108 Some Results via Gril Semi –p-Open Set Abstract The significance of the work is to introduce the new class of open sets, which is said Ǥ- 𝑠𝑝-open set with some of properties. Then clarify how to calculate the boundary area for these sets using the upper and lower approximation and obtain the best accuracy. Keywords. Ǥ-semi-P open set, Ǥ- semi-P closed set , 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑒𝑎𝑠𝑢𝑟𝑒 𝔐(Μ). 1.Introduction A nonempty family G 𝑜𝑓 𝑎 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 Ẋ is named 𝑎 𝐺𝑟𝑖𝑙𝑙 whenever i. Μ ∈ Ǥ 𝑎𝑛𝑑 Μ ⊆ Ѕ ⊆ Ẋ then Ѕ ∈ Ǥ. ii. Μ, Ѕ ⊆ Ẋ ∧ Μ ∪ Ѕ ∈ Ǥ then Μ ∈ Ǥ ∨ Ѕ ∈ Ǥ. [1] Suppose that Ẋ is a nonempty set, Then the following families are grills on Ẋ. [1-3] ∅ and p(Ẋ) \ {∅} are trivial examples of a grill on Ẋ Ǥ∞which is the collection of all infinite subsets of Ẋ. Ǥ𝑐𝑜which is the collection of all uncountable subsets of Ẋ. Ǥ𝑝= {Ʌ: Ʌ∈ p(Ẋ), p ⊆ Ʌ} is a specific point grill on Ẋ. ǤΆ= {Ѕ: Ѕ∈p(Ẋ), Ѕ∩Μ ≠ ∅ }, and If (Ẋ, 𝒯) is a topological space, then the family of all non-nowhere dense subsets called Ǥ= {Μ:𝑖𝑛𝑡𝒯 𝑐𝑙𝒯 (𝛭) ≠ ∅ } is the one of kinds of a grill on Ẋ. Suppose that Ǥ is a grill on (Ẋ,𝒯) The operator Ǿ: p(Ẋ)→p(Ẋ) is defined by Ǿ (Μ)={x ∈ Ẋ\ ủ ∩ Μ ∈ Ǥ, 𝑓𝑜𝑟 𝑎𝑙𝑙 ủ ∈ 𝒯(Ẋ)},𝒯(Ẋ) indicate the neighborhood of x. A mapping Ѱ: p(Ẋ)→p(Ẋ) is defined as Ѱ (Μ ) = Μ ∪ Ǿ (Μ) for all Μ ∈ p(Ẋ).[4,5] 𝑇ℎ𝑒 𝑠𝑎𝑝 Ѱ satisfies Kuratowski closure axioms: [3,4] 1. Ѱ( ∅ ) = ∅ Doi: 10.30526/34.4.2707 Article history: Received 9, April,2021, Accepted 29,June,2021, Published in October 2021. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Esmaeel R.B. Department of Mathematics, College of Education for pure science Ibn Al- Haitham University of Baghdad, Iraq. ranamumosa@yahoo.com Shahadhuh N.M. Department of Mathematics, College of Education for pure science Ibn Al-Haitham University of Baghdad, Iraq. noora1993327@gmail.com mailto:ranamumosa@yahoo.com mailto:noora1993327@gmail.com Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 109 2. If Μ ⊆Ѕ, then Ѱ (Μ) ⊆ Ѱ(Ѕ), 3. If Μ ⊆ Ẋ, then Ѱ (Ѱ (Μ)) =Ѱ (Μ), 4. If Μ,Ѕ ⊆ Ẋ, then Ѱ (Μ ∪ Ѕ) =Ѱ (𝛭) ∪ Ѱ (Ѕ). A subset Μ of (Ẋ,𝒯) is a preopen set if 𝛭 ⊆ intcl 𝛭 The complement of a preopen set is named preclosed set. The collection of all preopen sets of Ẋ is indicate by po(Ẋ). The collection of all preclosed sets of Ẋ is indicate by pc(Ẋ).[7] Now, PCL=∩ {Μ ⊆ Ẋ ; ủ ⊆ Μ whenever Μ𝑐 ∈ 𝑃𝑂(Ẋ)}. [7] A subset Μ of (Ẋ, 𝒯) 𝑖𝑠 named semi-p-open set, if and only if there exists a preopen set in Ẋ say Ụ such that Ụ ⊆ Μ ⊆ PCL Ụ. The collection of all semi-p-open sets of Ẋ is indicated by S-PO(Ẋ). The complement of a semi-pclosed set. The family of all semi-p-closed sets of Ẋ is indicate by S-PC(Ẋ). [7] It is clear that every preopen set is a S-PO set [7]. 2.Preliminaries. Definition 2.1: [8] Let Ẋ be a nonempty set and Ř be an equivalence relation on Ẋ , Ḿ ⊆ Ẋ; The upper approximation of Ḿ for Ř is denoted by Ữ(Ḿ ) , which is, Ữ( Ḿ) = ⋃ {𝑥∈Ẋ Ř( x): Ř( x) ∩ Ḿ ≠ ∅ } such that Ř( x) 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑥 and the lower approximation of M for Ř is denoted by ₤ (Ḿ ) , which is, ₤(Ḿ) = ⋃ {𝑥∈Ẋ Ř( x): Ř( x) ⊆ Ḿ} . The boundary region of M for ℛ is denoted by ℬ(M), which is, ℬ (Ḿ) = Ữ( Ḿ) − ₤(Ḿ ). Proposition 2.2: [9,10] If Ḿ, ỷ ⊆ Ẋ 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 1. ₤(Ḿ ) ⊆ M ⊆ Ữ (Ḿ). 2. Ḿ ⊆ ỷ , 𝑡ℎ𝑒𝑛 ₤(Ḿ) ⊆ ₤(S) and (ỮḾ) ⊆ Ữ(ỷ). 3. ₤(∅) = Ữ(∅) = ∅ 𝑎𝑛𝑑₤ (Ẋ) = Ữ(Ẋ) = Ẋ . 4. Ữ(Ḿ ∪ ỷ) = Ữ(Ḿ) ∪ Ữ(ỷ). 5.