47 This work is licensed under a Creative Commons Attribution 4.0 International License. Cubic Bipolar Fuzzy Ideals with Thresholds (ฮฑ, ฮฒ), ( ๐›š ,๐›) of a Semigroup in KU-algebra Abstract In this paper, we introduce the concept of cubic bipolar-fuzzy ideals with thresholds (ฮฑ,ฮฒ),(ฯ‰,ฯ‘) of a semigroup in KU-algebra as a generalization of sets and in short (CBF). Firstly, a (CBF) sub- KU-semigroup with a threshold (ฮฑ,ฮฒ),(ฯ‰,ฯ‘) and some results in this notion are achieved. Also, (cubic bipolar fuzzy ideals and cubic bipolar fuzzy k-ideals) with thresholds (ฮฑ,ฮฒ),(ฯ‰ ,ฯ‘) are defined and some properties of these ideals are given. Relations between a (CBF).sub algebra and-a (CBF) ideal are proved. A few characterizations of a (CBF) k-ideal with thresholds (ฮฑ, ฮฒ), (ฯ‰,ฯ‘) are discussed. Finally, we proved that a (CBF) k-ideal and a (CBF) ideal with thresholds (ฮฑ, ฮฒ), (ฯ‰,ฯ‘) of a KU-semi group are equivalent relations. Keywords: A KU-semigroup, cubic k-ideal, cubic bipolar fuzzy k-ideal with thresholds (ฮฑ, ฮฒ), (ฯ‰,ฯ‘). 1. Introduction The fuzzy sets were introduced by Zadeh [1] in 1956; after that, many authors applied this concept in different mathematics fields. Mostafa [2, 3] studied the notion of fuzzy KU-ideals of KU-algebras and Generalizations of Fuzzy sets, which are called bipolar- fuzzy n-fold KU-ideals. Jun [4- 6] studied the notion of a cubic set as a generalization of fuzzy set and interval-valued fuzzy set. Kareem and Hasan[7,8] defined the cubic ideals of a KU-semigroup and a homomorphism of a cubic set in this structure. Bipolarโ€“valued fuzzy sets are extensions of fuzzy sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. Kareem and Article history: Received,21, November,2021, Accepted,25, January, 2022, Published in April 2022. Ibn Al Haitham Journal for Pure and Applied Sciences Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Doi: 10.30526/35.2.2724 Omniat Adnan Hasan Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham,University of Baghdad, Iraq umniyatadnan@gmail.com Fatema F. Kareem Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham,University of Baghdad, Iraq fatma.f.k@ihcoedu.uobaghdad.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:umniyatadnan@gmail.com mailto:fatma.f.k@ihcoedu.uobaghdad.edu.iq Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 48 Hassan[9] and Kareem and Awad [10] defined the concepts of bipolar fuzzy k-ideals and cubic bipolar ideals in KU-semigroup respectively, also Kareem and Abed [11] presented the idea of - bipolar fuzzy-k-ideals with a threshold of KU--semigroup. The paper aims to introduce a cubic bipolar fuzzy k-ideals with thresholds (ฮฑ,ฮฒ),(ฯ‰,ฯ‘) of KU-semi group and discuss some relations between a cubic bipolar fuzzy k-ideal with thresholds (ฮฑ,ฮฒ), (ฯ‰,ฯ‘) and a bipolar fuzzy k-ideal. 2. Basic concepts Definition(1)[12]. Algebra(โ„ต,โˆ— ,0) is a set โ„ต ,and a binary operation โˆ— which is satisfies the following ,for all ฯ‡,๐›พ,ฯ„ โˆˆ โ„ต (ku1)(ฯ‡ โˆ— ๐›พ) โˆ— [(๐›พ โˆ— ฯ„) โˆ— (ฯ‡ โˆ— ฯ„)] = 0 (ku2) ฯ‡ โˆ—0 = 0 (ku3) 0โˆ— ฯ‡ = ฯ‡ (ku4) ฯ‡ โˆ— ๐›พ = ๐›พ โˆ— ฯ‡ = 0 and ๐›พ โˆ— ฯ‡ implies ฯ‡ = ๐›พ (ku5) ฯ‡ โˆ— ฯ‡ = 0. We can define a binary operation โ‰ค on โ„ต is defined by ฯ‡ โ‰ค ๐›พ โŸบ ๐›พ โˆ— ฯ‡ = 0. It follows that (โ„ต,โ‰ค)is a~ partially ordered set~. Theorem(2)[2]. In a KU-algebra (โ„ต,โˆ— ,0 ) โˆ€ ฯ‡ , ๐›พ ,ฯ„ โˆˆ โ„ต, then the following holds (1) ฯ‡ โ‰ค ๐›พ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐›พ โˆ— ฯ„ โ‰ค ฯ‡ โˆ— ฯ„ (2) ฯ‡ โˆ— (๐›พ โˆ— ฯ„) = ๐›พ โˆ— (ฯ‡ โˆ— ฯ„) (3) ๐›พ โˆ— ฯ‡ โ‰ค ฯ‡ ,also (๐›พ โˆ— ฯ‡) โˆ— ฯ‡ โ‰ค ๐›พ Definition(3)[2]. A non-empty subset I of a KU-algebra โ„ต is namedห‘ห‘an ห‘ideal if ห‘for anyฯ‡ ,๐›พ โˆˆ โ„ต, then (1) 0 โˆˆ ๐ผ (2) If ฯ‡ โˆ— ๐›พ โˆˆ ๐ผ implies that ๐›พ โˆˆ ๐ผ . Definition(4)[2]. A non-empty subset I of a KU-algebra โ„ต is namedห‘ห‘a KU-ideal if (1) 0 โˆˆ ๐ผ (2) If ฯ‡ โˆ— (๐›พ โˆ— ๐œ) โˆˆ ๐ผ , and ๐›พ โˆˆ ๐ผ imply that ฯ‡ โˆ— ๐œ โˆˆ ๐ผ . Definition(5)[13]. An algebra-KU--semi group is-a structure containss- a nonempty- set โ„ต -with two- binary operations โˆ—,โˆ˜ and a-constant 0 satisfying the following (I) The set โ„ต with operation โˆ— and constant 0 isห‘ KU-algebra (II) The set โ„ต with operation โˆ˜ is semigroup. (III) ฯ‡ โˆ˜ (๐›พ โˆ— ฯ„) = (ฯ‡ โˆ˜ ๐›พ) โˆ— (ฯ‡ โˆ˜ ฯ„),and(ฯ‡ โˆ— ๐›พ)โˆ˜ ฯ„ = (ฯ‡ โˆ˜ ฯ„) โˆ— (๐›พ โˆ˜ ฯ„), for all ฯ‡ , ๐›พ,ฯ„ โˆˆ โ„ต. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 49 Definition(6)[13]. A non-empty subset A of โ„ต is called a sub-KU-semi group of โ„ต if ฯ‡ โˆ— ๐›พ โˆˆ ๐‘จ , and ฯ‡ โˆ˜ ๐›พ โˆˆ ๐‘จ , for all ฯ‡,๐›พ โˆˆ ๐‘จ Definition(7)[13]. In a KU-semi group (โ„ต,โˆ—,โˆ˜ ,0), the subset ๐œ‘ โ‰  ๐ผ of โ„ต is said to be S ideal -, if - (i) It is an ideal in a KU-algebra (ii) ฯ‡ โˆ˜ ๐‘Ž โˆˆ ๐‘ฐ , and ๐‘Ž โˆ˜ ฯ‡ โˆˆ ๐‘ฐ , โˆ€ ฯ‡ โˆˆ โ„ต , ๐‘Ž โˆˆ ๐‘ฐ Definition(8)[13]. In KU-semigroup (โ„ต,โˆ—,โˆ˜ ,0), the subset ๐œ‘ โ‰  ๐ด of โ„ต is named a -k--ideal-, - if - (i) It is a KU-ideal of โ„ต (ii) ฯ‡ โˆ˜ ๐‘Ž โˆˆ ๐‘ฐ , and ๐‘Ž โˆ˜ ฯ‡ โˆˆ ๐‘ฐ , โˆ€ ฯ‡ โˆˆ โ„ต , ๐‘Ž โˆˆ ๐‘ฐ In this part , we recall some concepts of fuzzy logic A function ฮผ: โ„ต โŸถ [0,1] is said to be a fuzzy set of a set โ„ต,and the set ๐‘ˆ(๐œ‡,๐‘ก) = {๐œ’ โˆˆ โ„ต โˆถ ๐œ‡(๐œ’) โ‰ฅ ๐‘ก}ห‘is said to be a level set of ๐œ‡, for t, where 1 โ‰ฅ ๐‘ก โ‰ฅ 0 Now, an interval valued fuzzy set ๐œ‡ of โ„ต is defined as follows: Remark(9)[7-8].A function ๐œ‡: โ„ต โŸถ ๐ท[0,1], where D[0,1] is a family of the closed sub ฬ‚- intervals ฬ‚of[0, 1]. The level subset of ๐œ‡~is ~denoted ~by ๐œ‡๏ฟฝฬƒ๏ฟฝand it is ~defined ~by ๐œ‡๏ฟฝฬƒ๏ฟฝ ={๐œ’ โˆˆ โ„ต:๐œ‡(๐œ’) โ‰ฅ ๏ฟฝฬƒ๏ฟฝ}, for every ~[0,0] โ‰ค ๏ฟฝฬƒ๏ฟฝ โ‰ค [1,1]. O. Hasan and F.Kareem [7-8] introduced the Cubic ideals of the KU-semigroup as follows: Definition(10)[7-8]. In the KU-semigroup(โ„ต,โˆ—,โˆ˜ ,0), a cubic set ฮ˜ is the form ฮ˜ = {โŒฉ๐œ’,๐œ‡ฮ˜(๐œ’),๐œ†ฮ˜(๐œ’)โŒช:๐œ’ โˆˆ โ„ต}, such that ๐œ†ฮ˜(๐œ’)"is a fuzzy" set and ๐œ‡ฮ˜:โ„ต โ†’ ๐ท[0,1] "is an" interval-valued", briefly ฮ˜ = โŒฉ๐œ‡ฮ˜,๐œ†ฮ˜โŒช. Definition(11)[7-8]. In the KU-semigroup (โ„ต,โˆ—,โˆ˜ ,0) a cubic set ฮ˜ = โŒฉ๐œ‡ฮ˜,๐œ†ฮ˜โŒชin โ„ต is named a cubic sub-KU-semigroup if: for all ๐œ’,๐›พ โˆˆ โ„ต, (1) ๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’ โˆ— ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’)ห‘, ๏ฟฝฬƒ๏ฟฝฮ˜(๐›พ)},๐œ†ฮ˜(๐œ’ โˆ— ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜(๐œ’)ห‘,๐œ†ฮ˜(๐›พ)} (2) ๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’)ห‘, ห‘๏ฟฝฬƒ๏ฟฝฮ˜(๐›พ)}, ๐œ†ฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜(๐œ’)ห‘, ห‘๐œ†ฮ˜(๐›พ)}. Definition(12)[7-8]. The set ฮ˜ in โ„ต is named a cubic ideal of a KU-semigroup (โ„ต,โˆ—,โˆ˜ ,0) if, โˆ€ ๐œ’ ,๐›พ โˆˆ โ„ต (CI1) ๐œ‡๐›ฉ(0) โ‰ฅ ๐œ‡๐›ฉ(๐œ’) and ๐œ†๐›ฉ(0) โ‰ค ๐œ†๐›ฉ(๐œ’), (CI2) ฮผฬƒฮ˜(ฮณ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝ๐›ฉ(๐œ’ โˆ— ๐›พ),๐œ‡๐›ฉ(๐œ’)} , ๐œ†๐›ฉ(๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {ฮปฮ˜(ฯ‡ โˆ— ฮณ)ห‘,ฮปฮ˜(ฯ‡)} (CI3) ฮผฬƒฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’), ห‘๐œ‡ฮ˜(๐›พ)}, ๐œ†ฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜(๐œ’)ห‘, ห‘๐œ†ฮ˜(๐›พ)}. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 50 Example(13)[7-8]. Let โ„ต = {0,1,2} be a set. Define the operations โˆ—,โˆ˜ by the following tables. Then the structure (โ„ต,โˆ—,โˆ˜ ,0) ห‘ is a KU-semi group. A cubic set ฮ˜ = โŒฉ๐œ‡ฮ˜,๐œ†ฮ˜โŒช is defined by: ๐œ‡ฮ˜(๐‘ฅ) = { [0.4,0.8] ๐‘–๐‘“ ๐œ’ฯต {0,2} [0.1,0.3] ๐‘–๐‘“ ๐œ’ = 1 and ๐œ†ฮ˜(๐‘ฅ) = { 0.1 ๐‘–๐‘“ ๐œ’ฯต{0,2} 0.3 ๐‘–๐‘“ ๐œ’ = 1 Then ฮ˜ = โŒฉ๐œ‡ฮ˜,๐œ†ฮ˜โŒช is a cubic ideal of โ„ต . Definition(14)[7-8]. In a KU-semigroup (โ„ต,โˆ—,โˆ˜ ,0), a cubic set ฮ˜ = โŒฉ๐œ‡ฮ˜,๐œ†ฮ˜โŒช in โ„ต is named a cubic k-ideal if โˆ€ ๐œ’ ,๐›พ, ฯ„ โˆˆ โ„ต (๐‘ช๐’Œ๐Ÿ )๏ฟฝฬƒ๏ฟฝฮ˜(0)) โ‰ฅ ๐œ‡ฮ˜(๐œ’) , and ๐œ†ฮ˜(0) โ‰ค ๐œ†ฮ˜(๐‘ฅ) (๐‘ช๐’Œ๐Ÿ)๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’ โˆ— ฯ„) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’ โˆ— (๐›พ โˆ— ฯ„)),๐œ‡ฮ˜(๐›พ)}, ๐œ†ฮ˜(๐œ’ โˆ— ฯ„) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜(๐œ’ โˆ— (๐›พ โˆ— ฯ„)),๐œ†ฮ˜(๐›พ)} (๐‘ช๐’Œ๐Ÿ‘)๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๏ฟฝฬƒ๏ฟฝฮ˜(๐œ’)ห‘,๐œ‡ฮ˜(๐›พ)} ,๐œ†ฮ˜(๐œ’ โˆ˜ ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜(๐œ’)ห‘, ห‘๐œ†ฮ˜(๐›พ)}. In the following ,we recall some basic concepts of a bipolar fuzzy set. Definition(15)[9]. A bipolar fuzzy set ๏‚ in a set โ„ต is a form }:))(),(,{( ๏ƒ€๏ƒŽ๏€ฝ๏‚ ๏€ซ ๏ฃ๏ฃ๏ญ๏ฃ๏ญ๏ฃ , where ]0,1[:)( ๏€ญ๏‚ฎ๏ƒ€ ๏€ญ ๏ฃ๏ญ and ]1,0[:)( ๏‚ฎ๏ƒ€ ๏€ซ ๏ฃ๏ญ are two fuzzy mappings. The two membership- degrees )(๏ฃ๏ญ ๏€ซ and )(๏ฃ๏ญ ๏€ญ denote- the fulfillment -degree of-๏ƒ€ to the property corresponding of ๏‚ and-the fulfillment-degree of ๏ƒ€ to some implicit- counter-property of- ๏‚ , respectively. Kareem and Awad[10] introduced the cubic bipolar -ideals- of a KU--semigroup- in -KU-algebra as- follows: -- Definition(16)[10]. Let โ„ต be a non-empty set. A cubic bipolar set in a set โ„ต is the structure ฮ˜ = {โŒฉฯ‡,๐œ‡ฮ˜ +(ฯ‡),๐œ‡ฮ˜ โˆ’(ฯ‡),๐œ†ฮ˜ +(ฯ‡),๐œ†ฮ˜ โˆ’(ฯ‡):ฯ‡ โˆˆ โ„ตโŒช} is denoted as ฮ˜ = โŒฉ๐‘,๐พโŒช, where ๐‘(ฯ‡) = {๏ฟฝฬƒ๏ฟฝฮ˜ +(ฯ‡),๐œ‡ฮ˜ โˆ’(ฯ‡)} is called interval-valued bipolar fuzzy set and ๐พ(ฯ‡) = {๐œ†ฮ˜ +(ฯ‡),๐œ†ฮ˜ โˆ’(ฯ‡)} is a bipolar fuzzy set. Consider ๐œ‡ฮ˜ +:โ„ต โ†’ ๐ท[0,1] such that ๐œ‡ฮ˜ +(ฯ‡) = [๐œ‰ฮ˜L + (ฯ‡),๐œ‰ฮ˜U + (ฯ‡)] and ๐œ‡ฮ˜ โˆ’:โ„ต โ†’ ๐ท[โˆ’1,0] such that ๐œ‡ฮ˜ โˆ’(ฯ‡) = [๐œ‰ฮ˜L โˆ’ (ฯ‡),๐œ‰ฮ˜U โˆ’ (ฯ‡)] , also ๐œ†ฮ˜ +:โ„ต โ†’ [0,1] and ๐œ†ฮ˜ โˆ’:โ„ต โ†’ [โˆ’1,0] it follows that โˆ— 0 1 2 0 0 1 2 1 0 0 1 2 0 1 0 โˆ˜ 0 1 2 0 0 0 0 1 0 1 0 2 0 0 2 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 51 ฮ˜ = {< ฯ‡,{[๐œ‰ฮ˜L + (ฯ‡),๐œ‰ฮ˜U + (ฯ‡)],[๐œ‰ฮ˜L โˆ’ (ฯ‡),๐œ‰ฮ˜U โˆ’ (ฯ‡)]}, ๐œ†ฮ˜ +(ฯ‡),๐œ†ฮ˜ โˆ’(ฯ‡)} >:ฯ‡ โˆˆ โ„ต} Definition(17)[10]. A (CB) ฮ˜ = โŒฉ๐‘,๐พโŒช in โ„ต is named a (CB) sub-KU-semigroup if: โˆ€๐œ’,๐›พ โˆˆ โ„ต, (1) ๐œ‡ฮ˜ +(๐œ’ โˆ— ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๐œ‡ฮ˜ +(๐œ’)ห‘,๐œ‡ฮ˜ +(๐›พ)}, ๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ) โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ {๐œ‡ฮ˜ โˆ’(๐œ’)ห‘,๐œ‡ฮ˜ โˆ’(๐›พ)} ๐œ†ฮ˜ +(๐œ’ โˆ— ๐›พ) โ‰ฅ ๐‘š๐‘–๐‘› {๐œ†ฮ˜ +(๐œ’)ห‘,๐œ†ฮ˜ +(๐›พ)}, ๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜ โˆ’(๐œ’)ห‘,๐œ†ฮ˜ โˆ’(๐›พ)}, (2) ๐œ‡ฮ˜ +(๐œ’ โˆ˜ ๐›พ) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘› {๐œ‡ฮ˜ +(๐œ’)ห‘,๐œ‡ฮ˜ +(๐›พ)}, ๐œ‡ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ) โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ {๐œ‡ฮ˜ โˆ’(๐œ’)ห‘,๐œ‡ฮ˜ โˆ’(๐›พ)} ๐œ†ฮ˜ +(๐œ’ โˆ˜ ๐›พ) โ‰ฅ ๐‘š๐‘–๐‘› {๐œ†ฮ˜ +(๐œ’)ห‘,๐œ†ฮ˜ +(๐›พ)}, ๐œ†ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜ โˆ’(๐œ’)ห‘,๐œ†ฮ˜ โˆ’(๐›พ)}, Example(18)[10]: The following table is Illustrates that the set ห‘โ„ต = {0,1,2,3} with binary operations โˆ— and โˆ˜ Then(โ„ต,โˆ—,โˆ˜ ,0) ห‘ is a KU-semigroup. Define ฮ˜ = โŒฉ๐‘,๐พโŒช as follows ๐‘€(๐‘ฅ) = { {[โˆ’0.2,โˆ’0.5], [0.1,0.9]} ๐‘–๐‘“ ๐œ’ = {0,1} {[โˆ’0.6,โˆ’0.2], [0.2,0.5]} ๐‘–๐‘“ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ , ๐œ†ฮ˜ +(๐‘ฅ) = { 0.5 ๐‘–๐‘“ ๐œ’ = {0,1} 0.3 ๐‘–๐‘“ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ ๐œ†ฮ˜ โˆ’(๐‘ฅ) = { โˆ’0.6 ๐‘–๐‘“ ๐œ’ = {0,1} โˆ’0.3 ๐‘–๐‘“ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ And by applying definition 2.17, we can easily prove that ฮ˜ = โŒฉ๐‘,๐พโŒช is a cubic bipolar sub KU- semigroup of โ„ตห‘. 