IHJPAS. 53 (4)2022 235 This work is licensed under a Creative Commons Attribution 4.0 International License. Connectedness via Generalizations of Semi-Open Sets Abstract We use the idea of the grill. This study generalized a new sort of linked space like โ‚ฒ โˆ— ๐‘ ๐‘œ-connected and โ‚ฒโˆ—๐‘ ๐‘œ-hyperconnected and investigated its features, as well as the relationship between it and previously described notions. It also developed new sorts of functions, such as hyperconnected space, and identified their relationship by offering numerous instances and attributes that belong to this set. This set will serve as a starting point for further research into the set many future possibilities. We also use some theorems and observations previously studied and related to the grill and the semi-open to obtain results in this research. We applied the concept of connected to them and obtained results related to connected. The sources related to the connected and semi-open where considered as starting points and an important basis in this research. Keywords: Grill topological space, โ‚ฒ * s-connected, โ‚ฒ * s-๐‘‘๐‘–๐‘ connected, โ‚ฒ โˆ— -semi-open sets. 1. Introduction In [1,2] found a topological area where the concept of the grill, and the grill has shown to be an effective tool for learning a variety of topological concerns. Subsets of a topological space (ำผ, ๐œ) which is a non-empty collection โ‚ฒ and is referred to be a grill whenever (a) ัฆ โˆˆโ‚ฒ and ัฆ โŠ† ษƒ implying ษƒโˆˆโ‚ฒ. (b) ำผ has a subset ัฆ and ษƒ also ัฆ โˆช ษƒโˆˆโ‚ฒ lead to ัฆ โˆˆโ‚ฒ or ษƒโˆˆโ‚ฒ. A triple (ำผ, ๐œ, โ‚ฒ) topological space with grills is one type of the topological space. [3] created a distinctive topology with a grill and investigated topological notions. For every topological space (ำผ, ๐œ) point ำฝ, Neighborhoods are open of ำผ, and embodied by ๐œ(ำผ). A mapping ฮจ:โ„™(ำผ) โ†’ โ„™(ำผ) is referred to as โˆฎ( ัฆ) = { ำฝ โˆˆ ำผ: ัฆ โˆฉ แปฎ โˆˆ โ‚ฒ, โˆ€ แปฎ โˆˆ ฯ„(ำผ) and ัฆ โˆˆ โ„™(ำผ)}. A mapping ฮจ: โ„™(ำผ) โ†’โ„™(ำผ) is referred to as ฮจ (ัฆ) = ัฆ โˆช โˆฎ (ัฆ) for every ัฆ โˆˆ โ„™(ำผ). The map ฮจ kuratowski closure axioms are met: (a) ฮจ (โˆ…)=โˆ…, Doi: 10.30526/35.4.2877 Article history: Received 12 June, 2022, Accepted 21 August 2022, Published in October 2022. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Ali J. Mahmood Department of Mathematics, College of Education for Pure Science, Ibn Al Haitham,University of Baghdad, Iraq. ali.jamal1203a@ihcoedu.uobaghdad.edu.iq Naser A.I. Department of Mathematics, College of Education for Pure Science, Ibn Al Haitham,University of Baghdad, Iraq. ahmed_math06@yahoo.com https://creativecommons.org/licenses/by/4.0/ mailto:ali.jamal.1203a@ihcoedu.uobaghdad.edu.iq mailto:ahmed_math06@yahoo.com IHJPAS. 