116 Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function Abstract In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). Keywords: Weibull Distribution; Bayesian estimation; Exponential prior; Generalized weighted loss function; Lindley’s approximation. 1.Introduction The Weibull Distribution is a continuous, it is one of the best-known lifetime distributions. It is widely used in reliability, Quality Control, weather forecasting and used to describe different types of observed failures of components and phenomena [1]. This distribution is named after Wal Oddi Weibull who described it in details in 1951. There are some recent works and literature of Weibull distribution: Xie et al. (2002) suggested the three parameters of modified Weibull distribution with a hazard function fashioned like a bathtub [2-3] recommend the Maximum likelihood method to estimate the unknown parameters of Weibull distribution, and [4] presented Bayesian estimation for Weibull distribution under asymmetric and symmetric loss function and that of maximum likelihood estimation. Ibn Al Haitham Journal for Pure and Applied Science Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/34.4.2709 Abtisam J. Kadhim Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. momasaayj@gmail.com Huda A. Rasheed Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. hudamath@uomustansiriyah.edu.iq Article history: Received 5, July, 2021, Accepted 29, August, 2021, Published in October 2021. mailto:momasaayj@gmail.com mailto:hudamath@uomustansiriyah.edu.iq Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 117 The probability density function (pdf) of the two parameters Weibull distribution is defined as: 𝑓( π‘₯ ∣ Ξ», πœ— ) = Ξ» πœ— ( π‘₯ πœ— ) Ξ»βˆ’1 𝑒 βˆ’( π‘₯ πœ— )Ξ» ; π‘₯ > 0 , Ξ», Ο‘ > 0 (1) The corresponding cumulative distribution function (CDF) is given by: 𝐹( π‘₯ ∣ Ξ», πœ— ) = ∫ β€Š π‘₯ 0 πœ† πœ—πœ† π‘‘πœ†βˆ’1𝑒 βˆ’( 𝑑 πœ— ) Ξ» 𝑑π‘₯ = 1 βˆ’ 𝑒 βˆ’( π‘₯ πœ— ) πœ† The Reliability function is defined: R(X ; πœ†, πœ—) = 1 βˆ’ F(𝑋 ; πœ†, πœ—) = 𝑒 βˆ’( π‘₯ πœ— ) πœ† 2. Bayesian Estimators Bayesian estimation is an estimation that aims to minimize the posterior expected value of a loss function. [5] In this suction, Bayesian estimators are obtained based on a new loss function, which is generalized weighted loss function. The Bayesian estimators are derived with assuming the exponential prior for each of Ξ» and πœ—, i.e.: Ξ»~𝐸π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘π‘–π‘Žπ‘™ (1/ 𝛿) with the following pdf 𝑔1(πœ†) = 𝛿𝑒 βˆ’π›Ώπœ† 𝛿 > 0 πœ— ~𝐸π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘π‘–π‘Žπ‘™ (1/ 𝛾) with the pdf defined as 𝑔2(πœ—) = 𝛾𝑒 βˆ’π›Ύπœ— 𝛾 > 0 πœ† and πœ— are independent of each other. Therefore, the joint exponential prior is: g (Ξ», Ο‘) = 𝑔1(Ξ») 𝑔2(πœ—) = 𝛿 𝑒 βˆ’ π›Ώπœ† π›Ύπ‘’βˆ’ π›Ύπœ— Hence, the posterior distribution of πœ— and Ξ» is given by πœ‹(πœ†, πœ—; 𝑋) = 𝑒 βˆ’(π›Ύπœ—+π›Ώπœ†) ( πœ† πœ—πœ† ) 𝑛 ∏ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ†βˆ’1 exp(βˆ’ βˆ‘ β€Š 𝑛 𝑖=1 π‘₯𝑖 πœ† πœ—πœ† ) ∫ β€Š ∞ 0 ∫ 𝑒 βˆ’(π›Ύπœ—+π›Ώπœ†) β€Š ∞ 0 ( πœ† πœ—πœ† ) 𝑛 ∏ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ†βˆ’1 exp(βˆ’ βˆ‘ β€Šπ‘› 𝑖=1 π‘₯ 𝑖 πœ† πœ—πœ† ) π‘‘πœ†π‘‘πœ— 3. Bayesian Estimator under Generalized Weighted Loss Function [6] suggested a new loss function in estimating the scale parameter for Laplace distribution, which is called generalized weighted loss function and introduced as follows: 𝐿(πœƒ, πœƒ) = (βˆ‘ β€Šπ‘˜π‘—=0 π‘Žπ‘— πœƒ 𝑗 )(πœƒ βˆ’ πœƒ)2 πœƒπœ π‘Žπ‘— > 0, πœƒ > 0, 𝑗 = 1,2, … , π‘˜ Where k, 𝜏 are constants The