3. Cubic bipolar ideals of a KU-semi group with thresholds (๐œถ, ๐œท), (๐Ž ,๐‘) In this part, the notion of cubic bipolar k-ideals with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of a KU-semi group and some properties are defined. In the following, we denote a cubic bipolar fuzzy set by (CBF) ,and let ๐›ผ, ๐›ฝ โˆˆ ๐ท[0,1] ,๐‘Ž๐‘›๐‘‘,๐œ” ,๐œ— โˆˆ [0,1] ,๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก [0,0] < ๐›ผ < ๐›ฝ < [1,1] ,0 < ๐œ” < ๐œ— < 1, where ๐œ”,๐œ— are arbitrary values, and ๐›ผ,๐›ฝ, are arbitrary closed sub-intervals Definition(19). A (CBF) set ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is named a (CBF) sub-KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) if โˆ€ ๐œ’,๐›พ โˆˆ โ„ต (1)๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐›พ),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐œ‡ฮ˜ +(๐›พ),๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 52 ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐›พ),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’),๐œ†ฮ˜ +(๐›พ),๐œ—} (2)๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ˜ ๐›พ),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐œ‡ฮ˜ +(๐›พ),๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ˜ ๐›พ),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’),๐œ†ฮ˜ +(๐›พ),๐œ—} Remark(20). Every (CBF) sub-KU-semi group of โ„ต is a (CBF) sub-KU-semigroup with thresholds (๐œถ, ๐œท), (๐Ž ,๐‘) , but not converse as it is shown in the following example Example(21).Let โ„ต = {0,1,2,3} be a set with two operations โˆ— and ๏ฏ which are defined by the following tables. Then(โ„ต,โˆ—,โˆ˜ ,0) ห‘ is a KU-semi group.Now, we define ฮ˜ = โŒฉ๐‘€,๐ฟโŒช by the next ๐‘€(๐‘ฅ) = { [ โˆ’0.9,โˆ’0.8 ] , [0.8, 0.9 ] ๐‘–๐‘“ ๐œ’ = 0 [โˆ’0.8,โˆ’0.7], [0.7, 0.8] ๐‘–๐‘“ ๐œ’ = 1 [โˆ’0.6,โˆ’0.5] , [0.5, 0.6] ๐‘–๐‘“ ๐œ’ = 3 [โˆ’0.3,โˆ’0.2], [0.2 , 0.3] ๐‘–๐‘“ ๐œ’ = 2 ๐ฟ(๐‘ฅ) = { โˆ’0.9, 0.9 ๐‘–๐‘“ ๐œ’ = 0 โˆ’0.5, 0.6 ๐‘–๐‘“ ๐œ’ = 1 โˆ’0.4 , 0.5 ๐‘–๐‘“ ๐œ’ = 3 โˆ’0.2 , 0.2 ๐‘–๐‘“ ๐œ’ = 2 And by applying definition (19), we can easily prove that ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a(CBF)sub KU-semi group with thresholds (๐›ผ,๐›ฝ) = ( [0.1,0.2], [0.2, 0.2]), and (๐œ”,๐œ—)=(0.1,0.2) , but not a (CBF)sub KU-semi group since ๐œ‡ฮ˜ +(1 โˆ— 3) โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(1),๐œ‡ฮ˜ +(3)} {๐œ‡ฮ˜ +(2)} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(1),๐œ‡ฮ˜ +(3)} [0.2 ,0.3] โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{[0.7,0.8], [0.5,0.6]} [0.2, 0.1] โ‰ฅ [0.5,0.6] ,which is incorrect phrase ๐œ‡ฮ˜ โˆ’(1 โˆ— 3) โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(1)ห‘,๐œ‡ฮ˜ โˆ’(3)} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 53 ๐œ‡ฮ˜ โˆ’(2) โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{[โˆ’0.8 ,โˆ’0.7], [โˆ’0.6 ,โˆ’0.5]} [โˆ’0.3, โˆ’0.2โ‰ค [โˆ’0.6 ,โˆ’0.5], which is the incorrect phrase, and ๐œ†ฮ˜ +(1 โˆ— 3) โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(1)ห‘,๐œ†ฮ˜ +(3)} ๐œ†ฮ˜ +(2) โ‰ฅ ๐‘š๐‘–๐‘›{0.6ห‘,0.5} 0.2 โ‰ฅ 0.5, it is wrong ๐œ†ฮ˜ โˆ’(1 โˆ— 3) โ‰ค ๐‘š๐‘Ž๐‘ฅ {๐œ†ฮ˜ โˆ’(1)ห‘,๐œ†ฮ˜ โˆ’(3)} ๐œ†ฮ˜ โˆ’(2) โ‰ค ๐‘š๐‘Ž๐‘ฅ {โˆ’0.5ห‘,โˆ’0.4} โˆ’0.2 โ‰ค โˆ’0.4, which is also wrong. Remark(22). If ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CBF) sub KU-semi group with thresholds (ฮฑ, ฮฒ), (ฯ‰ ,ฯ‘) such that ฮฑ = [0,0], ฮฒ = [1,1, ] , ฯ‰ = 0, and ฯ‘ = 1 ,then ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CBF) sub-KU-semi group of โ„ต. Proposition(23).If ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a cubic bipolar sub-KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต ,then for all ๐œ’ โˆˆ โ„ต (1) ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’), ๐›ฝ} (2) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} (3) ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’), ๐œ—} (4 )๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} semi group-KU-sub bipolar is a cubicฮ˜ = โŒฉ๐‘€,๐ฟโŒช and since, ๐œ’ โˆ— ๐œ’ = 0)5ku(by Proof: with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต , ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0), ๐›ผ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ— ๐œ’), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐œ‡ฮ˜ +(๐œ’), ๐›ฝ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’),๐›ฝ}, that is (1) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0),โˆ’๐›ผ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐œ’),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’),๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} ,that is (2) ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0), ๐œ”} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐œ’),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘› {๐œ†ฮ˜ +(๐œ’),๐œ†ฮ˜ +(๐œ’), ๐œ—} = ๐‘š๐‘–๐‘› {๐œ†ฮ˜ +(๐œ’) ,๐œ—} ,that is (3) ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} = ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ’),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—},that is (4) Proposition(24).If ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CBF) sub-KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต ,then for all ๐œ’ โˆˆ โ„ต (1) ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0 โˆ˜ ๐œ’), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’), ๐›ฝ} (2) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0 โˆ˜ ๐œ’),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} (3) ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0 โˆ˜ ๐œ’), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’), ๐œ—} (4 )๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0 โˆ˜ ๐œ’),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 54 Proof: Since ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CBF) sub-KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต , we have ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0 โˆ˜ ๐œ’), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(0), ๐œ‡ฮ˜ +(๐œ’), ๐›ฝ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’), ๐›ฝ }, which is (1) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0 โˆ˜ ๐œ’),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(0), ๐œ‡ฮ˜ โˆ’(๐œ’) โˆ’ ๐›ฝ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ}, which is (2) ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0 โˆ˜ ๐œ’),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(0),๐œ†ฮ˜ +(๐œ’), ๐œ—} = ๐‘š๐‘–๐‘› {๐œ†ฮ˜ +(๐œ’), ๐œ—}, which is (3) ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0 โˆ˜ ๐œ’),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(0),๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—},which is (4) Definition(25). A (CBF) set ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is named a (CBF) ideal of the KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) if โˆ€ ๐œ’,๐›พ โˆˆ โ„ต (CBT1 ) ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(0),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’), ๐›ฝ},and ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’), ๐œ—} (CBT2) ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐›พ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ),๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐›พ), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐›พ),๐œ‡ฮ˜ +(๐œ’), ๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐›พ),๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐›พ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’ โˆ— ๐›พ),๐œ†ฮ˜ +(๐œ’), ๐œ—} (CBT3)๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ˜ ๐›พ), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ˜ ๐›พ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’),๐œ†ฮ˜ +(๐›พ), ๐œ—} Example(26).The following table Illustrates the set ห‘โ„ต = {0,1,2} with binary operations โˆ— and โˆ˜ Then(โ„ต,โˆ—,โˆ˜ ,0) ห‘ is a KU-semigroup. Define ฮ˜ = โŒฉ๐‘€,๐ฟโŒช as follows: ๐‘€(๐œ’) = { [โˆ’0.8,โˆ’0.7] , [0.6,0.8] ๐‘–๐‘“ ๐œ’ = 0 [โˆ’0.6,โˆ’0.5] , [0.4,0.6] ๐‘–๐‘“ ๐œ’ = 1 [โˆ’0.4,โˆ’0.3] , [0.3,0.2] ๐‘–๐‘“ ๐œ’ = 2 โˆ— 0 1 2 0 0 1 2 1 0 0 1 2 0 1 0 โˆ˜ 0 1 2 0 0 0 0 1 0 1 0 2 0 0 2 Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 55 ๐ฟ(๐œ’){ โˆ’0.6 , 0.8 ๐‘–๐‘“ ๐œ’ = 0 โˆ’0.5 , 0.6 ๐‘–๐‘“ ๐œ’ = 1 โˆ’0.3 , 0.3 ๐‘–๐‘“ ๐œ’ = 2 We can show that ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CBF) ideal with thresholds ([0.1, 0.1], [0.3,0.2]) and (0.4, 0.2) of โ„ต Definition(27). A (CBF)set ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is named a (CBF)k-ideal of KU-semigroup with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) if โˆ€ ๐œ’,๐›พ,๐œ โˆˆ โ„ต (CBา 1)๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(0),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’), ๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’), ๐œ—} (CBา 2) ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐œ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ +(๐›พ), ๐œ—} (CBา 3)๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ˜ ๐›พ), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ˜ ๐›พ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ˜ ๐›พ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’),๐œ†ฮ˜ +(๐›พ), ๐œ—} Lemma(28). Every (CBF) k-ideal of โ„ต is a (CBF) k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต then let, โ„ตideal of-k )CBF( is a ฮ˜ = โŒฉ๐‘€,๐ฟโŒชSuppose that Proof: ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0),๐›ผ} < ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐›ฝ},and ๐›ผ < ๐›ฝ it follows that ๐œ‡ฮ˜ +(0) < ๐œ‡ฮ˜ +(๐œ’). But that is a contradiction, since ฮ˜ is a(CBF) k-ideal of โ„ต , ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐œ’),๐›ฝ}, also let ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} > ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—}, and ๐œ” < ๐œ— , it follows that ๐œ†ฮ˜ โˆ’(0) > ๐œ†ฮ˜ โˆ’(๐œ’); this is a contradiction since ฮ˜ is a(CBF) k-ideal of โ„ต . this means that ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ—}, in the same way, we can prove ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ฝ}, and ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’),๐œ—} Again , assume that ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ),๐›ผ} < ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ),๐›ฝ}, and ๐›ผ < ๐›ฝ it follows that ๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ) < ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ)} , which is a contradiction, so Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 56 ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ),๐›ฝ}, Also let ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐œ”} > ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} , and ๐œ” < ๐œ—, so ๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ) > ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ)} , which is a contradiction. That is ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} In the same way, we get ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐œ),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ +(๐›พ),๐œ—},and the condition (CBา 3) Then,ฮ˜ = โŒฉ๐‘€,๐ฟโŒชis a (CBF) k-ideal with thresholds (๐›ผ, ๐›ฝ),(๐œ” ,๐œ—) of โ„ต. Proposition(29). Let ฮ˜ = โŒฉ๐‘€,๐ฟโŒช be a cubic bipolar k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต if ๐œ’ โ‰ค ๐›พ , then (a) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ}, ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} (b) ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} , ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐›พ), ๐œ—} Proof: Since ๐œ’ โ‰ค ๐›พ ,then ๐›พ โˆ— ๐œ’ = 0 ,and by (ku3) 0 โˆ— ๐œ’ = ๐œ’ Since ฮ˜ = โŒฉ๐‘€,๐ฟโŒช is a (CB) k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต ,we get ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’),โˆ’๐›ผ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0 โˆ— ๐œ’),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(0 โˆ— (๐›พ โˆ— ๐œ’)),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(0 โˆ— 0),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(0),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’),๐›ผ} = ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(0 โˆ— ๐œ’),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(0 โˆ— (๐›พ โˆ— ๐œ’)),๐œ‡ฮ˜ +(๐›พ),๐›ฝ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(0 โˆ— 0),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(0),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} = ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐›พ), ๐›ฝ},which is (a) , And ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’),โˆ’๐œ”} = ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0 โˆ— ๐œ’),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(0 โˆ— (๐›พ โˆ— ๐œ’)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(0 โˆ— 0),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(0),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’),๐œ”} = ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0 โˆ— ๐œ’),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(0 โˆ— (๐›พ โˆ— ๐œ’)),๐œ†ฮ˜ +(๐›พ),๐œ—} = ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(0 โˆ— 0),๐œ†ฮ˜ +(๐›พ), ๐œ—} = ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(0),๐œ†ฮ˜ +(๐›พ), ๐œ—} Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 57 = ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐›พ), ๐œ—},which is(b) Theorem(30).Let ฮ˜ = โŒฉ๐‘€,๐ฟโŒช be a cubic bipolar fuzzy set of a KUsemigroup(โ„ต,โˆ—,โˆ˜ ,0) then, ฮ˜ is a (CBF) k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต if and only if it is a (CBF)-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต . Proof: โ‡’ Let ฮ˜ = โŒฉ๐‘€,๐ฟโŒช be a cubic bipolar k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต ,if we put ๐œ’ = 0 in (CBา 2) , we get ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(0 โˆ— ๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(0 โˆ— (๐›พ โˆ— ๐œ)),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} is ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ โˆ’(๐›พ โˆ— ๐œ),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ} ,also ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๏ฟฝฬƒ๏ฟฝฮ˜ +(0 โˆ— ๐œ),๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(0 โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ โˆ’(๐›พ), ๐›ฝ} is ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ), ๐›ผ} โ‰ฅ ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐›พ โˆ— ๐œ),๐œ‡ฮ˜ โˆ’(๐›พ), ๐›ฝ} ,and ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(0 โˆ— ๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(0 โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—} is ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐›พ โˆ— ๐œ)),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—}, Also ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(0 โˆ— ๐œ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(0 โˆ— (๐›พ โˆ— ๐œ)),๐œ†ฮ˜ +(๐›พ), ๐œ— } ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ), ๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐›พ โˆ— ๐œ),๐œ†ฮ˜ +(๐›พ), ๐œ—},the other conditions (CBT1), (CBT3) are holds from the definition of (CBF)k-ideal; therefore ฮ˜ = โŒฉ๐‘€,๐ฟโŒชis a (CB)-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต โ‡ Let ฮ˜ = โŒฉ๐‘€,๐ฟโŒช