53 (4)2022 236 (b) as soon as ัฆ โŠ† ษƒ, so ฮจ (ัฆ) โŠ† ฮจ (ษƒ), (c) as soon as ัฆ โŠ† ำผ, so ฮจ (ฮจ (ัฆ))= ฮจ (ัฆ), (d) as soon as ัฆ, ษƒโŠ† ำผ, so ฮจ (ัฆ โˆช ษƒ)= ฮจ (ัฆ) โˆช ฮจ (ษƒ). Grill topological spaces come in various shapes, sizes, as a discrete topology, and a coffinite topology. On a space (ำผ, ๐œ); this agrees to a grill โ‚ฒ A topology exists ๐œโ‚ฒ on ำผ that is given by no one else by ๐œโ‚ฒ = {แปฎ โŠ†ำผ: ฮจ (ำผ โ€“ แปฎ) = ำผ โ€“ แปฎ}, Consequently, ัฆ โŠ† ำผ, ฮจ (ัฆ) = ัฆ โˆช โˆฎ( ัฆ) [4,5]. ฯ„ โŠ† ๐œโ‚ฒ and ฮจ (ัฆ) = ๐‘๐œ„(ัฆ). Using the following as a basis, we can locate ๐œโ‚ฒ on ำผ by supplying ๐œโ‚ฒ through ๐›ฝ(๐œโ‚ฒ, ำผ) = {ฦณ โˆ’ ัฆ; ฦณ โˆˆ ๐œ, ัฆ โˆ‰โ‚ฒ}. On a space (ำผ, ๐œ), there is a grill โ‚ฒ, ๐œ โŠ† ๐›ฝ(โ‚ฒ, ฯ„) โŠ† ๐œโ‚ฒ, where ๐›ฝ(โ‚ฒ, ฯ„) basis for ๐œโ‚ฒ[6] . As an example, to exist in a space (ำผ, ๐œ) , ๐œโ‚ฒ = ๐œ whenever โ‚ฒ = โ„™(ำผ) โˆ– {ร˜} implying ๐œโ‚ฒ = ฯ„ [7].The family of all semi-open set is showed by ๐œ๐‘ . Semi-open is a subset ัฆ of a space (ำผ, ๐œ), if ัฆ โŠ† ๐‘๐œ„(แธฌ๐‘›ลฃ(ัฆ))[8] . Let (ำผ, ฯ„, โ‚ฒ) be topological space. The subset ัฆ in ำผ is known as โ‚ฒ-semi-open if ัฆ โŠ† ฮจ(แธฌnลฃ(ัฆ)), and every ฮจ-semi-open is a semi-open. Various academics have made generalizations using these combinations [9, 10]. The symbol แธฌ๐‘›ลฃ(ัฆ) to the set interior ัฆ, as well as the sign ๐‘๐œ„(ัฆ) is the closure of ัฆ is utilized in this paper. The space (ำผ, ๏ด) is disconnected if and only if there exists two open disjoint nonempty sets ัฆ and ษƒ, such that ัฆโ‹ƒษƒ = ำผ. i.e., ำผ is disconnected if and only if ำผ=ัฆโ‹ƒษƒ, ัฆ, ษƒ โˆˆ ๏ด, and ัฆ โ‹‚ ษƒ = ๏ฆ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ัฆ, ษƒ๏‚น ๏ฆ. The sets ัฆ and ษƒ form a separation of ำผ. The space (X, ๏ด) is connected if and only if it is not disconnected. ำผ is connected if and only if ำผ ๏‚น ัฆโ‹ƒษƒ , ัฆ, ษƒ โˆˆ ๏ด , ัฆ โ‹‚ ษƒ = ๏ฆ , ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ. 