IHJPAS. 53 (4)2022 213 This work is licensed under a Creative Commons Attribution 4.0 International License. Some Properties of Connectedness in Grill Topological Spaces Abstract We use the idea of Grill, this study generalized a new sort of linked space like โ€“connected โ€“ hyperconnected and investigated its features, as well as the relationship between it and previously described notation. It also developed new sorts of functions, such as hyperconnected space, and identifying their relationship, by offering numerous instance and attributes that belong to this set. This set will serve as a starting point for further research into the sets many future possibilities. Also, we use some of the theorems and observations previously studied and relate them to the grill and the Alpha group, and benefit from them in order to obtain new results in this research. We applied the concept of Connected to them and obtained results related to Connected. The sources related to the Connected and Alpha were considered as starting points and an important basis in this research. Keywords: Grill, โ‚ข*๐›ผ-connected, โ‚ข*๐›ผ-๐‘‘๐‘–๐‘ connected, โ‚ขโˆ—๐›ผ๐‘œ(๊ ), โ‚ขโˆ— ๐›ผ -open. 1. Introduction [1], [2] established a grill notion in a topological space, and the grill has shown to be an effective tool for learning a variety of topological concerns. A subset of a topological space (๊ , ๐œ) which is a non-empty collection โ‚ข is referred to be a grill whenever (a) ศบ โˆˆโ‚ข and ศบ โŠ† ำ implying ฦโˆˆโ‚ข. (b) ๊  has a subset ศบ and ำ also ศบ โˆช ฦโˆˆโ‚ข lead to ศบ โˆˆโ‚ข or ฦโˆˆโ‚ข. A triple (๊ , ๐œ, โ‚ข) topological space with grills is one type of topological space. Mukherjee and Roy [3] created a distinctive topology with a grill and investigated topological notions. For every topological space (๊ , ๐œ) point ๊ , Neighborhoods are open of ๊  embodied Doi: 10.30526/35.4.2878 Article history: Received 12 June 2022, Accepted 21 August 2022, Published in October 2022. Ibn Al Haitham Journal for Pure and Applied Sciences Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index Saad S. Suliman