risk function 𝑅𝐺𝑀 (ΞΈΜ‚, ΞΈ) can be derived as 𝑅𝐺𝑀 (πœƒ, πœƒ) = E [L(οΏ½Μ‚οΏ½, πœƒ)] = ∫ [β€Š ∞ 0 1 πœƒπœ (βˆ‘ β€Šπ‘˜π‘—=0 π‘Žπ‘— πœƒ 𝑗 )(πœƒ βˆ’ πœƒ)2] πœ‹(πœƒ ∣ π‘₯)π‘‘πœƒ Then, Bayesian estimator under the generalized weighted error loss function minimizes the risk function, as follows: Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 118 �̂�𝐺𝑀 = π‘Ž0𝐸 ( 1 πœƒπœ βˆ’1 ∣ π‘₯) + π‘Ž1𝐸 ( 1 πœƒπœ βˆ’2 ∣ π‘₯) + β‹― + π‘ŽπΎ 𝐸 ( 1 πœƒπœ βˆ’(𝐾+1) ∣ π‘₯) π‘Ž0𝐸 ( 1 πœƒπœ ∣ π‘₯) + π‘Ž1𝐸 ( 1 πœƒπœ βˆ’1 ∣ π‘₯) + β‹― + π‘ŽπΎ 𝐸 ( 1 πœƒπœ βˆ’πΎ ∣ π‘₯) (2) Whereas π‘Ž0, π‘Ž1, … , π‘Žπ‘˜ are constants. a-Bayesian Estimator for πœ— under Generalized Weighted Loss Function Bayesian estimation for Ο‘ under generalized weighted loss function can be obtained as follows: By suppose that, k=1 and 𝜏 = 0 then, οΏ½Μ‚οΏ½10 = π‘Ž0𝐸(πœ— ∣ 𝑋) + π‘Ž1𝐸(πœ— 2 ∣ π‘₯) π‘Ž0 + π‘Ž1𝐸(πœ— ∣ π‘₯) (3) Assumed that w (Ξ», Ο‘) be any function for πœ†, πœ—. Therefore: E[w(Ξ», Ο‘)] = ∫ ∫ w(Ξ», Ο‘) ∞ 0 ∞ 0 Ο€(Ξ», Ο‘) dΞ» dΟ‘ = ∫ ∫ w(Ξ», Ο‘) L(x1, x2, … , xn; Ξ», Ο‘)Ο€(Ξ», Ο‘) dΞ» dΟ‘ ∫ ∫ L(x1, x2, … , xn; Ξ», Ο‘)Ο€(Ξ», Ο‘) dΞ» dΟ‘ ∞ 0 ∞ 0 ∞ 0 ∞ 0 = ∫ ∫ w(Ξ», Ο‘)L(x1, x2, … , xn; Ξ», Ο‘)Ο€(Ξ», Ο‘) dΞ» dΟ‘ ∞ 0 ∞ 0 ∫ ∫ L(x1, x2, … , xn; Ξ», Ο‘)Ο€(Ξ», Ο‘) dΞ» dΟ‘ ∞ 0 ∞ 0 E[πœ—β”‚π‘‹] = ∫ β€Š ∞ 0 ∫ β€Šπœ— ∞ 0 𝑒 βˆ’(π›Ύπœ—+π›Ώπœ†) ( πœ† πœ—πœ† ) 𝑛 ∏ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ†βˆ’1 exp (βˆ’ βˆ‘ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ† πœ—πœ† ) π‘‘πœ†π‘‘πœ— ∫ β€Š ∞ 0 ∫ π‘’βˆ’(π›Ύπœ—+π›Ώπœ†) β€Š ∞ 0 ( πœ† πœ—πœ† ) 𝑛 ∏ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ†βˆ’1 exp (βˆ’ βˆ‘ β€Šπ‘›π‘–=1 π‘₯𝑖 πœ† πœ—πœ† ) π‘‘πœ† π‘‘πœ— Observed that, it is difficult to obtain the solution of the ratio of two integrals. Hence, the solution will be approximately by using Lindley’s approximation [7], as follows: E[πœ—β”‚π‘‹] β‰ˆ οΏ½Μ‚οΏ½ + 𝑝1𝑀1𝜎11 + 1 2 (𝐿30𝑀1𝜎11 2 ) + 1 2 (𝐿12𝑀1𝜎11𝜎22) (4) Where, Assuming that w (Ξ», Ο‘) = Ο‘ Thus, 𝑀1 = βˆ‚π‘€(Ξ»,Ο‘) βˆ‚πœ— = βˆ‚ βˆ‚Ο‘ (Ο‘) = 1 (5) Lij = βˆ‚i+j βˆ‚Ο‘i βˆ‚Ξ»j ln L(Ξ», Ο‘) i, j = 0,1,2,3 = βˆ‚i+j βˆ‚Ο‘i βˆ‚Ξ»j [n ln(Ξ») βˆ’ n Ξ» ln(Ο‘) + (Ξ» βˆ’ 1) βˆ‘ β€Š n i=1 ln(xi) βˆ’ βˆ‘ β€Š n i=1 ( xi Ο‘ ) Ξ» ] 𝐿12 = βˆ‚3𝑙𝑛𝐿(πœ†, πœ—) βˆ‚πœ— βˆ‚πœ†2 = πœ† πœ— βˆ‘ β€Š 𝑛 𝑖=1 ( π‘₯ πœ— ) πœ† (ln ( π‘₯𝑖 πœ— )) 2 + 2 πœ— βˆ‘ β€Š 𝑛 𝑖=1 ( π‘₯𝑖 πœ— ) πœ† ln ( π‘₯𝑖 πœ— ) (6) L20 = βˆ‚2lnL(Ξ», Ο‘) βˆ‚Ο‘2 = n Ξ» Ο‘2 βˆ’ Ξ»(Ξ» + 1) Ο‘2 βˆ‘ β€Š n i=1 ( xi Ο‘ ) Ξ» , L02 = βˆ‚2lnL(Ξ», Ο‘) βˆ‚Ξ»2 = βˆ’ n Ξ»2 βˆ’ βˆ‘ β€Š n i=1 ( xi Ο‘ ) Ξ» (ln ( xi Ο‘ )) 2 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 119 𝐿30= βˆ‚3 𝑙𝑛 𝐿(πœ†,πœ—) βˆ‚πœ—3 = βˆ’ 2π‘›πœ† πœ—3 + πœ†(πœ†+1)(πœ†+2) πœ—3 βˆ‘ β€Šπ‘›π‘–=1 ( π‘₯𝑖 πœ— ) πœ† (7) 𝜎11 = βˆ’ 1 𝐿20 = βˆ’πœ—2 π‘›πœ† βˆ’ πœ† (πœ† + 1) βˆ‘ β€Šπ‘›π‘–=1 ( π‘₯𝑖 πœ— ) πœ† (8) 𝜎22 = βˆ’ 1 L02 = πœ†2 𝑛 + πœ†2 βˆ‘ β€Šπ‘›π‘–=1 ( π‘₯𝑖 πœ— ) πœ† (ln ( π‘₯𝑖 πœ† )) 2 (9) We have, g (Ξ», Ο‘) = Ξ³ Ξ΄ π‘’βˆ’(π›Ύπœ—+π›Ώπœ†) P = ln g (Ξ», Ο‘) = ln Ξ³ + ln 𝛿 – Ξ³ Ο‘ – Ξ΄ Ξ» p1 = βˆ‚p βˆ‚πœ— = βˆ’π›Ύ (10) Substituting (5), (6), (7), (8), (9) and (10) into (4), yields: E [Ο‘|𝑋] β‰ˆ Ο‘Μ‚ βˆ’ π›ΎπœŽ11 + 1 2 (L30𝜎11 2 ) + 1 2 (L12𝜎11𝜎22) (11) Similarly, Lindley’s approximation for E[πœ—2│𝑋] is given by: E[πœ—2│𝑋] β‰ˆ Ο‘Μ‚2 + 1 2 (w11Οƒ11)+p1w1Οƒ11 + 1 2 (L30w1Οƒ11 2 ) + 1 2 (L12w1Οƒ11Οƒ22) (12) Assuming that, w (Ξ», Ο‘) = Ο‘2 w1 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ο‘ = 2Ο‘ (13) w11 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ο‘2 = 2 (14) Substituting (6), (7), (8), (9), (10), (13) and (14) into (12), yields: E[πœ—2│𝑋] β‰ˆ Ο‘Μ‚2 + (1 βˆ’ 2Ξ³οΏ½Μ‚οΏ½) Οƒ11 + οΏ½Μ‚οΏ½[ (L30Οƒ11 2 ) + (L12Οƒ11Οƒ22) ] (15) After substituting (11) and (15) into (2), yields: οΏ½Μ‚οΏ½10 = (a0Ο‘Μ‚ + a1Ο‘Μ‚ 2) + [βˆ’a0𝛾 + a1(1 βˆ’ 2οΏ½Μ‚οΏ½Ξ³)]Οƒ11 + ( a0 2 + a1οΏ½Μ‚οΏ½)[L30 Οƒ11 2 + L12Οƒ11Οƒ22] a0 + a1[Ο‘Μ‚ βˆ’ π›ΎπœŽ11 + 1 2 (L30𝜎11 2 ) + 1 2 (L12𝜎11𝜎22) ] (16) Now, another estimator under generalized weighted loss function will be derived, when letting k=1 and 𝜏 =1, gives: Ο‘Μ‚11 = a0+a1E(Ο‘|x) a0E( 1 Ο‘ |x)+a1 Similarly, the Lindley’s approximation for E [ 1 πœ— │𝑋] is given by: E [ 1 πœ— │𝑋] β‰ˆ 1 Ο‘Μ‚ + 1 2 (w11Οƒ11) + p1w1Οƒ11 + 1 2 (L30w1Οƒ11 2 ) + 1 2 (L12w1Οƒ11Οƒ22) (17) Assuming that, w (Ξ», Ο‘) = 1 Ο‘ w1 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ο‘ = βˆ’1 πœ—2 (18) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 120 w11 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ο‘2 = 2 πœ—3 (19) Substituting (6), (7), (8), (9), (10), (18) and (19) into (17), yields: E [ 1 πœ— │𝑋] β‰ˆ 1 Ο‘Μ‚ + ( 1 οΏ½Μ‚οΏ½3 + 𝛾 οΏ½Μ‚οΏ½2 ) Οƒ11 βˆ’ 1 2οΏ½Μ‚οΏ½2 [(L30Οƒ11 2 ) + (L12Οƒ11Οƒ22) ] (20) After substituting (11) and (20) into (2) give up, Ο‘Μ‚11 = a0+a1[Ο‘Μ‚βˆ’π›ΎπœŽ11+ 1 2 (L30𝜎11 2 )+ 1 2 (L12𝜎11𝜎22) ] a1+a0[ 1 Ο‘Μ‚ +( 1 οΏ½Μ‚οΏ½3 + 𝛾 οΏ½Μ‚οΏ½2 )Οƒ11βˆ’ 1 2οΏ½Μ‚οΏ½2 [(L30Οƒ11 2 )+(L12Οƒ11Οƒ22) ]] (21) Another estimator under generalized weighted loss function will be derived, when letting k=1 and 𝜏 =2, gives: Ο‘Μ‚12 β‰ˆ a0E( 1 Ο‘ |x)+a1 a0E( 1 Ο‘2 |x)+a1E( 1 Ο‘ |x) Similarly, the Lindley’s approximation for E [ 1 πœ— 2 |𝑋] is given by: E [ 1 πœ—2 |𝑋] β‰ˆ 1 Ο‘Μ‚2 + 1 2 (w11Οƒ11) + p1w1Οƒ11 + 1 2 (L30w1Οƒ11 2 ) + 1 2 (L12w1Οƒ11 Οƒ22) (22) Assuming that, w (Ξ», Ο‘) = 1 Ο‘2 w1 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ο‘ = βˆ’2 πœ—3 (23) w11 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ο‘2 = 6 πœ—4 (24) Substituting (6), (7), (8), (9), (10), (23) and (24) into (22), yields: E [ 1 πœ—2 |𝑋] β‰ˆ 1 Ο‘Μ‚2 + ( 3 οΏ½Μ‚οΏ½4 + 2𝛾 οΏ½Μ‚οΏ½3 ) Οƒ11 βˆ’ 1 οΏ½Μ‚οΏ½3 [(L30Οƒ11 2 ) + (L12Οƒ11Οƒ22)] (25) After substituting (20) and (25) into (2) give up, Ο‘Μ‚12 β‰ˆ a1+a0[ 1 Ο‘Μ‚ +( 1 οΏ½Μ‚οΏ½3 + 𝛾 οΏ½Μ‚οΏ½2 )Οƒ11βˆ’ 1 2οΏ½Μ‚οΏ½2 [ (L30Οƒ11 2 )+(L12Οƒ11Οƒ22)]] ( π‘Ž0 οΏ½Μ‚οΏ½2 + π‘Ž1 οΏ½Μ‚οΏ½ )+𝑧1𝜎11βˆ’( π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž1 2οΏ½Μ‚οΏ½2 )[(L30Οƒ11 2 )+(L12Οƒ11Οƒ22)] (26) Whereas, 𝑧1 = π‘Ž0 ( 3 οΏ½Μ‚οΏ½4 + 2𝛾 οΏ½Μ‚οΏ½3 ) + π‘Ž1( 1 οΏ½Μ‚οΏ½3 + 𝛾 οΏ½Μ‚οΏ½2 ). Another estimator under generalized weighted loss function will be derived, when letting k=1 and 𝜏 =0, gives: Ο‘Μ‚20 = a0E(Ο‘|x)+a1E(Ο‘ 2|x)+a2E(Ο‘ 3|x) a0+a1E(Ο‘|x)+a2E(Ο‘ 2|x) Similarly, the Lindley’s approximation for E[πœ—3|𝑋] is given by: E[πœ—3|𝑋] β‰ˆ Ο‘Μ‚3 + 1 2 (w11Οƒ11)+p1w1Οƒ11 + 1 2 (L30w1Οƒ11 2 ) + 1 2 (L12w1Οƒ11Οƒ22) (27) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 121 Assuming that, w (Ξ», Ο‘) = πœ—3 w1 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ο‘ = 3Ο‘2 (28) w11 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ο‘2 = 6Ο‘ (29) Substituting (6), (7), (8), (9), (10), (28) and (29) into (27), yields: E[πœ—3|𝑋] β‰ˆ Ο‘Μ‚3 + (3οΏ½Μ‚οΏ½ βˆ’ 3Ξ³οΏ½Μ‚οΏ½2)Οƒ11 + 3οΏ½Μ‚οΏ½2 2 [(L30Οƒ11 2 ) + (L12Οƒ11Οƒ22)] (30) After substituting (11), (15) and (30) into (2) give up, Ο‘Μ‚20 = 𝑧4 + 𝑧3Οƒ11 + 𝑧2[(L30Οƒ11 2 ) + (L12Οƒ11Οƒ22)] 𝑧5 + 𝑧6 Οƒ11 + ( π‘Ž1 2 + π‘Ž2οΏ½Μ‚οΏ½) [(L30Οƒ11 2 ) + (L12Οƒ11Οƒ22)] (31) Where, 𝑧2 = π‘Ž0 2 + π‘Ž1οΏ½Μ‚οΏ½ βˆ’ 3π‘Ž2οΏ½Μ‚οΏ½ 2 2 , 𝑧3 = π‘Ž0𝛾 + π‘Ž1(1 βˆ’ 2𝛾) + π‘Ž2(3οΏ½Μ‚οΏ½ βˆ’ 3𝛾�̂� 2) 𝑧4 = π‘Ž0Ο‘Μ‚ + π‘Ž1Ο‘Μ‚ 2 + π‘Ž2Ο‘Μ‚ 3 , 𝑧5 = π‘Ž0 + π‘Ž1Ο‘Μ‚ +π‘Ž2 Ο‘Μ‚ 2 , 𝑧6 = βˆ’π‘Ž1𝛾 + π‘Ž2(1 βˆ’ 2𝛾�̂�) Now, when k=2 and 𝜏 =1, gives: Ο‘Μ‚21 = a0+a1E(Ο‘|x)+a2E(Ο‘ 2|x) a0E( 1 Ο‘ |x)+a1+a2E(Ο‘|x) After