Ữ(Ḿ ∩ ỷ) ⊆ Ữ(Ḿ) ∩ Ữ(ỷ). 6. ₤(Ḿ ∪ ỷ) ⊇ ₤(Ḿ) ∪ ₤(ỷ) 7. ₤(Ḿ ∩ ỷ) ⊆ ₤(Ḿ) ∩ ₤(ỷ). 8.Ữ(Ữ(Ḿ)) = ₤(Ữ(Ḿ)) = Ữ(Ḿ). 9. ₤(₤(Ḿ)) = Ữ(₤(Ḿ)) = ₤(Ḿ). Example 2.3: let Ẋ= {ϼ1, ϼ2, ϼ3, ϼ4} 𝑎𝑛𝑑 Ǥ= p(Ẋ) \ {∅} , Ř = {(ϼ1, ϼ1), (ϼ2, ϼ2), (ϼ3, ϼ3), (ϼ4, ϼ4), (ϼ1, ϼ2), (ϼ2, ϼ1)} ,Ř (ϼ1)={ ϼ1, ϼ2} = Ř (ϼ2) Ř (ϼ3) = {ϼ3} , Ř (ϼ4)= {ϼ4} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 110 Table 2.1. The boundary region P(Ẋ) Ữ (Ḿ) ₤ (Ḿ) ℬ (Ḿ) ∅ ∅ ∅ ∅ { ϼ1} { ϼ1, ϼ2} ∅ { ϼ1, ϼ2} { ϼ2} { ϼ1, ϼ2} ∅ { ϼ1, ϼ2} {ϼ3} {ϼ3} {ϼ3} ∅ {ϼ4} {ϼ4} {ϼ4} ∅ { ϼ1, ϼ2} { ϼ1, ϼ2} { ϼ1, ϼ2} ∅ { ϼ1, ϼ3} { ϼ1, ϼ2, ϼ3} {ϼ3} { ϼ1, ϼ2} { ϼ1, ϼ4} { 𝑠ϼ1, ϼ2, ϼ4} {ϼ4} {ϼ1, ϼ2} { ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} {ϼ3} {ϼ1, ϼ2} { ϼ2, ϼ4} {ϼ1, ϼ2, ϼ4} {ϼ4} {ϼ1, ϼ2} { ϼ3, ϼ4} { ϼ3, ϼ4} { ϼ3, ϼ4} ∅ { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} ∅ {ϼ1, ϼ2, ϼ4} {ϼ1, ϼ2, ϼ4} {ϼ1, ϼ2, ϼ4} ∅ { ϼ2, ϼ3, ϼ4} {ϼ1, ϼ2, ϼ3, ϼ4} {ϼ3, ϼ4} {ϼ1, ϼ2} { ϼ1, ϼ3, ϼ4} {ϼ1, ϼ2, ϼ3, ϼ4} {ϼ3, ϼ4} {ϼ1, ϼ2} {ϼ1, ϼ2, ϼ3, ϼ4} {ϼ1, ϼ2, ϼ3, ϼ4} {ϼ1, ϼ2, ϼ3, ϼ4} ∅ Definition 2.4:[11] let Ẋ be a nonempty set and Ḿ ⊆ Ẋ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 Ř is any relation on Ẋ so, by using the concepts of lower and upper approximation. 𝔐(Ḿ) = |₤(Ḿ)| |Ữ(Ḿ)| , | ₤(Ḿ)| ≠ ∅ We can define the second accuracy measure of Ḿ which is called a semi-accuracy measure of approximation. 𝔐𝜉 (Ḿ) = |Ữ(₤(Ḿ))| |Ữ(Ḿ)| , | ₤ (Ḿ)| ≠ ∅ The third measure is called pre –accuracy measure of approximation. 𝔐𝑝(Ḿ) = |₤(ỮḾ)| |Ữ(Ḿ)| , | ₤ (Ḿ)| ≠ ∅ Example 2. 5: Let Ẋ = {ϼ1, ϼ2, ϼ3, ϼ4} and, Ǥ= p(Ẋ) \ {∅}, Ř= {(ϼ1, ϼ1), (ϼ2, ϼ2), (ϼ3, ϼ3), (ϼ4, ϼ4), (ϼ2, ϼ3), (ϼ3, ϼ2)} Ř (ϼ1)={ ϼ1} ,Ř (ϼ2) = {ϼ2, ϼ3} = Ř( ϼ3) , Ř (ϼ4) = {ϼ4}. Table 2. 