Department of Mathematics, College of Education for Pure Science, Ibn Al Haitham,University of Baghdad, Iraq. saadsadeq05@gmail.com Esmaeel R.B. Department of Mathematics, College of Education for Pure Science, Ibn Al Haitham,University of Baghdad, Iraq. Ranamumosa@yahoo.com https://creativecommons.org/licenses/by/4.0/ mailto:saadsadeq05@gmail.com mailto:Ranamumosa@yahoo.com IHJPAS. 53 (4)2022 214 by ๐œ(๊ ). A mapping ัฐ:โ„™(๊ ) โ†’ โ„™(๊ ) is referred to as โˆฎ( ศบ) = { ๊  โˆˆ ๊ : ศบ โˆฉ แปฎ โˆˆ โ‚ข apiece แปฎ โˆˆ ฯ„(๊ )} for every ศบ โˆˆ โ„™(๊ ). A mapping ัฐ: โ„™(๊ ) โ†’โ„™(๊ ) is referred to as ัฐ (ศบ) = ศบ โˆช โˆฎ (ศบ) for every ศบ โˆˆ โ„™(๊ ). The map ัฐ Kuratowski closure axioms are met: (๐‘Ž) ัฐ (โˆ…) = โˆ…, (๐‘) ๐‘คโ„Ž๐‘’๐‘› ศบ โŠ† ฦ, ๐‘ ๐‘œ ัฐ (ศบ) โŠ† ัฐ (ฦ), (๐‘) ๐‘คโ„Ž๐‘’๐‘› ศบ โŠ† ๊ , ๐‘ ๐‘œ ัฐ (ัฐ (ศบ)) = ัฐ (ศบ), (๐‘‘) ๐‘คโ„Ž๐‘’๐‘› ศบ, ฦ โŠ† ๊ , ๐‘ ๐‘œ ัฐ (ศบ โˆช ฦ) = ัฐ (ศบ) โˆช ัฐ (ฦ). Grill topological spaces come in a variety of shapes and size as a discrete topology and a complement finite topology. [4] [5] On a space (๊ , ๐œ), this agrees to a grill โ‚ข a topology exists ๐œโ‚ข on ๊  that is given by no one else by ๐œโ‚ข = {แปฎ โŠ†๊ : ัฐ (๊  โ€“ แปฎ) = ๊  โ€“ แปฎ}, Consequently, ศบ โŠ† ๊ , ัฐ (ศบ) = ศบ โˆช โˆฎ( ศบ). ฯ„ โŠ† ๐œโ‚ข and ัฐ (ศบ) = ๐‘๐œ„(ศบ). Using the following as a basis, we are able to locate ๐œโ‚ข on ๊  by supplying ๐œโ‚ข through using the following as a basis ๐›ฝ (๐œโ‚ข, ๊ ) = {ฦณ โˆ’ ศบ; ฦณ โˆˆ ๐œ, ศบ โˆ‰ โ‚ข}. [6]. On a space (๊ , ๐œ), there is a grill โ‚ข, ๐œ โŠ† ๐›ฝ(โ‚ข, ฯ„) โŠ† ๐œโ‚ข, where ๐›ฝ(โ‚ข, ฯ„) basis for ๐œโ‚ข. As an example, [7] to exist in a space (๊ , ๐œ) , ๐œโ‚ข = ๐œ whenever โ‚ข = โ„™(๊ ) โˆ– {ร˜} implying ๐œโ‚ข = ฯ„. The family of all ๐›ผ -open set is showed by ๐œ๐‘ . ๐›ผ -๐‘œ๐‘๐‘’๐‘› ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ศบ ๐‘œ๐‘“ ๐‘Ž ๐‘ ๐‘๐‘Ž๐‘๐‘’ (๊ , ๐œ), [8] ๐‘–๐‘“ ศบ โŠ† ๐œ๐‘™(แถฉ๐‘›๐‘ก(ศบ)), Let (๊ , ฯ„, โ‚ข) be topological space. The subset ศบ in ๊  is known as โ‚ข ๐›ผ -open if ศบ โŠ† ัฐ(แถฉ๐‘›๐‘ก(ศบ)), and every ัฐ ๐›ผ -open is an ๐›ผ -open. Many researchers have generalized using these [9] [10]. The symbol แถฉ๐‘›๐‘ก(ศบ) is the interior set of ศบ and ๐œ๐‘™(ศบ) denotes the closure of ศบ. combinations The space (๊ , ๏ด) is disconnected if and only if there exist two open disjoint nonempty sets ศบ and ฦ such that ศบโ‹ƒฦ = ๊ . i.e., ๊  is disconnected ๐‘–๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“ ๊  = โ‹ƒฦ ; ศบ, ฦ โˆˆ ๏ด , ศบ โ‹‚ ฦ = ๏ฆ , ศบ, ฦ๏‚น ๏ฆ. The sets ศบ and ฦ form a separation of ๊ . The space (๊ , ๏ด) is connected if and only if it is not disconnectaaed. ๊  is connected if and only if ๊  ๏‚น ศบโ‹ƒฦ ; ศบ, ฦ โˆˆ ๏ด , ศบ โ‹‚ฦ = ๏ฆ , ศบ, ฦ๏‚น ๏ฆ. 2. Grill ๐œถ -open sets Definition 2.1. In [10], the set ศบ is referred to as Grill ฮฑ-open if แถŠ โˆˆ ๐œ ; แถŠ โˆ’ ศบ โˆ‰ โ‚ข and ศบ โˆ’ แถฉ๐‘›๐‘ก๐œ๐‘™โ‚ข(แถŠ) โˆ‰ โ‚ข. As stated by โ‚ขโˆ—ฮฑ โˆ’ open, the complment of โ‚ขโˆ— ฮฑ โˆ’ open is โ‚ขโˆ—ฮฑ โˆ’ closed. The set of all โ‚ขโˆ—ฮฑ โˆ’ open is represented by โ‚ขโˆ—ฮฑ๐‘œ(๊ก), and โ‚ขโˆ—ฮฑ โˆ’ closed is denoted by โ‚ขโˆ—ฮฑ๐‘(๊ก) . a Example 2.2. [10] Let (๊ ,๊š, โ‚ข) is a topological space of the grill, and let ๊  = {๊ก 1 , ๊ก 2 , ๊ก 3 }, ๐œ = {๊ , ร˜, {๊ก 1 }, {๊ก 1 , ๊ก 2 }} , โ„ฑ = {๊ , ร˜, {๊ก 3 }, {๊ก 2 , ๊ก 3 }} , โ‚ข = {แถŠ โŠ† ๊ ; ๊ก 2 โˆŠ แถŠ} , ร˜: P(๊ ) โ‡พ P(๊ ), }} ๊ก 2 },{ ๊ก 2 ,๊ก 3 },{ ๊ก 1 , ๊ก 2 ,{ร˜ , ๊ ={ โ‚ขฯ„ ,ร˜ โˆช ศบ = )ศบ( ัฐ ,ร˜(ศบ) = {๊ก โˆˆ ๊ ; โˆ€แถŠ โˆˆ ๐œ๐‘ฅ ; แถŠ โˆฉ ศบ โˆˆ โ‚ข} ,โ„ฑโ‚ข = {๊ , ร˜,{ ๊ก3},{๊ก1},{๊ก2, ๊ก3}},so โ‚ข โˆ—ฮฑ๐‘œ(๊ก) = {๊ , ร˜, {๊ก 3 }, {๊ก 2 }, {๊ก 1 }, {๊ก 2 , ๊ก 3 }, {๊ก 1 , ๊ก 2 }, {๊ก 3 , ๊ก 1 }}. IHJPAS. 53 (4)2022 215 Theorem 2.3. [10] The union of any family of โ‚ขโˆ— โˆ’ ๐›ผ open set is a โ‚ขโˆ— โˆ’ ๐›ผ open set. Remark 2.4. [10] Both ideas are related โ‚ขโˆ—ฮฑ โˆ’ open set , ฮฑ โˆ’ open set are independent. Remark 2.5. [10] Supra topology refers to the collection of all โ‚ขโˆ—ฮฑ-open sets. Remark 2.6 [10] i. The open set leads to โ‚ขโˆ—ฮฑ- open set. ii. The closed set leads to โ‚ขโˆ—ฮฑ- closed set. Theorem 2.7. [10] The โ‚ข ฮฑ-open leads to โ‚ขโˆ—ฮฑ-open. Proposition 2.8. [10] For any Grill topology (๊ , ฯ„, โ‚ข), ศบ is a โ‚ข ฮฑ-open set if and only if ศบ ๐‘–๐‘  ๐‘Ž โ‚ขโˆ—ฮฑ-open set