๐‘› โˆ’ (1 โˆ’ ๐“‰๐‘› )๐‘ฅ๐‘› โˆ’ ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฅ๐‘› ) โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ(1 โˆ’ ๐“‰๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ + ๐›ฟ๐“‰๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฅ๐‘› ) โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ(1 โˆ’ ๐“‰๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ + ๐›ฟ๐“‰๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +๐›ฟ 2๐“‰๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ + ๐›ฟ๐“‰๐‘› ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฅ๐‘› ) + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฅ๐‘› ) = (1 + ๐›ฟ ๐“‰๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ( ๐›ฟ(1 โˆ’ ๐“‰๐‘› ) + ๐›ฟ 2๐“‰๐‘›)โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ +(1 + ๐›ฟ๐“‰๐‘› )๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘ฅ๐‘› ) (2.21) Substituting (2.21) in (2.20), we obtain โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฆ๐‘› โ•‘ โ‰ค (1 + ๐›ฟ ๐“ˆ๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›) (1 + ๐›ฟ ๐“‰๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐‘Ž๐‘›)( ๐›ฟ(1 โˆ’ ๐“‰๐‘› ) + ๐›ฟ 2๐“‰๐‘›)โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ +( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)(1 + ๐›ฟ ๐“‰๐‘› )๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ฅ๐‘› ) +(1 + ๐›ฟ ๐“ˆ๐‘› )๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ง๐‘› ) (2.22) Substituting (2.22) in (2.19), we obtain โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐‘ฅ๐‘›+1 โ•‘ โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ(1 + ๐›ฟ ๐“ˆ๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +๐›ฟ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘› ) (1 + ๐›ฟ ๐“‰๐‘› ) โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +๐›ฟ 2(1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))(1 โˆ’ ๐“‰๐‘›(1 โˆ’ ๐›ฟ))โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ +๐›ฟ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)(1 + ๐›ฟ ๐“‰๐‘› )๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘ฅ๐‘› ) +๐›ฟ(1 + ๐›ฟ ๐“ˆ๐‘› )๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘›, ๐“‚๐‘ง๐‘› ) + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘ฆ๐‘› ) โ‰ค [(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ(1 + ๐›ฟ ๐“ˆ๐‘› ) + ๐›ฟ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)(1 + ๐›ฟ๐“‰๐‘› )] โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +( (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ)โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ + ๐›ฟ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)(1 + ๐›ฟ๐“‰๐‘› ) ๐’ต ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘, ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘, ๐“‚๐“ƒโ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} +๐›ฟ(1 + ๐›ฟ ๐“ˆ๐‘› )๐’ต ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘, ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘ , ๐“‚๐“ƒโ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} + ๐’ต ๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘ , ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘, ๐“‚๐“ƒโ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Let ๐œ‡๐‘› = ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ) ๐œ– (0 , 1), ๐’ฑ๐‘› = โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ ๐’ฐ๐‘› = [(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ(1 + ๐›ฟ๐“ˆ๐‘›) + ๐›ฟ(๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘›)(1 + ๐›ฟ๐“‰๐‘› )]โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ +๐›ฟ( ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ 2๐“ˆ๐‘› )(1 + ๐›ฟ ๐“‰๐‘› )๐’ต ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘ , ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘, ๐“‚๐“ƒโ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} + ๐›ฟ(1 + ๐›ฟ ๐“ˆ๐‘› )๐’ต ๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ , ๐“‚โ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘, ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘ , ๐“‚๐“ƒโ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 86 +๐’ต ๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘ , ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘, ๐“‚๐“ƒโ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Furthermore, using ๐’ฏ๐“… = ๐“… and โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0, we have โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘› โ•‘ = โ•‘๐‘Ÿ๐‘› โˆ’ ๐“… + ๐’ฏ๐“… โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟโ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐“… ) = (1 + ๐›ฟ)โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐‘š๐‘–๐‘› {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘ , ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Then, โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘› โ•‘ โ†’ 0. Now, because of these results, we get ๐’ฐ๐‘› โ†’ 0 By applying lemma( 1.3), we obtain ๐’ฑ๐‘› = โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘›โ•‘ โ†’ 0 as ๐‘› โ†’ 0. Consequently , โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐‘ฅ๐‘›+1โ•‘ โ†’ 0 as ๐‘› โ†’ 0. Therefore, โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘› โ•‘ + โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž Now, we show that, (ii) โ‡’ (i). Since, the Zenali iteration converges to ๐“… โŸน โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0 ๐‘Ž๐‘  ๐‘› โŸถ โˆž. Now, consider the following โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐‘Ÿ๐‘›+1 โ•‘ โ‰ค โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐“…โ•‘ + โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐“…โ•‘ = โ•‘๐’ฏ๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + โ•‘(1 โˆ’ ๐“ˆ๐‘› )๐‘Ÿ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค ๐›ฟโ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฆ๐‘› , ๐“‚๐“… ) + (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ +๐›ฟ๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐“… ) = ๐›ฟโ•‘๐‘ฆ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฆ๐‘› , ๐“‚๐“… ) + (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ +๐“ˆ๐‘›๐ฟ๐“‚ (๐‘Ÿ๐‘› , ๐“…) (2.23) โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ = โ•‘๐’ฏ[(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘›] โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ โ•‘(1 โˆ’ ๐“ˆ๐‘› ) ๐‘ง๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ง๐‘› โˆ’ ๐‘ โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“… ) โ‰ค ๐›ฟ (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘ง๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ 2๐“ˆ๐‘›โ•‘๐‘ง๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ๐“ˆ๐‘› ๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“… ) + ๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“… ) โ‰ค ๐›ฟ (1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ))โ•‘๐‘ง๐‘› โˆ’ ๐“…โ•‘ + (๐›ฟ๐“ˆ๐‘› + 1)๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“… ) (2.24) โ•‘๐‘ง๐‘› โˆ’ ๐‘ โ•‘ = โ•‘๐’ฏ[(1 โˆ’ ๐“‰๐‘› ) ๐‘ฅ๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›] โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ โ•‘(1 โˆ’ ๐“‰๐‘› ) ๐‘ฅ๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘› โˆ’ ๐‘ โ•‘ + ๐’ต๐’œ (๐“ƒ((1 โˆ’ ๐“‰๐‘› ) ๐‘ฅ๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ฅ๐‘›), ๐“‚๐“…) โ‰ค ๐›ฟ (1 โˆ’ ๐“‰๐‘› )โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ 2๐“‰๐‘›โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ๐“‰๐‘›๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) โ‰ค ๐›ฟ (1 โˆ’ ๐“‰๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + (๐›ฟ๐“‰๐‘› + 1) + ๐›ฟ๐“‰๐‘› ๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) (2.25) Substituting (2.25) in (2.24), we obtain Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 87 โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ 2 (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ)) (1 โˆ’ ๐“‰๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ)) (๐›ฟ๐“‰๐‘› + 1)๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) + (๐›ฟ๐“ˆ๐‘› + 1)๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“…) (2.26) Substituting (2.26) in (2.23), we obtain โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐‘Ÿ๐‘›+1 โ•‘ โ‰ค ๐›ฟ 3 (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ)) (1 โˆ’ ๐“‰๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + (1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ)) โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘› + ๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ 2 (1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ))(๐›ฟ๐“‰๐‘› + 1)๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐“…) +๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“…) + ๐›ฟ(๐›ฟ๐“ˆ๐‘› + 1)๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐“…) + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐“…) โ‰ค [(1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ)) + (1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ))]โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))โ•‘๐‘ฅ๐‘› โˆ’ ๐‘Ÿ๐‘›โ•‘ + ๐›ฟ 2 (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))(๐›ฟ๐“‰๐‘› + 1) ๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐“…โ•‘ , ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘} +๐’ตmin {๐“ƒโ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘} +๐›ฟ(๐›ฟ๐“ˆ๐‘› + 1)๐’ตmin {๐“ƒโ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐“…โ•‘ , ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘} + ๐“ˆ๐‘›๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘ , ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Let ๐œ‡๐‘› = ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ) ๐œ– (0 , 1), ๐’ฑ๐‘› = โ•‘๐‘ฅ๐‘› โˆ’ ๐‘Ÿ๐‘›โ•‘ ๐’ฐ๐‘› = [(1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ)) + (1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ))]โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ 2 (1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ))(๐›ฟ๐“‰๐‘› + 1) ๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฅ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฅ๐‘›โ•‘} +๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ฆ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ฆ๐‘›โ•‘} +๐›ฟ(๐›ฟ๐“ˆ๐‘› + 1)๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘ง๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘ง๐‘›โ•‘} +๐“ˆ๐‘›๐’ต๐‘š๐‘–๐‘›{๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘, ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} Since, โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž. So, we get ๐’ฐ๐‘› โ†’ 0, thus from lemma (1.3), we get ๐’ฑ๐‘› = โ•‘๐‘ฅ๐‘› โˆ’ ๐‘Ÿ๐‘›โ•‘ โ†’ 0 as ๐‘› โ†’ 0. Consequently;โ•‘๐‘ฅ๐‘›+1 โˆ’ ๐‘Ÿ๐‘›+1โ•‘ โ†’ 0 as ๐‘› โ†’ 0 Therefore, โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค โ•‘๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘› โ•‘ + โ•‘๐‘ฅ๐‘› โˆ’ ๐“…โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž. โˆŽ Now, we will prove that our new iteration is faster than many know iterations By using new contraction mappings. Theorem 2.8: Let ๐’ฏ be a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction mapping on ๐’ž. Suppose that the iterations Zenali iteration, Ishikawa iteration and Mann iteration converge to ๐“… โˆˆ โ„ฑ(๐’ฏ ) where 0 < ๐“‹ โ‰ค ๐“Šn, ๐“ˆn , ๐“‰n < 1, โˆ€n โˆˆ N. Then the Zenali iteration converges faster than of Mann iteration and Ihikawa iteration. Proof. Consider Zenali iteration, we obtain Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 88 โ•‘๏ฟฝฬƒ๏ฟฝ๐‘›+1 โˆ’ ๐‘ โ•‘ = โ•‘๐’ฏ๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ โ•‘๐‘ฆ๐‘› โˆ’ ๐‘ โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฆ๐‘› , ๐“‚๐‘) = ๐›ฟ โ•‘๐’ฏ ((1 โˆ’ ๐“ˆn )๐‘ง๐‘› + ๐“ˆn๐’ฏ๐‘ง๐‘›) โˆ’ ๐‘ โ•‘ โ‰ค ๐›ฟ 2โ•‘ ((1 โˆ’ ๐“ˆn )๐‘ง๐‘› + ๐“ˆn๐’ฏ๐‘ง๐‘› ) โˆ’ ๐‘ โ•‘ + ๐’ต๐’œ (๐“ƒ(1 โˆ’ ๐“ˆn )๐‘ง๐‘› + ๐“ˆn๐’ฏ๐‘ง๐‘› ), ๐“‚๐‘) Since โ•‘๐’ฏ๐“…โ€“ ๐“… โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž then, ๐’ต๐’œ (๐“ƒ(1 โˆ’ ๐“ˆn )๐‘ง๐‘› + ๐“ˆn๐’ฏ๐‘ง๐‘›), ๐“‚ ๐“…) = 0 = ๐›ฟ 2โ•‘ ((1 โˆ’ ๐“ˆn )(๐‘ง๐‘› โˆ’ ๐‘) + ๐“ˆn(๐’ฏ๐‘ง๐‘› โˆ’ ๐‘) โ•‘ โ‰ค ๐›ฟ 2 [ (1 โˆ’ ๐“ˆn )โ•‘๐‘ง๐‘› โˆ’ ๐‘โ•‘ + ๐›ฟ ๐“ˆnโ•‘๐‘ง๐‘› โˆ’ ๐‘โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ง๐‘› , ๐“‚๐‘)] = ๐›ฟ 2 [ ((1 โˆ’ ๐“ˆn ) + ๐›ฟ ๐“ˆn] โ•‘๐‘ง๐‘› โˆ’ ๐‘โ•‘ = ๐›ฟ 2 [ (1 