2. Grill Semi-Open Sets Definition 2.1. [2]: ัฆ is the set that will be ๐บrill semi-open when โˆƒ แปฎ โˆˆ ๐œ ; แปฎ โˆ’ ัฆ โˆ‰ โ‚ฒ and ัฆ โˆ’ ๐‘๐œ„โ‚ฒ(แปฎ) โˆ‰ โ‚ฒ . And it is described by โ‚ฒ โˆ— -semi-open. ำผ โˆ’ โ‚ฒ โˆ— -semi-open is a โ‚ฒ โˆ— -semi-cl๐‘œsed , as well as the set of all โ‚ฒ โˆ— - semi-open at the moment by โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ) a๐‘›d the collection of every โ‚ฒ โˆ— -semi-๐‘๐‘™osed at the moment by โ‚ฒ โˆ— ๐‘ ๐‘(ำผ) . . Example 2.2. Let (ำผ, ฯ„, โ‚ฒ) topological space to be a grill and ำผ = {ำฝ1, ำฝ2, ำฝ3}, ๐œ = {ำผ, ร˜, {ำฝ1}, {ำฝ1, ำฝ2}}, โ„ฑ = {ำผ, ร˜, {ำฝ3}, {ำฝ3, ำฝ2}}, โ‚ฒ = {แปฎ โŠ† ำผ; ำฝ2 โˆŠ แปฎ}, โˆฎ : โ„™(ำผ) โ‡พ โ„™(ำผ), โˆฎ (ัฆ) = {ำฝ โˆˆ ำผ; โˆ€แปฎ โˆˆ ๐œำผ ; แปฎ โˆฉ ัฆ โˆˆ โ‚ฒ}, ฮจ(ัฆ) = ัฆ โˆช ร˜, ฯ„โ‚ฒ = {ำผ, ร˜, {ำฝ3, ำฝ2}, {ำฝ2}, {ำฝ1, ำฝ2}}, โ„ฑโ‚ฒ = {ำผ, ร˜, {ำฝ3, ำฝ2}, {ำฝ3}, {ำฝ1}}, then โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ) = {ำผ, ร˜, {ำฝ3}, {ำฝ1}, {ำฝ2}, {ำฝ1, ำฝ3}, {ำฝ1, ำฝ2}, {ำฝ3, ำฝ2}}. Theorem 2.3. [10]: Every family's union โ‚ฒ โˆ— -semi-open set is a โ‚ฒ โˆ— -semi-open set. Remark 2.4. [10]: Every two โ‚ฒ โˆ— -Semi-open sets intersecting need not to be a โ‚ฒ โˆ— -semi-open set. Remark 2.5. [10]: The family of all โ‚ฒ โˆ— -Semi-open sets is characterized as supra topology. Remark 2.6 [10]: i. Every open is a โ‚ฒ โˆ— -semi-open sets. ii. Every closed is a โ‚ฒ โˆ— -semi-closed sets. IHJPAS. 53 (4)2022 237 Theorem 2.7. [10]: Every โ‚ฒ-semi-open is a โ‚ฒ โˆ— -semi-open. Proposition 2.8. [10]: Every Grill topology (ำผ,ฯ„,โ‚ฒ), ัฆ is an โ‚ฒ-semi-open set if and only if ัฆ is a โ‚ฒ โˆ— -semi-open sets whenever โ‚ฒ = โ„™(ำผ) โˆ– {โˆ…}. Remark 2.9. [10]: The concepts โ‚ฒ โˆ— -semi-open sets and the semi-open set are independent. Definition 2.10. [10]: The function แธŸ: (ำผ, ฯ„, โ‚ฒ) โ†’ (ฦณ, ๐œโ€ฒ, โ‚ฒ) is known as: 1. โ‚ฒ โˆ— -semi-open function, currently "โ‚ฒ โˆ— -แตด-o function" if แธŸ(แปฎ) โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ฦณ), whenever แปฎ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ). 2. โ‚ฒ โˆ—โˆ— -semi-open function, currently "โ‚ฒ โˆ—โˆ— -แตด-o function" if แธŸ(แปฎ) โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ฦณ) whenever แปฎ โˆˆ ๐œ . 3. โ‚ฒ โˆ—โˆ—โˆ— -semi-open function, currently "โ‚ฒ โˆ—โˆ—โˆ— -แตด-o function" if แธŸ(แปฎ) โˆˆ ๐œโ€ฒ whenever แปฎ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ). Definition 2.11. [2]: A function แธŸ โˆถ (ำผ, ฯ„, โ‚ฒ) โ†’ (ฦณ, ๐œโ€ฒ, โ‚ฒ) is said to be; 1. โ‚ฒ โˆ— ๐‘ - continuous function, currently "โ‚ฒ * s-continuous function "๐‘–๐‘“ แธŸโˆ’1(แปฎ) โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ)for all แปฎ โˆˆ ๐œ. 2. Strongly โ‚ฒ โˆ— ๐‘ -continuous function, currently โ€œstrongly โ‚ฒ * s-continuous functionโ€ ๐‘–๐‘“ แธŸโˆ’1(แปฎ) โˆˆ ๐œ, fore ever แปฎ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ฦณ) . 