2. Accuracy measure of approximation P(Ẋ) Ữ (Ḿ) ₤ (Ḿ) ℬ (Ḿ) ₤ (Ữ (Ḿ)) Ữ (₤ Ḿ)) Ẋ Ẋ Ẋ ∅ Ẋ Ẋ ∅ ∅ ∅ ∅ ∅ ∅ { ϼ1} { ϼ1} { ϼ1} ∅ { ϼ1} { ϼ1} { ϼ2} { ϼ2, ϼ3} ∅ { ϼ2, ϼ3} { ϼ2, ϼ3} ∅ {ϼ3} {ϼ2, ϼ3} ∅ { ϼ2, ϼ3} {ϼ2, ϼ3} ∅ Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 111 {ϼ4} {ϼ4} {ϼ4} ∅ {ϼ4} {ϼ4} { ϼ1, 𝑠ϼ2} { ϼ1, ϼ2, ϼ3} { ϼ1} { ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} { ϼ1} { ϼ1, ϼ3} { ϼ1, ϼ2, ϼ3} {ϼ1} { ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} { ϼ1} { ϼ1, ϼ4} { ϼ1, ϼ4} { ϼ1, ϼ4} ∅ { ϼ1, ϼ4} { ϼ1, ϼ4} { ϼ2, ϼ3} { ϼ2, ϼ3} {ϼ2, ϼ3} ∅ { ϼ2, ϼ3} { ϼ2, ϼ3} { ϼ2, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ4} { ϼ2, ϼ3} { ϼ2, ϼ3, ϼ4} {ϼ4} { ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ4} { ϼ2, ϼ3} { ϼ2, ϼ3, ϼ4} {ϼ4} { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} ∅ { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ3} { ϼ1, ϼ2, ϼ4} Ẋ { ϼ1, ϼ4} { ϼ2, ϼ3} Ẋ { ϼ1, ϼ4} { ϼ1, ϼ3, ϼ4} Ẋ { ϼ1, ϼ4} { ϼ2, ϼ3} Ẋ { ϼ1, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} ∅ { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} Table 2. 3 Accuracy measure of approximation . P(Ẋ) 𝔐(Ḿ) 𝔐𝜉 (Ḿ) 𝔐𝑝(Ḿ) Ẋ 1 1 1 ∅ 1 1 1 { ϼ1} 0 0 1 { ϼ2} 0 0 1 {ϼ3} 1 1 1 {ϼ4} 1/3 1/3 1 { ϼ1, ϼ2} 1/3 1/3 1 { ϼ1, ϼ3} 1 1 1 { ϼ1, ϼ4} 1 1 1 { ϼ2, ϼ3} 1/3 1/3 1 { ϼ2, ϼ4} 1/3 1/3 1 { ϼ3, ϼ4} 1 1 1 { ϼ1, ϼ2, ϼ3} ½ ½ 1 { ϼ1, ϼ2, ϼ4} ½ ½ 1 { ϼ1, ϼ3, ϼ4} 1 1 1 { ϼ2, ϼ3, ϼ4} 1 1 1 3. Grill semi-p-open sets Definition 3.1 𝐿𝑒𝑡 (Ẋ, 𝒯, Ǥ)𝑏𝑒 𝑎 𝑔𝑟𝑖𝑙𝑙 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 Μ ⊆ Ẋ, then Μ is called Grill semi-p- open set denoted by "Ǥ-SPO set " if ∃ v ∈ PO(Ẋ) such that v-Μ Ǥ ∧ 𝛭-PCL(v) ∉Ǥ. The set of all Ǥ- SPO sets is denoted by Ǥ-SPO(Ẋ). Example3.2 Let Ẋ= {ϼ1, ϼ2, ϼ3}, 𝒯= {Ẋ,∅,{ϼ1}} PO(Ẋ)= {ủ ⊆ Ẋ; ϼ1 ∈ ủ} ∪ ∅ , PC(Ẋ) = {ℱ ⊆ Ẋ ; ϼ1 ∉ ℱ } ∪ Ẋ . Then Ǥ-SPO (Ẋ) = 𝑝(Ẋ). Example 3.3: 𝐿𝑒𝑡 Ẋ = {ϼ1, ϼ2, ϼ3, ϼ4}, 𝒯 = {Ẋ, ∅, {ϼ1}, {ϼ4}, {ϼ1, ϼ4}},Ǥ= p(Ẋ) \ {∅}, PO(Ẋ) = {Ẋ,∅, {ϼ1}, {ϼ4}, {ϼ1, ϼ4}, {ϼ1, ϼ2, ϼ4}, {ϼ1, ϼ3, ϼ4}}. PC(Ẋ) = {Ẋ, ∅, {ϼ2, ϼ3, ϼ4}, {ϼ1, ϼ2, ϼ3}, {ϼ2, ϼ3}, {ϼ3}, {ϼ2}}, then Ǥ-SPO(Ẋ)= {Ẋ,∅,{ϼ1}, {ϼ4}, {ϼ1, ϼ2}, {ϼ1, ϼ3} , {ϼ1, ϼ4}, {ϼ2, ϼ4}, {ϼ3, ϼ4}, { ϼ1, ϼ2, ϼ3} , {ϼ1, ϼ2, ϼ4}, {ϼ2, ϼ3, ϼ4}, {ϼ1, ϼ3, ϼ4}. Remark 3.4: [7] ⋃ 𝑃𝐶𝐿(ủ𝑖 ) ⊆ 𝑃𝐶𝐿(⋃ ủ𝑖 )𝑖∈∧𝑖∈∧ . Proposition 3.5: If Μ𝑖 ∈ Ǥ-SPO(Ẋ) ∀ 𝑖 ∈ ∧, 𝑡ℎ𝑒𝑛 ⋃ Μ𝑖𝑖𝜖∧ ∈ Ǥ-SPO(Ẋ). Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 112 Proof: Let Μ𝑖 ∈ Ǥ-SPO(Ẋ), ∃ ủ ∈ PO(Ẋ), (ủ𝑖 − Μ 𝑖 ) ∉Ǥ ∧( Μ𝑖 −PCL( ủ𝑖 ))∉ Ǥ∀ 𝑖 ∈∧ . this implies, ⋃ ( ủ𝑖𝑖 - 𝛭𝑖 ) ∉ Ǥ, 𝑠𝑜 (⋃ ủ𝑖 − ⋃ 𝛭𝑖 )𝑖𝑖 ⊆ ⋃ ( ủ𝑖 − 𝛭𝑖 )𝑖 ∉ Ǥ, therefore, (⋃ ủ𝑖𝑖 − ⋃ Μ𝑖 ) ∉ 𝑖 Ǥ, On the other hands, (Μ𝑖 − PCL (ủ𝑖)) ∉ Ǥ ∀ 𝑖 ∈ ∧ ,⋃ ( Μ𝑖 − 𝑃𝐶𝐿(ủ𝑖 ))𝑖 ∉ Ǥ, (⋃ Μ𝑖 − ⋃ 𝑃𝐶𝐿 (ủ𝑖 )) ⊆ ⋃ (Μ𝑖 − 𝑃𝐶𝐿(ủ𝑖 )) ∉ Ǥ𝑖𝑖𝑖 so, ⋃ Μ𝑖 − ⋃ (𝑃𝐶𝐿(ủ𝑖 )) ∉ Ǥ𝑖𝑖 ,since ⋃ 𝑃𝐶𝐿(ủ𝑖 ) ⊆ 𝑃𝐶𝐿(⋃ ủ𝑖𝐼 ),𝑖 there for ( ⋃ Μ𝑖 − 𝑃𝐶𝐿(⋃ ủ𝑖 )) ⊆ (⋃ Μ𝑖 − ⋃ 𝑃𝐶𝐿(ủ𝑖 ))𝑖𝑖 ∉ Ǥ𝑖𝑖∈∧ so,(⋃ Μ𝑖 − 𝑃𝐶𝐿(⋃ ủ𝑖 )) ∉ Ǥ𝑖𝑖 . Corollary 3.6: If ℱ𝑖 ∈ Ǥ-SPC(Ẋ), then ⋂ ℱ𝑖𝑖 ∈ Ǥ-SPC(Ẋ). Remark 3.7: 𝑙𝑒𝑡 𝛭, 𝑆 ∈ Ǥ -SPO(Ẋ) then Μ ∩ 𝑆 need not to be a Ǥ-SPO set. Example 3.8: 𝐿𝑒𝑡 Ẋ = {ϼ1, ϼ2, ϼ3, ϼ4}, 𝒯 = {Ẋ, ∅, {ϼ1}, {ϼ4}, {ϼ1, ϼ4}}. 𝑇ℎ𝑒𝑛 𝑃𝑂(Ẋ) = {Ẋ, ∅, { ϼ1 }, {ϼ4}, {ϼ1, ϼ4}, {ϼ1, ϼ2, ϼ4}, {ϼ1, ϼ3, ϼ4}}, 𝑃𝐶(Ẋ) = {Ẋ, ∅, {ϼ2, ϼ3, ϼ4}, {ϼ1, ϼ2, ϼ3}, {ϼ2, ϼ3}, {ϼ3}, {ϼ2}}, when Ǥ=p(Ẋ)\ {∅}, 𝐻𝑒𝑛𝑐𝑒 Ǥ-𝑆𝑃𝑂(Ẋ) = {Ẋ, ∅ , {ϼ1}, {ϼ4}, {ϼ1, ϼ2}, {ϼ1, ϼ3}, {ϼ1, ϼ4}, {ϼ2, ϼ4}, {ϼ3, ϼ4}, {ϼ1, ϼ2, ϼ3}, {ϼ1, ϼ2, ϼ4}, {ϼ2, ϼ3, ϼ4}, {ϼ1, ϼ3, ϼ4}}, 𝑙𝑒𝑡 𝛭 = {ϼ1, ϼ2, ϼ3} 𝑎𝑛𝑑 Ѕ = {ϼ2, ϼ4}, 𝑡ℎ𝑒𝑛 𝛭 𝑎𝑛𝑑 Ѕ are Ǥ-SPO(Ẋ) But 𝛭∩Ѕ = {ϼ2},Which is not a Ǥ-SPO(Ẋ). Remark 3.9: let Μ , 𝑆 ∈ Ǥ -SPC(Ẋ) then Μ ∪ 𝑆 need not be a Ǥ-SPC set. See Example 