โˆ’ ๐“ˆn(1 โˆ’ ๐›ฟ) ] โ•‘๐’ฏ ((1 โˆ’ ๐“‰n )๐‘ฅ๐‘› + ๐“‰n๐’ฏ๐‘ฅ๐‘›) โˆ’ ๐‘โ•‘ โ‰ค ๐›ฟ 2[ (1 โˆ’ ๐“ˆn(1 โˆ’ ๐›ฟ) ] ๐›ฟโ•‘ ((1 โˆ’ ๐“‰n)(๐‘ฅ๐‘› โˆ’ ๐‘) + ๐“‰n(๐’ฏ๐‘ฅ๐‘› โˆ’ ๐‘)โ•‘ +๐’ต๐’œ (๐“ƒ(1 โˆ’ ๐“‰n )๐‘ฅ๐‘› + ๐“‰n๐’ฏ๐‘ฅ๐‘›), ๐“‚๐‘) โ‰ค ๐›ฟ 3 [ (1 โˆ’ ๐›ผ๐‘› (1 โˆ’ ๐›ฟ)] [ ((1 โˆ’ ๐“‰n)โ•‘๐‘ฅ๐‘› โˆ’ ๐‘โ•‘ + ๐›ฟ๐“‰nโ•‘๐‘ฅ๐‘› โˆ’ ๐‘โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘ฅ๐‘› , ๐“‚๐‘)] = ๐›ฟ 3 [ (1 โˆ’ ๐“ˆn(1 โˆ’ ๐›ฟ) ] [ ((1 โˆ’ ๐“‰n ) + ๐›ฟ๐“‰n]โ•‘๐‘ฅ๐‘› โˆ’ ๐‘โ•‘ โ‰ค ๐›ฟ 3 [ (1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ) ] 2โ•‘๐‘ฅ๐‘› โˆ’ ๐‘โ•‘ โž โ‰ค (๐›ฟ 3 [ 1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ) ] 2)๐‘›โ•‘๐‘ฅ0 โˆ’ ๐‘โ•‘ Suppose that ๐‘๐ด๐‘› = (๐›ฟ 3 [1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ) ] 2)๐‘›โ•‘๐‘ฅ0 โˆ’ ๐‘โ•‘ Consider the Mann iteration, we have โ•‘๐‘Ÿ๐‘›+1 โˆ’ ๐‘ โ•‘ = โ•‘(1 โˆ’ ๐“ˆ๐‘› )๐‘Ÿ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ = โ•‘ ((1 โˆ’ ๐“ˆ๐‘› )(๐‘Ÿ๐‘› โˆ’ ๐“…) + ๐“ˆ๐‘›(๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…) โ•‘ โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐“ˆ๐‘›โ•‘๐’ฏ๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โ‰ค (1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐›ฟ๐“ˆ๐‘›โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘Ÿ๐‘› , ๐“‚๐‘) โ‰ค [1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ)]โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ + ๐’ตmin {๐“ƒโ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘, ๐“‚โ•‘๐“… โˆ’ ๐’ฏ๐“…โ•‘ , ๐“ƒ๐“‚โ•‘๐‘Ÿ๐‘› โˆ’ ๐’ฏ๐“…โ•‘, ๐“‚๐“ƒโ•‘๐“… โˆ’ ๐’ฏ๐‘Ÿ๐‘›โ•‘} =[ 1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ)]โ•‘๐‘Ÿ๐‘› โˆ’ ๐“…โ•‘ โž โ‰ค [ 1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ)]๐‘›โ•‘๐‘Ÿ0 โˆ’ ๐“…โ•‘ Suppose that ๐’ฎ๐‘› = [ 1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ)] ๐‘›โ•‘๐‘Ÿ0 โˆ’ ๐“…โ•‘ Here, after simple compute, we have Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 89 ๐‘๐ด๐‘› โ„ณ๐‘› = (๐›ฟ3 [1โˆ’๐“‹(1โˆ’๐›ฟ) ] 2)๐‘›โ•‘๐‘ฅ0โˆ’๐‘โ•‘ [ 1โˆ’๐“‹(1โˆ’๐›ฟ))]๐‘›โ•‘๐‘ค0โˆ’๐“…โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž. Then, the Zenali iteration converges to ๐“… faster than Ishikawa iteration and Mann iteration. โˆŽ Theorem 2.9 : Let ๐’ฏ be a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction self- mapping on ๐’ž. Suppose that the Zenali iteration and D - iteration converge to the same fixed point ๐“… of ๐’ฏ where 0 < ๐“‹ โ‰ค ๐“Š๐‘›, ๐“ˆ๐‘› , ๐“‰๐‘› < 1, โˆ€๐‘› โˆˆ ๐‘. Then, the Zenali iteration converges faster than D - iteration. Proof. Form D - iteration, we obtain โ•‘d๐‘›+1 โˆ’ ๐“… โ•‘ = โ•‘(1 โˆ’ ๐“ˆ๐‘› )๐’ฏ๐‘ ๐‘› + ๐“ˆ๐‘› ๐’ฏ๐‘ก๐‘› โˆ’ ๐“… โ•‘ โ‰ค ๐›ฟ(1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘ ๐‘› โˆ’ ๐“… โ•‘ + (1 โˆ’ ๐“ˆ๐‘› )๐’ต๐’œ (๐“ƒ๐‘ ๐‘› , ๐“‚๐‘) +๐›ฟ๐“ˆ๐‘›โ•‘๐‘ก๐‘› โˆ’ ๐“… โ•‘ + ๐“ˆ๐‘›๐’ต๐’œ (๐“ƒ๐‘ก๐‘› , ๐“‚๐‘) = ๐›ฟ[(1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘ ๐‘› โˆ’ ๐“… โ•‘ + ๐“ˆ๐‘›โ•‘(1 โˆ’ ๐“‰๐‘› )๐’ฏ๐‘‘๐‘› + ๐“‰๐‘› ๐’ฏ๐‘ ๐‘› โˆ’ ๐“… โ•‘] โ‰ค ๐›ฟ[(1 โˆ’ ๐“ˆ๐‘› )โ•‘๐‘ ๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ๐“ˆ๐‘› ((1 โˆ’ ๐“‰๐‘› )โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ๐“ˆ๐‘› ๐“‰๐‘›โ•‘๐‘ ๐‘› โˆ’ ๐“… โ•‘)] + ๐’ต๐’œ (๐“ƒ๐‘ ๐‘›, ๐“‚๐‘) + ๐’ต๐’œ (๐“ƒ๐‘‘๐‘› , ๐“‚๐‘) โ‰ค ๐›ฟ[(1 โˆ’ ๐“ˆ๐‘› ) + ๐›ฟ๐“ˆ๐‘› ๐“‰๐‘›)โ•‘๐‘ ๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ ๐“ˆ๐‘› (1 โˆ’ ๐“‰๐‘› )โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] = ๐›ฟ[((1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ๐“‰๐‘› ))โ•‘(1 โˆ’ ๐“Š๐‘› )๐‘‘๐‘› + ๐“Š๐‘› ๐’ฏ๐‘‘๐‘› โˆ’ ๐“… โ•‘ +๐›ฟ๐“ˆ๐‘› (1 โˆ’ ๐“‰๐‘›)โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] โ‰ค ๐›ฟ[((1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ๐“‰๐‘› ))((1 โˆ’ ๐“Š๐‘› )โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ๐“Š๐‘›โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘) +๐›ฟ๐“ˆ๐‘› (1 โˆ’ ๐“‰๐‘›)โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘ + ๐’ต๐’œ (๐“ƒ๐‘‘๐‘› , ๐“‚๐‘)] โ‰ค ๐›ฟ[((1 โˆ’ ๐“ˆ๐‘› (1 โˆ’ ๐›ฟ๐“‰๐‘› ))((1 โˆ’ ๐“Š๐‘› ) + ๐“Š๐‘› ))โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ๐“ˆ๐‘›(1 โˆ’ ๐“‰๐‘› )โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] โ‰ค ๐›ฟ[((1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ๐“‰๐‘› ))โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘ + ๐›ฟ ๐“ˆ๐‘› (1 โˆ’ ๐“‰๐‘› )โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] = ๐›ฟ[((1 โˆ’ ๐“ˆ๐‘›(1 โˆ’ ๐›ฟ))โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] โ‰ค ๐›ฟ((1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ))โ•‘๐‘‘๐‘› โˆ’ ๐“… โ•‘] โž โ‰ค [ ๐›ฟ((1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ))]๐‘›โ•‘๐‘‘0 โˆ’ ๐“… โ•‘ Let ๐ท๐‘› = [ ๐›ฟ((1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ))] ๐‘›โ•‘๐‘‘0 โˆ’ ๐“… โ•‘ Form Zenali-Iteration, we have, ๐‘๐ด๐‘› = (๐›ฟ 3 [1 โˆ’ ๐“‹(1 โˆ’ ๐›ฟ) ] 2)๐‘›โ•‘๐‘ฅ0 โˆ’ ๐‘โ•‘ ๐‘๐ด๐‘› ๐ท๐‘› = (๐›ฟ3 [1โˆ’๐“‹(1โˆ’๐›ฟ) ] 2)๐‘›โ•‘๐‘ฅ0โˆ’๐‘โ•‘ [ ๐›ฟ((1โˆ’ ๐“‹(1โˆ’๐›ฟ))]๐‘›โ•‘๐‘‘0โˆ’๐“… โ•‘ โ†’ 0 as ๐‘› โ†’ โˆž. Thus < ๐‘ฅ๐‘› > converges to ๐“… faster than < ๐‘‘๐‘› >. So, the Zenali-Iteration converges faster than D - iteration. โˆŽ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 90 We proof other iterations by the same proof way of the previous Theorem. Example 2.10: Let ๐’ฉ = ๐‘… and ๐’ž = [0,100]. and ๐’ฏ be a mapping on ๐’ž defined by ๏ฟฝฬƒ๏ฟฝ = โˆš๏ฟฝฬƒ๏ฟฝ2 โˆ’ 9๏ฟฝฬƒ๏ฟฝ + 54 , for all ๐‘ฅ ๐œ– ๐’ž, such that ๐’ฏ is a ๐›ฟ๐’ต๐’œ โˆ’ quasi contraction ๐“‚apping and unique fixed point say ๐“… = 6. Take < ๐“ˆ๐‘› > =< ๐“‰๐‘› > = < ๐“Š๐‘› > = 3 4 ,๐‘ฃ = 1 2 with initial value 30. Table 1. Comparison speed of convergence among various iteration methods. n Zenali K* D- Ishikawa Mann 1 30 30 30 30 30 2 13.9156 17.1404 21.1334 25.0120 27.1150 3 6.1717 7.9203 13.2989 20.2548 24.2908 4 6.0006 6.0388 7.8776 15.8509 21.5421 5 6.0000 6.0004 6.1725 12.0133 18.8893 6 6.0000 6.0087 9.0688 16.3607 7 6.0007 7.2820 13.9954 8 6.0000 6.4668 11.8476 9 6.1601 9.8476 10 6.0537 8.4901 11 6.0179 7.4083 12 6.0060 6.7247 13 6.0020 6.3468 14 6.0007 6.1587 15 6.0002 6.0709 16 6.0001 6.0313 17 6.0000 6.0137 18 6.0011 19 6.0005 20 6.0001 21 6.0000 3.Conclusion Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 