be a cubic bipolar ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต , By (CBT2) ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐›พ โˆ— (๐œ’ โˆ— ๐œ),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ}, also ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ), ๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ +(๐›พ โˆ— (๐œ’ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ}, ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐›พ โˆ— (๐œ’ โˆ— ๐œ),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—}, also ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐œ),๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐›พ โˆ— (๐œ’ โˆ— ๐œ),๐œ†ฮ˜ +(๐›พ),๐œ—} Applying theorem 2 (2) to the previous four steps ,we obtain ๐‘Ÿ๐‘š๐‘–๐‘›{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ โˆ’(๐›พ),โˆ’๐›ฝ}, ๐‘Ÿ๐‘š๐‘Ž๐‘ฅ{๐œ‡ฮ˜ +(๐œ’ โˆ— ๐œ),๐›ผ} โ‰ค ๐‘Ÿ๐‘š๐‘–๐‘›{๏ฟฝฬƒ๏ฟฝฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ‡ฮ˜ +(๐›พ), ๐›ฝ} , and ๐‘š๐‘–๐‘›{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— ๐œ),โˆ’๐œ”} โ‰ค ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ โˆ’(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ†ฮ˜ โˆ’(๐›พ),โˆ’๐œ—}, ๐‘š๐‘Ž๐‘ฅ{๐œ†ฮ˜ +(๐œ’ โˆ— ๐œ) ,๐œ”} โ‰ฅ ๐‘š๐‘–๐‘›{๐œ†ฮ˜ +(๐œ’ โˆ— (๐›พ โˆ— ๐œ),๐œ†ฮ˜ +(๐›พ), ๐œ—}, which is a (CBF) k-ideal, The remaining two conditions (CBา 1),(CBา 3) are holds from the definition of (CBF)-ideal . 4.Conclusion During this work, we present the definitions of the cubic bipolar sub-KU-semigroup with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) and cubic bipolar k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต. The relationship among these types of ideals and some properties are studied, We obtained the following result: every (CBF) sub-KU-semi group of โ„ต is a (CBF) sub-KU-semi group with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of โ„ต ,but the converse is not true. Finally, we proved that a cubic bipolar fuzzy k-ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) and a cubic bipolar fuzzy ideal with thresholds (๐›ผ, ๐›ฝ), (๐œ” ,๐œ—) of a KU-semi group are equivalents. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 53 (2)2022 58 References 1. Zadeh, L.A. Fuzzy Sets, Inform and Control, 1965, 8, 338-353. 2. Mostafa, S.M.; Abd-Elnaby, M.A.; Yousef, M.M.M. Fuzzy ideals of KU-Algebras, Int. Math, Forum, 2011, 6(63), 3139-3149. 3. Mostafa, S. M.; Kareem, F. F.bipolar fuzzy N-fold KU-ideals of KU-algebras, Mathematica Aeterna, 2014, 4, 633-650. 4. Jun, Y. B.; Kim, C. S.; Kang, M. S. Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences, 2010, 2 (44) , 239โ€“250. 5. Jun, Y. B.; Kim, C. S.; Kang, J. G. Cubic q-ideals of BCIalgebras, Ann. Fuzzy Math.Inform. 2011, 1 (1), 25-34. 6. Jun, Y. B.; Kim, C. S.; Yang, K. O. Cubic sets, Ann. Fuzzy Math. Inform. 2012,4 (1) 83- 98. 7. Kareem, F. F.; Hasan, O. A. Cubic ideals of semigroup in KU-algebra, Journal of Physics: Conference Series 1804 (2021) 012018 IOP Publishing 8. Kareem, F. F.; Hasan, O. A. The Homomorphism of a cubic set of a semigroup in a KU- algebra, Journal of Physics, 1879 (2021) 022119 IOP Publishing. 9. Kareem, F.F.; Hasan, E. R. Bipolar fuzzy k-ideals in KU-semigroups, Journal of New Theory, 2019,9, 71-78. 10. K Awad, Wisam K., and Fatema F. Kareem. The Homomorphism of Cubic bipolar ideals of a KU-semigroup. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(1)., 73-83. 11. Kareem, F.F.; Abed, M. M. Generalizations of Fuzzy k-ideals in a KU-algebra with Semigroup, Journal of Physics, 2021, 1879,022108 IOP Publishing. 12. Prabpayak, C. Leerawat, U. On ideals and congruence in KU-algebras, scientia Magna, 2009, 5(1), 54-57. 13. Kareem, F.F.; Hasan, E. R. On KU-semigroups, International Journal of Science and Nature. 2018, 9 (1), 79-84.