whenever โ‚ข = โ„™(๊ ) โˆ– {โˆ…}. Definition 2.9. [10] The function แถ‚: (๊ , ฯ„, โ‚ข)) โ†’ (๊ , ๐œโ€ฒ, โ‚ข) is referred to as: 1. โ‚ขโˆ—ฮฑ-open function, shortly "โ‚ขโˆ—ฮฑ-o function" if แถ‚(แถŠ) โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฆ) when แถŠ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ). 2. โ‚ขโˆ—โˆ—ฮฑ- open function, shortly "โ‚ขโˆ—โˆ—ฮฑ-o function " if แถ‚(แถŠ) โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฆ) when แถŠ โˆˆ ๐œ . 3. โ‚ขโˆ—โˆ—โˆ—ฮฑ- open function, shortly "โ‚ขโˆ—โˆ—โˆ—ฮฑ-o function " if แถ‚(แถŠ) โˆˆ ๐œโ€ฒ whenever แถŠ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ). Definition 2.10 The function แถ‚ โˆถ (าฒ, ๐œ, โ‚ข) โ†’ (๊ , ๐œโ€ฒ, โ‚ข) is called ; 1. โ‚ขโˆ—๐›ผ โˆ’continuose function, shortly "โ‚ข * ฮฑ-"continuous function\" " if แถ‚ โˆ’1(แถŠ) โˆˆ โ‚ขโˆ—๐›ผ๐‘‚(าฒ) for all แถŠ โˆˆ ๐œโ€ฒ. 2. Strongly โ‚ขโˆ—๐›ผ โˆ’ ๐‘ontinuose function shortly "strongly โ‚ข*ฮฑ-continuous function" if แถ‚ โˆ’1(แถŠ) โˆˆ ๐œ, fore every แถŠ โˆˆ โ‚ขโˆ—๐›ผ๐‘‚(๊ ). 3. โ‚ขโˆ—๐›ผ โˆ’irresolute function, shortly "โ‚ข * ฮฑ-irresolute function" if แถ‚ โˆ’1(แถŠ) โˆˆ โ‚ขโˆ—๐›ผ๐‘‚(าฒ), for every แถŠ โˆˆ โ‚ขโˆ—๐›ผ๐‘‚(๊ ) 3. Grill ๐œถ -open sets in grill connected space Definition 3.1: The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected if and only if there exist two โ‚ขโˆ—๐›ผ-open disjoint nonempty sets ศบ and ฦ such that ศบโ‹ƒฦ = ๊ . i.e.,๊  is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected if and only if ๊  =ศบโ‹ƒฦ ; ศบ, ฦ โˆˆ โ‚ขโˆ—๐‘ ๐‘œ(๊ ) , ศบ โ‹‚ ฦ = ๏ฆ . The s๐‘’ts ศบ and ฦ form a โ‚ขโˆ—๐‘ ๐‘œ-separation of ๊ . The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐‘ ๐‘œ- connected if and IHJPAS. 53 (4)2022 216 only if it is not โ‚ขโˆ—๐›ผ๐‘œ- disconnected. ๊  is a โ‚ขโˆ—๐›ผ๐‘œ- connected if and only if ๊  ๏‚น ศบโ‹ƒฦ ; ศบ, ฦ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ), ศบ โ‹‚ ฦ = ๏ฆ , ศบ, ฦ๏‚น ๏ฆ. Example 3.2. L๐‘’t (๊ , ฯ„, โ‚ข) topological ๐‘ pace b๐‘’ a ๐‘”๐‘Ÿill a๐‘›d ๊  = {๊  1 , ๊  2 , ๊  3 }, ๐œ = ๐œโ‚ข = {๊ , ร˜, {๊  2 }, {๊  3 }}, โ‚ข = โ„™(๊ ) โˆ– {ร˜} is a โ‚ขโˆ—๐›ผ๐‘œ- connected space. Remark 3.3 