91 In this section, a new iteration method for approximation of fixed points and a new contraction mappings called ฮด๐’ต๐’œ โˆ’ quasi contraction mappings are introduced. Also, we proved that our iteration process is faster than the existing leading iterations like Mann, Ishikawa, Noor, D- iterations and ๐’ฆ*- iteration and proved that all these iterations are equivalent to approximate fixed points of ฮด๐’ต๐’œ โˆ’ quasi contraction. References 1. Maibed, Z. H.Generalized Tupled Common Fixed Point Theorems for Weakly Compatibile Mappings in Fuzze Metric Space,(IJCIET) 2019,10,255-273. 2. Maibed, Z. H. Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings, IOP Conf. Series: Journal of Physics, 2018. Conf. Series 1003, 012042 doi :10.1088/1742-6596/1003/1/012042. 3. Maibed, Z. H., Some Generalized n-Tuplet Coincidence Point Theorems for Nonlinear Contraction Mappings, Journal of Engineering and Applied Sciences, 2018,13, 10375-10379. 4. Maibed, Z. H. Common Fixed Point problem for Classes of Nonlinear Maps in Hilbert Space , IOP Conf. Series: Journal of Physics: Conf. Series 871, 2020, 871 012037. 5. Maibed, Z.M, A New Iterative Methods For a Family of Asymptotically Severe Accretive Mappings, IOP Conf. Series: Journal of Physics: Conf. Series 1591, 2020, 012087. 6. Thajil ,A Q ; Maibed. Z H,2021. The Convergence of Iterative Methods for Quasi ฮด- Contraction Mappings ,Journal of Physics: Conference Series 1804 ,2021, 012017. 7. Hussein, S. S.; Maibed, Z. H..2021. "Iterative Methods for Approximation of Fixed Points Via Like Contraction Mappings, Journal of Physics: Conference Series 1818 ,2021, 012152. 8. Maibed,Z. H.; Hussein, S. S. Some Theorems of Fixed Point Approximations By Iteration Processes, Journal of Physics: Conference Series 1818, 2021, 012153 9. Berinde, V. Iterative Approximation of Fixed Points. Springer, Berlin. 2007. 10. Mann W. R., Mean Value Methods in Iteration, Proc, Am.Math.soc. 1953, 4, 506-510. 11. Ishikawa S.Fixed Point By a New Iteration Method ,Proceedings of the American, Soc.44,1974.147-150. 12. Daengsaen, J, ; Khemphet ,A. On The Rate of Convergence of P-Iteration, SP-Iteration, and D-Iteration Methods for Continuous Nondecreasing Functions on Closed Intervals. Hindawi Abstract and Applied Analysis. 2018 ,6. 13. Picard, E. Memoire Sur la Theorie des Equations Aux Derivees Partielles Etla Methode des Approximations Successives, J. Math. Pures Appl. 6: 1890.145-210. 14. Ullah, K. ; Arshad, M. New Three-Step Iteration Process and Fxed Point Approximation in Banach Spaces. Linear. Topological. Algebra. 2018. 87-100. 15. Noor, M. A. New approximation schemes for general variational inequalities , Journal of Mathematical Analysis and Applications 251: 2000,217-229. 16. Berinde, V.picard iteration converges faster than Mann iteration for a class of quasi contractive operators,Fixed Point Theory and Appl2, 2004,97-105. 17. Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 1991,43, 153โ€“159. 18. Weng, X., Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 1991, 113, 727.