substituting (11), (15) and (20) into (2), yields: Ο‘Μ‚21 = 𝑧5+𝑧6Οƒ11+( π‘Ž1 2 +π‘Ž2οΏ½Μ‚οΏ½)[(L30Οƒ11 2 )+(L12Οƒ11Οƒ22)] ( π‘Ž0 Ο‘Μ‚ +a1+π‘Ž2Ο‘Μ‚)+( π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž0𝛾 οΏ½Μ‚οΏ½2 βˆ’π‘Ž2𝛾)Οƒ11+( π‘Ž0 2οΏ½Μ‚οΏ½2 + π‘Ž2 2 )[(L30Οƒ11 2 )+(L12Οƒ11Οƒ22)] (32) Where, 𝑧5 = π‘Ž0 + π‘Ž1Ο‘Μ‚ +π‘Ž2 Ο‘Μ‚ 2, 𝑧6 = βˆ’π‘Ž1𝛾 + π‘Ž2(1 βˆ’ 2𝛾�̂�) When k=2 and 𝜏 =2, gives: Ο‘Μ‚22 = a0E( 1 Ο‘ |x)+a1+a2E(Ο‘|x) a0E( 1 Ο‘2 |x)+a1E( 1 Ο‘ |x)+a2 After substituting (11), (20) and (25) into (2), yields: Ο‘Μ‚22 = ( π‘Ž0 Ο‘Μ‚ +a1+π‘Ž2Ο‘Μ‚)+( π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž0𝛾 οΏ½Μ‚οΏ½2 βˆ’π‘Ž2𝛾)Οƒ11+( π‘Ž0 2οΏ½Μ‚οΏ½2 + π‘Ž2 2 )[(L30Οƒ11 2 )+(L12Οƒ11Οƒ22)] ( π‘Ž0 Ο‘Μ‚2Μ‚ + π‘Ž1 Ο‘Μ‚ + π‘Ž2)+𝑦1Οƒ11+( βˆ’π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž1 2οΏ½Μ‚οΏ½2 )[(L30Οƒ11 2 )+(L12Οƒ11Οƒ22)] (33) Where, 𝑦1 = π‘Ž0 ( 3 οΏ½Μ‚οΏ½4 + π‘Ž1 οΏ½Μ‚οΏ½3 ) + π‘Ž1 ( 1 οΏ½Μ‚οΏ½3 + 𝛾 οΏ½Μ‚οΏ½2 ). b- Bayesian Estimation for 𝝀 under Generalized Weighted Loss Function We can obtain Bayesian estimation for Ξ» under generalized weighted loss function, when letting, k=1 and 𝜏 = 0, gives: Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 122 Ξ»Μ‚10 = a0E(Ξ»|x ) + a1E(Ξ» 2|x ) a0 + a1E(Ξ»|x ) The Lindley’s approximation for E[πœ†β”‚π‘‹] is given by: E[πœ†β”‚π‘‹] β‰ˆ Ξ»Μ‚ + p2w2Οƒ22 + 1 2 (L03w2Οƒ22 2 ) + 1 2 (L21w2Οƒ11Οƒ22) (34) Where, Assume that, W(Ξ», Ο‘) = Ξ» w1 = βˆ‚w(Ξ», Ο‘) βˆ‚Ο‘ = βˆ‚ βˆ‚Ο‘ (Ξ») = 0 = w11 w2 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ξ» = 1 (35) 𝐿03 = βˆ‚3𝐿(πœ†, πœ—) βˆ‚πœ†3 = 2𝑛 πœ†3 βˆ’ βˆ‘ β€Š 𝑛 𝑖=1 ( π‘₯𝑖 πœ— ) πœ† (ln ( π‘₯𝑖 πœ— )) 3 (36) 𝐿21 = βˆ‚3𝐿(πœ†,πœ—) βˆ‚πœ—2 βˆ‚πœ† = 𝑛 πœ—2 βˆ’ 2πœ†+1 πœ—2 βˆ‘ β€Šπ‘›π‘–=1 ( π‘₯𝑖 πœ— ) πœ† βˆ’ πœ†(πœ†+1) πœ—2 βˆ‘ β€Šπ‘›π‘–=1 ( π‘₯𝑖 πœ— ) πœ† ln ( π‘₯𝑖 πœ— ) (37) P = ln g (Ξ», Ο‘) = ln(Ξ³) + ln(Ξ΄) – Ξ³ Ο‘ – Ξ΄ Ξ» p 2 = βˆ‚p βˆ‚Ξ» = βˆ’Ξ΄ (38) Substituting (8), (9), (35), (36), (37) and (38) into (34), gives us: E[πœ†β”‚π‘‹] β‰ˆ Ξ»Μ‚ βˆ’ δσ22 + 1 2 [(L03Οƒ22 2 ) + (L21Οƒ11Οƒ22)] (39) Similarly, the Lindley’s approximation for E[πœ†2│𝑋] is given by: E[πœ†2│𝑋] β‰ˆ Ξ»Μ‚2 + 1 2 (w22Οƒ22) + p2w2Οƒ22 + 1 2 (L03w2Οƒ22 2 ) + 1 2 (L21w2Οƒ11Οƒ22) (40) Assume that, W (Ξ», πœ—) = πœ†2 w2 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ξ» = 2Ξ» (41) w22 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ξ»2 = 2 (42) Substituting (8), (9), (36), (37), (38), (41) and (42) into (40), yields: E[πœ†2│𝑋] β‰ˆ Ξ»Μ‚2 + (1 βˆ’ 2Ξ΄οΏ½Μ‚οΏ½)Οƒ22 + οΏ½Μ‚οΏ½[(L03Οƒ22 2 ) + (L21Οƒ11Οƒ22)] (43) After substituting (39) and (43) into (2) give up, Ξ»Μ‚10 = (π‘Ž0Ξ»Μ‚+π‘Ž1Ξ»Μ‚ 2)+[π‘Ž1(1βˆ’2𝛿�̂�)βˆ’π‘Ž0𝛿]Οƒ22+( π‘Ž0 2 +π‘Ž1οΏ½Μ‚οΏ½)[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22) ] (a0+a1Ξ»Μ‚)βˆ’ π‘Ž1Ξ΄ Οƒ22+ π‘Ž1 2 [(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] (44) Now, another estimator under generalized weighted loss function will be derived by letting, k=1 and 𝜏 =1, gives: Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 123 Ξ»Μ‚11 = a0+a1E(Ξ»|x) a0E( 1 Ξ» |x)+a1 Similarly, the Lindley’s approximation for E [ 1 πœ† │𝑋] is given by: E [ 1 πœ† │𝑋] β‰ˆ 1 Ξ»Μ‚ + 1 2 (w22Οƒ22) + p2w2Οƒ22 + 1 2 (L03w2Οƒ22 2 ) + 1 2 (L21w2Οƒ11Οƒ22) (45) Assume that, W (Ξ», Ο‘) = 1 Ξ» w2 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ξ» = βˆ’1 πœ†2 (46) w22 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ξ»2 = 2 πœ†3 (47) Substituting (8), (9), (36), (37), (38), (46) and (47) into (45), yields: E [ 1 πœ† │𝑋] β‰ˆ 1 Ξ»Μ‚ + ( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 ) Οƒ22 βˆ’ 1 2οΏ½Μ‚οΏ½2 [(L03Οƒ22 2 ) + (L21Οƒ11Οƒ22)] (48) After