Every disconnected set is a โ‚ขโˆ—๐›ผ๐‘œ-disconnected. Proof. Let ๊  is disconnected set, then the exist ๐’ฒ โ‰  โˆ…, ๐’ต โ‰  โˆ… and ๐’ฒ, ๐’ต โˆˆ ฯ„ ; ๐’ฒ โ‹‚ ๐’ต = โˆ… ๐‘Ž๐‘›๐‘‘ ๐’ฒ โ‹ƒ ๐’ต = ๊  since every open set in โ‚ขโˆ—๐›ผ-open set. Therefore, ๊  is โ‚ขโˆ—๐›ผ๐‘œ-disconnected. Remark 3.4. The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected with any grill and โ‚ขโˆ—๐›ผ๐‘œ(๊ ) = โ„™(๊ ) if ๊  contained more than one element since there exist ศบ and ศบ๐‘ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ); ศบ โ‹ƒฦ = ๊ , ศบ โ‹‚ ฦ = ๏ฆ, ศบ, ฦ๏‚น ๏ฆ. Remark 3.5. The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected and โ‚ข = โˆ… and ๐œโ‚ข = {๊ , ร˜}, so โ‚ข โˆ—๐›ผ๐‘œ- connected space. Remark 3.6. If ๐œโ‚ข = โ„ฑโ‚ข and ๐œโ‚ข โ‰  ฮ™๐‘›๐‘‘๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ก , when โ‚ข = โ„™(๊ ) โˆ– {ร˜}. This means that (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected . Theorem 3.7. The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ-connected if and only ๊  cannot be written as a union of two non-empty disjoint closed sets. Proof. Let ๊  be a โ‚ขโˆ—๐›ผ๐‘œ-connected if ๊  = ศบ โ‹ƒฦ, such that; ศบ and ฦ โˆˆ โ‚ขโˆ—๐›ผ๐‘(๊ ) , ศบ โ‹‚ ฦ = ๏ฆ, ศบ, ฦ๏‚น ๏ฆ , so. ศบ = ฦ๐‘ ๐‘Ž๐‘›๐‘‘ ฦ = ศบ๐‘ , then ๊  = ศบโ‹ƒฦ; ศบ and ฦ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ), ศบ โ‹‚ ฦ = ๏ฆ, ศบ, ฦ๏‚น ๏ฆ , that is mean that ๊  is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected. That is contradiction. Therefore, ๊  cannot be written as a union of two non-empty disjoint closed set. Now, if ๊  is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected space ,so. ๊ = ศบ โ‹ƒฦ; ศบ and ฦ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ), ศบ โ‹‚ ฦ = ๏ฆ, ศบ, ฦ๏‚น ๏ฆ , so ศบ = ฦ ๐‘ ๐‘Ž๐‘›๐‘‘ ฦ = ศบ๐‘ ,then ศบ and ฦ โˆˆ โ‚ขโˆ—๐›ผ๐‘(๐‘ฅ), but that is a contradiction. Therefore, ๊  is a โ‚ขโˆ—๐›ผ๐‘œ- connected space. Theorem 3.8. The space (๊ , ฯ„, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ-connected if and only if the only the subsets of the space ๊  which are โ‚ขโˆ—๐›ผ-open and โ‚ขโˆ—๐›ผ-closed are ๊  and ร˜ . IHJPAS. 