2.8, 𝑙𝑒𝑡 𝛭 = {ϼ1, ϼ2, ϼ3}, Ѕ = {ϼ2, ϼ4}, 𝛭 𝑐 = {ϼ4}, Ѕ 𝑐 = {ϼ2, ϼ3} ,Μ 𝑐 , 𝑆 𝑐 𝑎𝑟𝑒 Ǥ- 𝑆𝑃𝐶(Ẋ), and Μ𝑐 ∪ Ѕ𝑐 = {ϼ1, ϼ3, ϼ4} which is not a Ǥ-SPC(Ẋ). Remark 3.10: [7] Each open set is a preopen set. Proposition 3.11: Each open set is a Ǥ -SPO set. Proof: Let 𝛭 ∈ 𝒯 by Remark 2.4, so 𝛭 is a preopen set; ∃𝛭 ∈ 𝑝𝑜(Ẋ), such that, 𝛭-𝛭 = {∅} ∉ Ǥ, And 𝛭-PCL (𝛭) = {∅ } ∉ Ǥ, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟 𝛭 is a Ǥ-SPO set. Corollary 3.12: If F is a closed set, then F is a Ǥ-SPC set. Proposition 3.13: Every semi-PO set is a Ǥ-SPO set. Proof: Let 𝛭 ∈ S-PO(Ẋ) for that ∃ủ ∈ 𝑃𝑂(Ẋ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ủ ⊆ Μ ⊂ 𝑃𝐶𝐿(Μ), further more ủ- Μ= {∅} ∉ Ǥ ∧ 𝛭-𝑃𝐶𝐿(𝛭) = {∅} ∉ Ǥ. Hence, Μ is a Ǥ-SPO set. As for the reverse proposition (2.13), it is not necessarily to be achieved. Example 3.14: suppose that Ẋ = {ϼ1, ϼ2, ϼ3, ϼ4}, 𝒯 = {Ẋ, ∅, {ϼ1}, {ϼ4}, {ϼ1, ϼ4}}, Ǥ= ∅ ,𝑃𝑂(Ẋ) = {Ẋ, ∅, {ϼ1}, { ϼ4}, { ϼ1, ϼ4}, {ϼ1, ϼ2, ϼ4}, {ϼ1, ϼ3, ϼ4}}, 𝑃𝐶(Ẋ) = {Ẋ, ∅, {ϼ2, ϼ3, ϼ4} , {ϼ1, ϼ2, ϼ3}, {ϼ2, ϼ3}, {ϼ3}, {ϼ2}}, Ǥ-SPO(Ẋ)=p(Ẋ). Then {ϼ2}∈ Ǥ-𝑆𝑃𝑂(Ẋ),But {ϼ2} ∉ Ǥ -SPO(Ẋ). Corollary 3.15: The set of all Ǥ-SPO is a supra topological space. Now, let's calculate the following example; Example 3.16: Let Ẋ= {ϼ1, ϼ2, ϼ3}, 𝒯= {Ẋ,∅,{ϼ1}} Then Ǥ-SPO (Ẋ) = 𝑝(Ẋ) and Ř = {( ϼ1, ϼ1), ( ϼ2, ϼ2 ), ( ϼ3, ϼ3)} Ř (ϼ1)={ϼ1 }, Ř(ϼ2)={ϼ2}, Ř (ϼ3) = {ϼ3}. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 113 Table 3. 1 Grill of Accuracy measure of approximation Ǥ-SPO(Ẋ) Ữ (Ǥ- SPO(Ẋ)) ₤(Ǥ- SPO(Ẋ)) 𝓑(Ǥ- SPO(Ẋ)) ₤(Ữ (Ǥ- SPO(Ẋ) ₤ (Ǥ-SPO(Ẋ) Ẋ Ẋ Ẋ ∅ Ẋ Ẋ ∅ ∅ ∅ ∅ ∅ ∅ { ϼ𝟏} { ϼ1} { ϼ1} ∅ { ϼ1} { ϼ1} { ϼ𝟐} { ϼ2} { ϼ2} ∅ { ϼ2} { ϼ2} {ϼ𝟑} {ϼ3} {ϼ3} ∅ {ϼ3} {ϼ3} { ϼ𝟏, ϼ𝟐} { ϼ1, ϼ2} { ϼ1, ϼ2} ∅ { ϼ1, ϼ2} { ϼ1, ϼ2} { ϼ𝟏, ϼ𝟑} { ϼ1, ϼ3} { ϼ1, ϼ3} ∅ { ϼ1, ϼ3} { ϼ1, ϼ3} {ϼ𝟐, ϼ𝟑} {ϼ2, ϼ3} {ϼ2, ϼ3} ∅ {ϼ2, ϼ3} {ϼ2, ϼ3} Table 3. 