substituting (39) and (48) into (2) give up, Ξ»Μ‚11 = (a0+a1Ξ»Μ‚)βˆ’ π‘Ž1Ξ΄ Οƒ22+ π‘Ž1 2 [(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] a1+ π‘Ž0 Ξ»Μ‚ +π‘Ž0( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 )𝜎22βˆ’ π‘Ž0 2οΏ½Μ‚οΏ½2 [(L03𝜎22 2 )+(L21𝜎11𝜎22)] (49) Another estimator under generalized weighted loss function will be derived, when letting k=1 and 𝜏 =2, gives: Ξ»Μ‚12 = a0E( 1 Ξ» |x)+a1 a0E( 1 Ξ»2 |x)+a1E( 1 Ξ» |x) Similarly, the Lindley’s approximation for E [ 1 πœ† 2 │𝑋] is given by: E [ 1 πœ†2 │𝑋] β‰ˆ 1 πœ†2Μ‚ + 1 2 (w22Οƒ22) + p2w2Οƒ22 + 1 2 (L03w2Οƒ22 2 ) + 1 2 (L21w2Οƒ11Οƒ22) (50) Assume that, W (Ξ», Ο‘) = 1 πœ†2 w2 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ξ» = βˆ’2 πœ†3 (51) w22 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ξ»2 = 6 πœ†4 (52) Substituting (8), (9), (36), (37), (38), (51) and (52) into (50), yields: E [ 1 πœ†2 │𝑋] β‰ˆ 1 πœ†2Μ‚ + ( 3 οΏ½Μ‚οΏ½4 + 2𝛿 οΏ½Μ‚οΏ½3 ) Οƒ22 βˆ’ 1 οΏ½Μ‚οΏ½3 [(L03Οƒ22 2 ) + (L21Οƒ11Οƒ22)] (53) After substituting (48) and (53) into (2) give up, Ξ»Μ‚12 = a1+ π‘Ž0 Ξ»Μ‚ +π‘Ž0( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 )𝜎22+ π‘Ž0 2οΏ½Μ‚οΏ½2 [(L03𝜎22 2 )+(L21𝜎11𝜎22)] ( π‘Ž0 Ξ»Μ‚2 + π‘Ž1 Ξ»Μ‚ )+𝑦2Οƒ22βˆ’( π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž1 2οΏ½Μ‚οΏ½2 )[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] (54) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 124 Where, 𝑦2 = π‘Ž0 ( 3 οΏ½Μ‚οΏ½4 + 2𝛿 οΏ½Μ‚οΏ½3 ) + π‘Ž1( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 ). Now, when K=1 and 𝜏 =0, gives: Ξ»Μ‚20 = a0E(Ξ»|x)+a1E(Ξ» 2|x)+a2E(Ξ» 3|x) a0+a1E(Ξ»|x)+a2E(Ξ» 2|x) Similarly, the Lindley’s approximation for E[πœ†3│𝑋] is given by: E[πœ†3│𝑋] β‰ˆ Ξ»Μ‚ 3 + 1 2 (w22Οƒ22) + p 2 w2Οƒ22 + 1 2 (L03w2Οƒ22 2 ) + 1 2 (L21w2Οƒ11Οƒ22) (55) Assume that, w (Ξ», Ο‘) = Ξ»3 w2 = βˆ‚w(Ξ»,Ο‘) βˆ‚Ξ» = 3πœ†2 (56) w22 = βˆ‚2w(Ξ»,Ο‘) βˆ‚Ξ»2 = 6Ξ» (57) Substituting (8), (9), (36), (37), (38), (56) and (57) into (55), gives us: E[πœ†3│𝑋] β‰ˆ Ξ»Μ‚3 + (3οΏ½Μ‚οΏ½ βˆ’ 3Ξ΄οΏ½Μ‚οΏ½2)Οƒ22 + 3οΏ½Μ‚οΏ½2 2 [(L03Οƒ22 2 ) + (L21Οƒ11Οƒ22)] (58) After substituting (39), (43) and (58) into (2) give up, Ξ»Μ‚20 = 𝑦3+𝑦4Οƒ22+( π‘Ž0 2 +π‘Ž1οΏ½Μ‚οΏ½+ 3π‘Ž2 2 οΏ½Μ‚οΏ½2)[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] 𝑦5+[βˆ’π‘Ž1𝛿+π‘Ž2(1βˆ’2𝛿�̂�)]Οƒ22+( π‘Ž1 2 +π‘Ž2οΏ½Μ‚οΏ½)[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] (59) Where, 𝑦3 = (π‘Ž0οΏ½Μ‚οΏ½ + π‘Ž1Ξ»Μ‚ 2 + π‘Ž2Ξ»Μ‚ 3), 𝑦5 = (π‘Ž0 + π‘Ž1οΏ½Μ‚οΏ½ + π‘Ž2Ξ»Μ‚ 2), 𝑦4 = βˆ’π‘Ž0𝛿 + π‘Ž1(1 βˆ’ 2𝛿�̂�) + π‘Ž2(3οΏ½Μ‚οΏ½ βˆ’ 3𝛿�̂� 2. Another estimator under generalized weighted loss function will be derived, when letting k=2 and 𝜏 =1, gives: Ξ»Μ‚21 = a0 + a1E(Ξ»|x) + a2E(Ξ» 2|x) a0E ( 1 Ξ» |x) + a1 + a2E(Ξ»|x) After substituting (39), (43) and (48) into (2) give up, Ξ»Μ‚21 = 𝑦5+[βˆ’π‘Ž1𝛿+π‘Ž2(1βˆ’2𝛿�̂�)]Οƒ22+( π‘Ž1 2 +π‘Ž2οΏ½Μ‚οΏ½)[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] ( π‘Ž0 οΏ½Μ‚οΏ½ +π‘Ž1+π‘Ž2οΏ½Μ‚οΏ½)+[π‘Ž0( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 )βˆ’π‘Ž2𝛿]Οƒ22+( βˆ’π‘Ž0 2οΏ½Μ‚οΏ½2 + π‘Ž2 2 )[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] (60) Where, 𝑦5 = (π‘Ž0 + π‘Ž1οΏ½Μ‚οΏ½ + π‘Ž2Ξ»Μ‚ 2). Now, when k=2 and 𝜏 =2, gives: Ξ»Μ‚22 = a0E( 1 Ξ» |x)+a1+a2E(Ξ»|x) a0E( 1 Ξ»2 |x)+a1E( 1 Ξ» |x)+a2 After substituting (48) and (53) into (2) give up, Ξ»Μ‚22 = ( a1 Ξ»Μ‚ +π‘Ž1+π‘Ž2οΏ½Μ‚οΏ½)+[π‘Ž0( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 )βˆ’π‘Ž2π‘Ž]Οƒ22+( βˆ’π‘Ž0 2οΏ½Μ‚οΏ½2 + π‘Ž2 2 )[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] ( π‘Ž0 οΏ½Μ…οΏ½2 + 𝛼1 οΏ½Μ‚οΏ½ +a2)+π’šπŸ”Οƒ22βˆ’( π‘Ž0 οΏ½Μ‚οΏ½3 + π‘Ž1 2οΏ½Μ‚οΏ½2 ))[(L03Οƒ22 2 )+(L21Οƒ11Οƒ22)] (61) Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 125 Where, 𝑦6 = π‘Ž0 ( 3 οΏ½Μ‚οΏ½4 + 2𝛿 οΏ½Μ‚οΏ½3 ) + π‘Ž1( 1 οΏ½Μ‚οΏ½3 + 𝛿 οΏ½Μ‚οΏ½2 ) 4. Simulation Study In this section, we employed the Monte – Carlo simulation to compare the performance of different estimates (Bayes Estimators under generalized weighted loss function) for unknown shape and scale parameters of WD based on the mean squared errors, which can be written as: MSE (πœƒ) = βˆ‘ β€Šπ‘™π‘–=1 (πœƒπ‘– βˆ’ πœƒ) 2 𝐼 Where, I is the number of replications. We generated I = 5000 samples from two parameters WD with different sizes (n = 20, 50, and 100). With assuming (Ο‘ = 0.7, 1.4) and (Ξ» = 0.5, 1.5). The values of the prior’s parameter of Ο‘ was chosen as Ξ΄ = 0.5, 1.5, and for Ξ» ' s prior parameter Ξ³ = 0.5, 1.5. 5. Discussion and Conclusion The expected values and (MSE's) for estimating Ο‘ and Ξ» are tabulated in Tables (1-8). The following points can summarize the results of the tables: 1. The results of the two parameters of Weibull distribution shows that the expected values for different estimates are close to the real values for all sizes of samples. 2. The best estimator for πœ† is Bayesian estimation under generalized weighted loss function when (k=2, 𝜏=0) ( οΏ½Μ‚οΏ½20 ) with (𝛾 = 𝛿 = 1.5) when n= 100 for different cases and with all sample sizes, from table (4). 3. The best estimator for πœ— is Bayesian estimation under generalized weighted loss function when (k=1, 𝜏=2) ( οΏ½Μ‚οΏ½20 ) with (𝛾, 𝛿 = 1.5) when n=20 for different cases and with all sample sizes, from table (8). 4. It is clear that the results for Ο‘, πœ† (expected values and MSE' s) at 𝛾, Ξ΄ = 1.5 are the best as the corresponding result when (Ξ³, Ξ΄ = 0.5). 5. It is observed that MSE's of all shape parameter estimators increase with the increase of the value of the shape parameter. Also, MSE values for all scale parameter estimates are increasing with the scale parameter value in all cases. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 126 Table 1: Expected values and MSE’s for Ξ»Μ‚ when Ξ» = 0.5 and Ο‘ = 0.7 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.503227 0.495727 0.507006 0.504095 0.508469 0.507031 MSE 0.000025 0.000028 0.000050 0.000018 0.000072 0.000050 οΏ½Μ‚οΏ½πŸπŸ Mean 0.489750 0.482754 0.501506 0.498679 0.505701 0.504283 MSE 0.000113 0.000310 0.000003 0.000003 0.000033 0.000019 οΏ½Μ‚οΏ½πŸπŸ Mean 0.478153 0.472111 0.496335 0.493675 0.503017 0.501642 MSE 0.000494 0.000804 0.000015 0.000043 0.000009 0.000003 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.518424 0.511074 0.512979 0.510084 0.511433 0.509998 MSE 0.000380 0.000150 0.000171 0.000104 0.000131 0.000100 οΏ½Μ‚οΏ½πŸπŸ Mean 0.504007 0.496489 0.507316 0.504403 0.508624 0.507185 MSE 0.000032 0.000023 0.000055 0.000020 0.000075 0.000052 οΏ½Μ‚οΏ½πŸπŸ Mean 0.490440 0.483398 0.501803 0.498966 0.505852 0.504432 MSE 0.000100 0.000288 0.000004 0.000002 0.000034 0.000020 Table 2: Expected values and MSE’s for Ξ»Μ‚ when Ξ» = 1.5 and Ο‘ = 0.7 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.484634 1.411570 1.499238 1.472202 1.504442 1.491329 MSE 0.000332 0.007883 0.000008 0.000776 0.000021 0.000075 οΏ½Μ‚οΏ½πŸπŸ Mean 1.442376 1.376958 1.482284 1.456403 1.496002 1.483166 MSE 0.003336 0.015360 0.000315 0.001917 0.000016 0.000286 οΏ½Μ‚οΏ½πŸπŸ Mean 1.406637 1.352321 1.466431 1.442446 1.487826 1.475477 MSE 0.008800 0.022182 0.001133 0.003348 0.000149 0.000607 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.531194 1.456616 1.517092 1.489821 1.513201 1.500028 MSE 0.001342 0.001922 0.000321 0.000106 0.000178 0.000000 οΏ½Μ‚οΏ½πŸπŸ Mean 