3. โ‚ฒ โˆ— ๐‘ -irresolute function, presently "โ‚ฒ * s-irresolute function " if แธŸโˆ’1(แปฎ) โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ), fore ever แปฎ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ฦณ). 3. Grill Semi-Open Sets in Grill Connected Space Definition 3.1: The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected if and only if there exists two โ‚ฒ โˆ— ๐‘ -open disjoint nonempty sets ัฆ and ษƒ such that ัฆโ‹ƒษƒ = ำผ. i.e., ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected if and only if ำผ =ัฆโ‹ƒษƒ , ัฆ, ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ) , and ัฆ โ‹‚ ษƒ = ๏ฆ . The sets ัฆ and ษƒ form a โ‚ฒ โˆ— ๐‘ ๐‘œ-separation of ำผ. The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- connected if and only if it is not โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected. ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ- connected if and only if ำผ ๏‚น ัฆโ‹ƒษƒ , ัฆ, ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ), ัฆ โ‹‚ ษƒ = ๏ฆ , ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ. Example 3.2. Let (ำผ, ฯ„, โ‚ฒ) topolรฒgical ๐‘ pace to be a grill a๐‘›d ำผ = {ำฝ1, ำฝ2, ำฝ3}, ๐œ = ๐œโ‚ฒ = {ำผ, ร˜, {ำฝ2}, {ำฝ3}}, โ‚ฒ = โ„™(ำผ) โˆ– {ร˜} is a โ‚ฒ โˆ— ๐‘ ๐‘œ- connected space. Remark 3.3. Every disconnected set is a โ‚ฒ โˆ— ๐‘ ๐‘œ-disconnected. Proof. Let (ำผ, โ‚ฒ) be a disconnected space, then there exists โ‰  โˆ…, ๐’ต โ‰  โˆ… , ๐’ฒ, ๐’ต โˆˆ ฯ„ , ๐’ฒ โ‹‚ ๐’ต = โˆ… , ๐‘Ž๐‘›๐‘‘ ๐’ฒ โ‹ƒ ๐’ต = ำผ ,since every open set is โ‚ฒ โˆ— ๐‘ -open set. Therefore, ำผ is โ‚ฒ โˆ— ๐‘ ๐‘œ-disconnected. Remark 3.4. IHJPAS. 53 (4)2022 238 The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected with any grill and โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ) = โ„™(ำผ) if ำผ contains more than one element since there exists ัฆ and ัฆ๐‘ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ),ัฆ โ‹ƒษƒ = ำผ , ัฆ โ‹‚ ษƒ = ๏ฆ, ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ. Remark 3.5. The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected , โ‚ฒ = โˆ… , and ๐œโ‚ฒ = {ำผ, ร˜}, so โ‚ฒ โˆ— ๐‘ ๐‘œ- connected space. Remark 3.6. If ๐œโ‚ฒ = โ„ฑโ‚ฒ and ๐œโ‚ฒ โ‰  ฮ™ indiscrete, when โ‚ฒ = โ„™(ำผ) โˆ– {ร˜} , that is mean (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected . Theorem 3.7. The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected if and only ำผ cannot be written as union of two non- empty disjoint closed set's. Proof. Let ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected if ำผ = ัฆ โ‹ƒษƒ such that ัฆ , ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘(ำผ), ัฆ โ‹‚ ษƒ = ๏ฆ, ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ. So ัฆ = ษƒ ๐‘ ๐‘Ž๐‘›๐‘‘ ษƒ = ัฆ๐‘ , then ำผ = ัฆโ‹ƒษƒ, ัฆ, ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ), ัฆ โ‹‚ ษƒ = ๏ฆ, ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ , that's mean ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected. That's contradiction. Therefore, ำผ cannot be written as a union of two non-empty disjoint closed set. Now, if ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected space, so ำผ= ัฆ โ‹ƒษƒ; ัฆ, ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ), ัฆ โ‹‚ ษƒ = ๏ฆ, ๐‘Ž๐‘›๐‘‘ ัฆ, ษƒ๏‚น ๏ฆ. So ัฆ = ษƒ ๐‘ ๐‘Ž๐‘›๐‘‘ ษƒ = ัฆ๐‘ ,then ัฆ and ษƒ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘(๐‘ฅ), but that is contradiction. Therefore, ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space. Theorem 3.8. The space (ำผ, ฯ„, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected if and only if the only subsets of the space ำผ which are โ‚ฒ โˆ— ๐‘ -open and โ‚ฒ โˆ— ๐‘ -closed are ำผ and ร˜ . Proof. Let ัฆ ,ัฆ๐‘ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(๐‘ฅ), ัฆ โ‰  ำผ , ๐‘Ž๐‘›๐‘‘ ัฆ โ‰  ร˜ , so ำผ = ัฆโ‹ƒัฆ๐‘ , ัฆ โ‹‚ ัฆ๐‘ = ๏ฆ , ๐‘Ž๐‘›๐‘‘ ัฆ, ัฆ๐‘ โ‰  ๏ฆ. Then, ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-disconnected and that is a contradiction. So, where ัฆ โŠ† ำผ , ัฆ , ัฆ๐‘ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(๐‘ฅ), then, ัฆ = ำผ or ัฆ = ร˜ . Conversely ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-disconnected space; This means that ำผ = ๐’ฒโ‹ƒ๐’ต , ๐’ฒ, ๐’ต โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(๐‘ฅ), ๐’ฒ โ‹‚ ๐’ต = ๏ฆ , and ๐’ฒ, ๐’ต โ‰  ร˜ implies that ๐’ฒ = ๐’ต ๐‘ and ๐’ต = ๐’ฒ๐‘ . So ๐’ฒ, ๐’ต โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘(๐‘ฅ) (that is a contradiction).Therefore, ำผ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space. Remark 3.9. If แธŸ โˆถ (ำผ, ฯ„, โ‚ฒ) โ†’ (ฦณ, ๐œโ€ฒ, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ-๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ and onto function and ฦณ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘’๐‘‘ space, then ำผ is not necessary โ‚ฒ โˆ— ๐‘ ๐‘œ-๐‘๐‘œ๐‘›๐‘›๐‘’๐‘๐‘ก๐‘’๐‘‘ space. Example 3.10. Let แธŸ โˆถ (โ„, D, โ‚ฒ) โ†’ (โ„, ฮ™, โ‚ฒ), such that แธŸ(ำฝ) = ำฝ , for all ำฝ โˆˆ โ„ , and โ‚ฒ = โ„™(ำผ) โˆ– {ร˜} , so แธŸ is a โ‚ฒ โˆ— ๐‘ ๐‘œ- ๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ and onto function, (โ„, ฮ™, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space, and (โ„, D, โ‚ฒ) is a โ‚ฒ โˆ— ๐‘ ๐‘œ- disconnected space. Theorem 3.11. If ัฆ and ษƒ are a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected spaces of (ำผ, ฯ„, โ‚ฒ) and ัฆ โ‹‚ ษƒ โ‰  ๏ฆ, then ัฆโ‹ƒษƒ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space. Proof. Let (ำผ, ฯ„, โ‚ฒ) be a grill topological space and ัฆ, ษƒ โŠ† ำผ ; ัฆ, ษƒ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space. Now, if ัฆโ‹ƒษƒ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-disconnected space, so ัฆโ‹ƒษƒ = ๐’ฒโ‹ƒ๐’ต , ๐’ฒ, ๐’ต โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(๐‘ฅ)(ัฆโ‹ƒษƒ), ๐’ฒ โ‹‚ ๐’ต = ๏ฆ , and ๐’ฒ, ๐’ต โ‰  ร˜, then ัฆ โŠ† ัฆโ‹ƒษƒ , ัฆ โŠ† ๐’ฒโ‹ƒ๐’ต, ัฆ โŠ† ๐’ฒ ๐‘œ๐‘Ÿ ัฆ โŠ† ๐’ต. IHJPAS. 53 (4)2022 239 Similarly, ษƒ leads to either ัฆ โŠ† ๐’ฒ and ษƒ โŠ† ๐’ฒ then ัฆโ‹ƒษƒ โŠ† ๐’ฒ then ๐’ต = ร˜ C! Or ัฆ โŠ† ๐’ต and ษƒ โŠ† ๐’ต then ัฆโ‹ƒษƒ โŠ† ๐’ต then ๐’ฒ = ร˜ C! Or ัฆ โŠ† ๐’ฒ and ษƒ โŠ† ๐’ต then ัฆ โˆฉ ษƒ โŠ† ๐’ฒ โˆฉ ๐’ต then ัฆ โˆฉ ษƒ = ร˜ thatโ€™s contradiction Or ัฆ โŠ† ๐’ต and ษƒ โŠ† ๐’ฒ then ัฆ โˆฉ ษƒ โŠ† ๐’ฒ โˆฉ ๐’ต then ัฆ โˆฉ ษƒ = ร˜ (thatโ€™s contradiction!). So, ัฆโ‹ƒษƒ is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected space. Remark 3.12. We can generalize Theorem 3.11. to a family of a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected sets as follows: let {ัฆโˆ}โˆโˆˆโˆง be a family of a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected subsets of a space (ำผ, ฯ„, โ‚ฒ) and โ‹‚ ัฆโˆ โ‰  ร˜โˆโˆˆโˆง , then โ‹ƒ ัฆโˆโˆโˆˆโˆง is a โ‚ฒ โˆ— ๐‘ ๐‘œ-connected set. 4. Grill Semi-Open Sets in Grill Connected Space Hyperconnected Definition 4.1. In any grill topological space (ำผ, ฯ„, โ‚ฒ) is said to be: 1. โˆ—-hyperconnected if ัฆ is ฯ„โ‚ฒ-dense (๐‘๐œ„โ‚ฒ(ัฆ) = ำผ) for every non-empty open subset ัฆ of ำผ. 2. โ‚ฒ โˆ— -hyperconnected if ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) โˆ‰ โ‚ฒ for every non-empty open subset ัฆ of ำผ. 3. โ‚ฒ โˆ— ๐‘ -hyperconnected if ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) โˆ‰ โ‚ฒ for every non-empty โ‚ฒ โˆ— ๐‘ -๐‘œ๐‘๐‘’๐‘› subset ัฆ of ำผ. 4. โ‚ฒ โˆ— ๐‘ ๐‘œ-hyperconnected if ๐‘๐œ„โ‚ฒ(ัฆ) = ำผ for all ัฆ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ). Proposition 4.2. 1. Every โ‚ฒ โˆ— ๐‘ ๐‘œ-hyperconnected is โˆ—-hyperconnected. 2. Every โˆ—-hyperconnected is โ‚ฒ โˆ— -hyperconnected. 3. Every โ‚ฒ โˆ— ๐‘ -hyperconnected is โ‚ฒ โˆ— -hyperconnected. 4. Every โ‚ฒ โˆ— ๐‘ ๐‘œ-hyperconnected is โ‚ฒ โˆ— ๐‘ -hyperconnected. Proof. 1. Let ัฆ be a โ‚ฒ โˆ— ๐‘ ๐‘œ-hyperconnected, then ๐‘๐œ„โ‚ฒ(ัฆ) = ำผ, then ัฆ is a โˆ—-hyperconnected (since ัฆ โˆˆ โ‚ฒ โˆ— ๐‘ ๐‘œ(ำผ) then ัฆ โˆˆ ฯ„). 2. Let ัฆ be a โˆ—-hyperconnected. This means that ๐‘๐œ„โ‚ฒ(ัฆ) = ำผ. So, ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) = โˆ… โˆ‰ โ‚ฒ. Therefore, ัฆ is a โ‚ฒ โˆ— -hyperconnected. 3. Let ัฆ be an open in โ‚ฒ โˆ— ๐‘ -hyperconnected. This means that ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) โˆ‰ โ‚ฒ โˆ— ๐‘ -hyperconnected (since every open set in โ‚ฒ โˆ— ๐‘ -hyperconnected is an open set in โ‚ฒ โˆ— -hyperconnected. So, ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) โˆ‰ โ‚ฒ .Therefore, ัฆ is a โ‚ฒ โˆ— -hyperconnected. 4. Let ัฆ be an open set in โ‚ฒ โˆ— ๐‘ ๐‘œ-hyperconnected. This means that ๐‘๐œ„โ‚ฒ(ัฆ) = ำผ. So, ำผ โˆ’ ๐‘๐œ„โ‚ฒ(ัฆ) โˆ‰ โ‚ฒ. Therefore, ัฆ is a โ‚ฒ โˆ— ๐‘ -hyperconnected. The following diagram shows the relationship between the types of hyperconnected. โˆ—- hyperconnected โ‚ฒ โˆ— ๐‘ ๐‘œ- hyperconnected โ‚ฒ โˆ— - hyperconnected โ‚ฒ โˆ— ๐‘ -hyperconnected Diagram 1 Hyperconnected space via grill space 4. Conclusion IHJPAS. 53 (4)2022 240 In this research, we studied a connect space in the grill semi-open topological spaces, some examples are showed, and some theorems are applied for these new sets. We also found some new properties of these sets. References 1. Choquet, G. Sur Les Notions De Filtre Et Grille, Comptes Rendus Acad. Sci. Paris, 1947, 224, 171-173. 2.Esmaeel, R.B.; Mohammad,R.J . On Nano Soft J-Semi-G-Closed Sets, J. Phys. Conf. Ser. 2020,159(1) 012071. 3.Esmaeel, R. B; Nasir, A. I; Kalaf , B.A. On ฮฑ- ฤจ-Closed Soft Sets. Sci. Inter. (Lahore). 2018. 30(5): 703- 705. 4.Levine, N. Semi-Open Sets And Semi-Continuity in Topological Spaces, Amer Math. Monthly, 1963, 70, 36-41. 5. Al-Omary, A ; Noiri,T. Decompositions of Continuity via Grills, Jordan Journal Mathematics and Statistics (JJMS) .2011, 4(1),33-46 6. Saravanakumar, D. ; Kalaivani, N. On Grill Sp- Open Set in Grill Topological Spaces, journal of new theory, 2018, 23, 85-92. 7.Mustafa, M.O.; Esmaeel , R.B. Separation Axioms with Grill-Toplogical Open Set, J. Phys. 2021, 1879,2, 022107. 8. Arkhangel'skii, A.V. ; Ponomar''ev. V.I. Fundamentals of General Topology-Problems And Exercises, Hindustan Pub.Corporation, Delhi, 1966. 9. Roy, B. ; Mukherjee, M. N. On a Typical Topology Induced by a Grill, Soochow J. Math., 2007,33 (4), 771-786. 10. Suliman, S.S ; Esmaeel, R. B. On Some Topology Concepts via Grill, Int. J. Nonlinear Anal. Appl. 2022, 13 1, 3765 โ€“ 3772.