2 Grill of Accuracy measure of approximation Ǥ-SPO(Ẋ) 𝔐(Ǥ − SPO(Ẋ)) 𝔐𝜉 (Ǥ − SPO(Ẋ)) 𝔐𝑝(Ǥ − SPO(Ẋ)) Ẋ 1 1 1 ∅ 1 1 1 { ϼ1} 1 1 1 { ϼ2} 1 1 1 {ϼ3} 1 1 1 { ϼ1, ϼ2} 1 1 1 { ϼ1, ϼ3} 1 1 1 {ϼ2, ϼ3} 1 1 1 By Example 3.3 Ǥ-SPO(Ẋ)= {Ẋ, ∅, {ϼ1}, {ϼ4}, {ϼ1, ϼ2}, {ϼ1, ϼ3}, {ϼ1, ϼ4}, {ϼ2, ϼ4} , {ϼ3, ϼ4},{ ϼ1, ϼ2, ϼ3} , { ϼ1, ϼ2, ϼ4},{ ϼ2, ϼ3, ϼ4}, {{ ϼ1, ϼ3, ϼ4}}. Ř = {(ϼ1, ϼ1), (ϼ2, ϼ2), (ϼ3, ϼ3), (ϼ4, ϼ4), (ϼ3, ϼ4), (ϼ4, ϼ3)} Ř (ϼ1)={ ϼ1}, Ř(ϼ2)={ϼ2}, Ř(ϼ4), Ř(ϼ3)={ϼ4, ϼ3}. Table 3.3 G- SPO of Accuracy measure of approximation Ǥ-SPO(Ẋ) Ữ(Ǥ-SPO(Ẋ)) ₤(Ǥ-SPO(Ẋ)) ℬ(Ǥ-SPO(Ẋ)) ₤ (Ữ (Ǥ-SPO(Ẋ) Ữ(₤ (ǤSPO(Ẋ) Ẋ Ẋ Ẋ ∅ Ẋ Ẋ ∅ ∅ ∅ ∅ ∅ ∅ { ϼ1} { ϼ1} { ϼ1} ∅ { ϼ1} { ϼ1} { ϼ4} {ϼ3, ϼ4} ∅ {ϼ3, ϼ4} {ϼ3, ϼ4} ∅ { ϼ1, ϼ2} { ϼ1, ϼ2 } { ϼ1, ϼ2} ∅ { ϼ1, ϼ2} { ϼ1, ϼ2} { ϼ1, ϼ3} { ϼ1, ϼ3, ϼ4} { ϼ1} {ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} { ϼ1} {ϼ1, ϼ4} { ϼ1, ϼ3, ϼ4} { ϼ1} {ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} { ϼ1} {ϼ2, ϼ4} { ϼ2, ϼ3, ϼ4} {ϼ2} {ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ2} {ϼ3, ϼ4} {ϼ3, ϼ4} {ϼ3, ϼ4} ∅ {ϼ3, ϼ4} {ϼ3, ϼ4} { ϼ1, ϼ2, ϼ3} Ẋ { ϼ1, ϼ2} {ϼ3, ϼ4} Ẋ { ϼ1, ϼ2} { ϼ1, ϼ2, ϼ4} Ẋ { ϼ1, ϼ2} {ϼ3, ϼ4} Ẋ { ϼ1, ϼ2} { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} ∅ { ϼ2, ϼ3, ϼ4} { ϼ2, ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} ∅ { ϼ1, ϼ3, ϼ4} { ϼ1, ϼ3, ϼ4} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 114 Table 3. 4. G- SPO of Accuracy measure of approximation Ǥ-SPO(Ẋ) 𝔐(Ǥ − SPO(Ẋ)) 𝔐𝜉 (Ǥ − SPO(Ẋ)) 𝔐𝑝(Ǥ − SPO(Ẋ)) Ẋ 1 1 1 ∅ 1 1 1 { ϼ1} 0 0 1 { ϼ4} 1 1 1 { ϼ1, ϼ2} 1/3 1/3 1 { ϼ𝑠1, ϼ3} 1/3 1/3 1 {ϼ1, ϼ4} 1/3 1/3 1 {ϼ2, ϼ4} 1 1 1 {ϼ3, ϼ4} ½ ½ 1 { ϼ1, ϼ2, ϼ3} ½ ½ 1 { ϼ1, ϼ2, ϼ4} 1 1 1 { ϼ2, ϼ3, ϼ4} 1 1 1 { ϼ1, ϼ3, ϼ4} 1 1 1 4. Conclusion The aim of our study is to define the Ǥ-𝑆𝑃𝑂 sets and study some of the properties of these sets, and then find the boundary area for the family of Ǥ-𝑆𝑃𝑂 (Ẋ). and try to get the best accuracy for the set when it equals 1 for most of M ∈ Ǥ-𝑆𝑃𝑂 (Ẋ). References 1. Choquet, G. Sur les notions de filter et grille, comptes Rendus Acad. Sci. Paris, 1947, 224,171-173. 2. Roy, B .; Mukherjee, M N .On a type of compactness via grills Matematicki vesnik. 2007, 59 , 113-120. 3. Roy, B .; Mukherjee, M N. On a typical topology induced by a grill Soochow J ath. 2007,33 , 4, , 771-786. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 115 4. Shawqi A Hazza ; Sobhy A EL-Sheikh Ali Kandil and Mohamed Ahmed Abdelhakem On ideals and grills in topological spaces South A sian Journal of Mathematics. 2015, 5 , 6, 233- 238. 5. Thenmozhi, P.; Kaleeswari, M. ; Maheswari, N. Regular generalized closed sets in grill topological spaces, International Journal of Science Research ISSN ,2015, 2319- 7064. 6. Chaudhary, M P .; Vinesh Kumar On g-closed sets in a topological space Global Journal of Science Frontier Research .2010, 10 , 2, 10-12. 7. R B. Esmaeel, On semi-p-open sets M S, College of Education Ibn AL- Haithatham- University of Baghdad, 2004. 8. Pawlak, Z., Rough sets, International journal of computer and Information Sciences. 1982. 11, 341-356. 9. Lellis Thivagar ,M. ;Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention. 2013. 1, 1, 31-37. 10. Lellis Thivagar, M. Carmel Richard,Note on Nano topological space (communicated) 11. Nayle, M. S.; Nasir A. I. some rough sets properties on simple graphs, Australian Journal of Basic and Applied science. 2011. 5, 12, 1824-1829.