1.485492 1.412314 1.499574 1.472524 1.504610 1.491494 MSE 0.000310 0.007750 0.000008 0.000758 0.000022 0.000073 οΏ½Μ‚οΏ½πŸπŸ Mean 1.443126 1.377496 1.482602 1.456688 1.496156 1.483315 MSE 0.003250 0.015224 0.000303 0.001892 0.000015 0.000280 Table 3: Expected values and MSE’s for Ξ»Μ‚ when Ξ» = 0.5 and Ο‘ = 1.4 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.503216 0.495738 0.507010 0.504107 0.508471 0.507037 MSE 0.000025 0.000028 0.000050 0.000018 0.000072 0.000050 οΏ½Μ‚οΏ½πŸπŸ Mean 0.489778 0.482803 0.501525 0.498704 0.505712 0.504299 MSE 0.000113 0.000309 0.000003 0.000003 0.000033 0.000019 οΏ½Μ‚οΏ½πŸπŸ Mean 0.478211 0.472186 0.496365 0.493712 0.503036 0.501666 MSE 0.000492 0.000800 0.000015 0.000042 0.000010 0.000003 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.518368 0.511040 0.512969 0.510081 0.511426 0.509996 MSE 0.000378 0.000150 0.000171 0.000104 0.000131 0.000100 οΏ½Μ‚οΏ½πŸπŸ Mean 0.503993 0.496498 0.507320 0.504413 0.508626 0.507192 MSE 0.000031 0.000023 0.000055 0.000020 0.000075 0.000052 οΏ½Μ‚οΏ½πŸπŸ Mean 0.490466 0.483443 0.501818 0.498989 0.505862 0.504448 MSE 0.000099 0.000287 0.000004 0.000002 0.000034 0.000020 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 127 Table 4: Expected values and MSE’s for Ξ»Μ‚ when Ξ» = 1.5 and Ο‘ = 1.4 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.484249 1.411831 1.499103 1.472299 1.504371 1.491378 MSE 0.000341 0.007840 0.000008 0.000770 0.000020 0.000075 οΏ½Μ‚οΏ½πŸπŸ Mean 1.442389 1.377537 1.482297 1.456638 1.496009 1.483286 MSE 0.003334 0.015225 0.000314 0.001897 0.000016 0.000282 οΏ½Μ‚οΏ½πŸπŸ Mean 1.406981 1.353100 1.466585 1.442799 1.487910 1.475667 MSE 0.008740 0.021964 0.001124 0.003309 0.000147 0.000598 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.530402 1.456433 1.516805 1.489758 1.513049 1.499994 MSE 0.001288 0.001935 0.000311 0.000107 0.000174 0.000000 οΏ½Μ‚οΏ½πŸπŸ Mean 1.485102 1.412570 1.499438 1.472615 1.504535 1.491541 MSE 0.000318 0.007709 0.000008 0.000753 0.000022 0.000072 οΏ½Μ‚οΏ½πŸπŸ Mean 1.443130 1.378073 1.482612 1.456920 1.496159 1.483440 MSE 0.003249 0.015092 0.000303 0.001872 0.000015 0.000276 Table 5: Expected values and MSE’s for Ο‘Μ‚ when Ο‘ = 0.7 and Ξ» =0.5 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.974984 0.928047 0.845343 0.815308 0.782665 0.764920 MSE 0.086157 0.061646 0.023881 0.015392 0.007475 0.004655 οΏ½Μ‚οΏ½πŸπŸ Mean 0.944438 0.845109 0.809432 0.767619 0.759095 0.738223 MSE 0.080694 0.030476 0.014643 0.005823 0.003931 0.001666 οΏ½Μ‚οΏ½πŸπŸ Mean 0.840278 0.709600 0.754818 0.709395 0.730536 0.708963 MSE 0.043190 0.001755 0.004297 0.000292 0.001097 0.000110 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.968277 0.955044 0.863843 0.846656 0.800397 0.787121 MSE 0.076434 0.070536 0.028897 0.023547 0.010764 0.008180 οΏ½Μ‚οΏ½πŸπŸ Mean 0.976019 0.930808 0.846594 0.817055 0.783544 0.765949 MSE 0.086503 0.062885 0.024243 0.015826 0.007628 0.004799 οΏ½Μ‚οΏ½πŸπŸ Mean 0.947983 0.850438 0.811464 0.769948 0.760205 0.739402 MSE 0.082355 0.032423 0.015141 0.006200 0.004076 0.001768 Table 6: Expected values and MSE’s for Ο‘Μ‚ when Ο‘ = 0.7 and Ξ» =1.5 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.767471 0.756788 0.733466 0.728896 0.721592 0.719300 MSE 0.004935 0.003493 0.001154 0.000857 0.000470 0.000375 οΏ½Μ‚οΏ½πŸπŸ Mean 0.754188 0.741865 0.727286 0.722462 0.718422 0.716069 MSE 0.003213 0.001904 0.000764 0.000515 0.000342 0.000259 οΏ½Μ‚οΏ½πŸπŸ Mean 0.738110 0.724932 0.720667 0.715726 0.715148 0.712769 MSE 0.001593 0.000669 0.000435 0.000250 0.000230 0.000163 οΏ½Μ‚οΏ½πŸπŸŽ Mean 0.777992 0.769400 0.739284 0.735089 0.724739 0.722537 MSE 0.006512 0.005171 0.001592 0.001268 0.000618 0.000513 οΏ½Μ‚οΏ½πŸπŸ Mean 0.767971 0.757360 0.733709 0.729151 0.721721 0.719429 MSE 0.005006 0.003563 0.001171 0.000873 0.000476 0.000380 οΏ½Μ‚οΏ½πŸπŸ Mean 0.754805 0.742533 0.727550 0.722733 0.718554 0.716203 MSE 0.003286 0.001965 0.000779 0.000528 0.000346 0.000264 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 128 Table 7: Expected values and MSE’s for Ο‘Μ‚ when Ο‘ = 1.4 and Ξ» =0.5 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.891493 1.661508 1.649716 1.518772 1.536577 1.463327 MSE 0.281091 0.094864 0.071919 0.018216 0.020733 0.004713 οΏ½Μ‚οΏ½πŸπŸ Mean 1.778901 1.396064 1.567025 1.404391 1.487024 1.405830 MSE 0.200647 0.004210 0.035395 0.000653 0.008776 0.000127 οΏ½Μ‚οΏ½πŸπŸ Mean 1.528850 1.176655 1.454463 1.299242 1.429922 1.350981 MSE 0.044197 0.053117 0.005332 0.010630 0.001209 0.002500 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.908679 1.837298 1.697597 1.615853 1.575174 1.517195 MSE 0.278134 0.222254 0.096621 0.053875 0.033146 0.015314 οΏ½Μ‚οΏ½πŸπŸ Mean 1.893409 1.666984 1.651239 1.521140 1.537546 1.464519 MSE 0.282716 0.098366 0.072711 0.018885 0.021015 0.004884 οΏ½Μ‚οΏ½πŸπŸ Mean 1.783570 1.401668 1.569262 1.406779 1.488186 1.407020 MSE 0.204673 0.004534 0.036263 0.000725 0.009003 0.000149 Table 8: Expected values and MSE’s for Ο‘Μ‚ when Ο‘ = 1.4 and Ξ» =1.5 Estimate Criterion n = 20 n = 50 n = 100 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 𝛄 =0.5 𝛅=0.5 𝛄 =1.5 𝛅 =1.5 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.512297 1.469568 1.451659 1.433722 1.430547 1.421613 MSE 0.013801 0.005302 0.002773 0.001172 0.000945 0.000471 οΏ½Μ‚οΏ½πŸπŸ Mean 1.484740 1.437263 1.439344 1.420686 1.424305 1.415198 MSE 0.007943 0.001524 0.001603 0.000436 0.000597 0.000232 οΏ½Μ‚οΏ½πŸπŸ Mean 1.452524 1.403687 1.426311 1.407464 1.417894 1.408746 MSE 0.003071 0.000048 0.000710 0.000058 0.000322 0.000077 οΏ½Μ‚οΏ½πŸπŸŽ Mean 1.534550 1.498874 1.463174 1.446452 1.436663 1.428020 MSE 0.019556 0.010645 0.004150 0.002237 0.001364 0.000794 οΏ½Μ‚οΏ½πŸπŸ Mean 1.512832 1.470226 1.451908 1.433990 1.430673 1.421744 MSE 0.013931 0.005403 0.002800 0.001191 0.000953 0.000477 οΏ½Μ‚οΏ½πŸπŸ Mean 1.485386 1.437965 1.439612 1.420960 1.424438 1.415334 MSE 0.008064 0.001581 0.001625 0.000448 0.000603 0.000236 References 1. Lai, C. D., Generalized Weibull Distributions, Springer Briefs in Statistics, 2014,18, 3, 293-297, DOI: 10.1007/978-3-642-39106-4-1. 2. Xie, M.; Tang, Y.;Goh, T. N.A Modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering and System Safety, 2002, 765,3,279- 285. http://dx.doi.org/10.1016/S0951-8320(02)00022-4. 3.Ivana, P. ; Zuzana, S. Comparison of Four Methods for Estimating the Weibull distribution Parameters, Applied Mathematical Sciences, 2014, 8, 83,4137-4149. http://dx.doi.org/10.12988/ams.2014.45389. 4. Chris, B. G. ; Noor, A. I. Approximate Bayesian Estimates of Weibull parameters with Lindley 's method, Sains Malaysians, 2012, 43, 9, 1433-1437. 5. Babacan, E. K., ; Kaya, S. Comparison of parameter estimation methods in Weibull Distribution, Sigma Journal of Engineering and Natural sciences. 2020, 38, 2, 1609- 1621. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021 129 6. Rasheed, H. A., ; AL-Shareefi, E. F.Bayes Estimator for the Scale Parameter of Laplace distribution under a Suggested Loss Function. International Journal of Advanced Research, 2015, 3, 3, 788-796. 7.Lindley, D.V.Approximate Bayesian Methods, Trabajos de Estadistica Y de Investigacion Operative, 1980, 31, 1,223-245.https://doi.org/10.1007/BF02888353.