53 (4)2022 217 Proof. Let ศบ and ศบ๐‘ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฅ) and ศบ โ‰  ๊  , ศบ โ‰  ร˜ ,so ๊  = ศบโ‹ƒศบ๐‘ ; ศบ โ‹‚ ศบ๐‘ = ๏ฆ , ศบ, ศบ๐‘ โ‰  ๏ฆ. Then, ๊  is a โ‚ขโˆ—๐›ผ๐‘œ-disconnected, and that is a contradiction. So, where ศบ โŠ† ๊  , ศบ , ศบ๐‘ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฅ), then ศบ = ๊  or ศบ = ร˜, let ๊  be a โ‚ขโˆ—๐›ผ๐‘œ-disconnected space. This means that ๊  = ๐’ฒโ‹ƒ๐’ต ; ๐’ฒ, ๐’ต โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฅ), ๐’ฒ โ‹‚ ๐’ต = ๏ฆ and ๐’ฒ, ๐’ต โ‰  ร˜ implies that ๐’ฒ = ๐’ต ๐‘ and ๐’ต = ๐’ฒ๐‘ . So ๐’ฒ, ๐’ต โˆˆ โ‚ขโˆ—๐›ผ๐‘(๐‘ฅ) (that is contradiction) Therefore, ๊  is a โ‚ขโˆ—๐›ผ๐‘œ-connected space. Remark 3.9. If แถ‚ โˆถ (๊ , ฯ„, โ‚ข) โ†’ (ฦณ, ๐œโ€ฒ, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ-irresolute and onto function and ฦณ is a โ‚ขโˆ—๐›ผ๐‘œ-connected space then ๊  is not necessary โ‚ขโˆ—๐›ผ๐‘œ-connected space. Example 3.10. Let แถ‚ โˆถ (โ„, D, โ‚ข) โ†’ (โ„, ฮ™, โ‚ข) ; แธŸ(๊ ) = ๊  for all ๊  โˆˆ โ„ and โ‚ข = โ„™(๊ ) โˆ– {ร˜} ,so แธŸ is a โ‚ขโˆ—๐›ผ๐‘œ- ๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ and onto function and (โ„, ฮ™, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ-connected space and (โ„, D, โ‚ข) is a โ‚ขโˆ—๐›ผ๐‘œ- disconnected space. Theorem 3.11. If ศบ and ฦ are a โ‚ขโˆ—๐›ผ๐‘œ-connected spaces of (๊ , ฯ„, โ‚ข) and ศบ โ‹‚ ฦ โ‰  ๏ฆ, then ศบโ‹ƒฦ is a โ‚ขโˆ—๐›ผ๐‘œ-connected space. Proof. Let (๊ , ฯ„, โ‚ข) be a grill topological space and ศบ, ฦ โŠ† ๊  ; ศบ, ฦ be a โ‚ขโˆ—๐›ผ๐‘œ-connected space. Now, If ศบโ‹ƒฦ is a โ‚ขโˆ—๐›ผ๐‘œ-disconnected space, so ศบโ‹ƒฦ = ๐’ฒโ‹ƒ๐’ต ; ๐’ฒ, ๐’ต โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๐‘ฅ)(ศบโ‹ƒฦ), ๐’ฒ โ‹‚ ๐’ต = ๏ฆ and ๐’ฒ, ๐’ต โ‰  ร˜ ,then ศบ โŠ† ศบโ‹ƒฦ , ศบ โŠ† ๐’ฒโ‹ƒ๐’ต, ศบ โŠ† ๐’ฒ ๐‘œ๐‘Ÿ ศบ โŠ† ๐’ต. Similarly, ฦ leads to either ศบ โŠ† ๐’ฒ and ฦ โŠ† ๐’ฒ, then ศบโ‹ƒฦ โŠ† ๐’ฒ, then ๐’ต = ร˜ contradiction. Or, ศบ โŠ† ๐’ต and ฦ โŠ† ๐’ต, then ศบโ‹ƒฦ โŠ† ๐’ต, then ๐’ฒ = ร˜ C! Or ศบ โŠ† ๐’ฒ and ฦ โŠ† ๐’ต, then ศบ โˆฉ ฦ โŠ† ๐’ฒ โˆฉ ๐’ต, then ศบ โˆฉ ฦ = ร˜ C! Or ศบ โŠ† ๐’ต and ฦ โŠ† ๐’ฒ, then ศบ โˆฉ ฦ โŠ† ๐’ฒ โˆฉ ๐’ต, then ศบ โˆฉ ฦ = ร˜. This is a contradiction. So, ศบโ‹ƒฦ is a โ‚ขโˆ—๐›ผ๐‘œ-connected space. Remark 3.12. We can generalize Theorem 3.11 to a family of a โ‚ขโˆ—๐›ผ๐‘œ-connected sets as follows: let {ศบโˆ}โˆโˆˆโˆง be a family of a โ‚ขโˆ—๐›ผ๐‘œ-connected subsets of a space (๊ , ฯ„, โ‚ข) and โ‹‚ ศบโˆ โ‰  ร˜โˆโˆˆโˆง , then โ‹ƒ ศบโˆโˆโˆˆโˆง is a โ‚ขโˆ—๐›ผ๐‘œ-connected set. 4. Grill ๐œถ-open sets in grill connected space hyperconnected Definition 4.1. In any grill topological space, (๊ , ฯ„, โ‚ข) is said to be: 1. โˆ—-hyperconnected if ศบ is ฯ„โ‚ข-dense (๐œ๐‘™โ‚ข(ศบ) = ๊ ) for every non-empty open subset ศบ of ๊ . 2. โ‚ขโˆ—-hyperconnected if ๊  โˆ’ ๐œ๐‘™โ‚ข(ศบ) โˆ‰ โ‚ข for every non-empty open subset ศบ of ๊ . 3. โ‚ขโˆ—๐›ผ-hyperconnected if ๊  โˆ’ ๐œ๐‘™โ‚ข(ศบ) โˆ‰ โ‚ข for every non-empty โ‚ข โˆ—๐›ผ-๐‘œ๐‘๐‘’๐‘› subset ศบ of ๊ . 4. โ‚ขโˆ—๐›ผ๐‘œ-hyperconnected if ๐œ๐‘™โ‚ข(ศบ) = ๊  for all ศบ โˆˆ โ‚ข โˆ—๐›ผ๐‘œ(๊ ). IHJPAS. 53 (4)2022 218 Proposition 4.2. 1.Every โ‚ขโˆ—๐›ผ๐‘œ-hyperconnected is โˆ—-hyperconnected. 2. Every โˆ—-hyperconnected is โ‚ขโˆ—-hyperconnected. 3. Every โ‚ขโˆ—๐›ผ-hyperconnected is โ‚ขโˆ—-hyperconnected. 4. Every โ‚ขโˆ—๐›ผ๐‘œ-hyperconnected is โ‚ขโˆ—๐›ผ-hyperconnected. Proof. 1. Let ศบ is a โ‚ขโˆ—๐›ผ๐‘œ-hyperconnected, then ๐‘๐œ„โ‚ข(ศบ) = ๊  then ศบ is a โˆ—-hyperconnected (since ศบ โˆˆ โ‚ขโˆ—๐›ผ๐‘œ(๊ ). then ศบ โˆˆ ฯ„). 2. Let ศบ be a โˆ—-hyperconnected. This means that ๐‘๐œ„โ‚ข(ศบ) = ๊ . So, ๊  โˆ’ ๐‘๐œ„โ‚ข(ศบ) = โˆ… โˆ‰ โ‚ข. Therefore, ศบ is a โ‚ขโˆ—-hyperconnected. 3. Let ศบ be an open in โ‚ขโˆ—๐›ผ-hyperconnected that's mean that ๊  โˆ’ ๐‘๐œ„โ‚ข(ศบ) โˆ‰ โ‚ข โˆ—๐›ผ-hyperconnected (since every open set in โ‚ขโˆ—๐›ผ-hyperconnected is an open set in โ‚ขโˆ—-hyperconnected. So, ๊  โˆ’ ๐‘๐œ„โ‚ข(ศบ) โˆ‰ โ‚ข .Therefore, ศบ is a โ‚ข โˆ—-hyperconnected. 4. Let ศบ be an open in โ‚ขโˆ—๐›ผ๐‘œ-hyperconnected. This means that ๐‘๐œ„โ‚ข(ศบ) = ๊ . So, ๊  โˆ’ ๐‘๐œ„โ‚ข(ศบ) โˆ‰ โ‚ข. Therefore, ศบ is a โ‚ขโˆ—๐‘ -hyperconnected. The following diagram shows the relationship between the types of hyperconnected. โˆ—-hyperconn๐‘’cted โ‚ขโˆ—๐›ผ๐‘œ-hyperconn๐‘’cted โ‚ขโˆ—-hyperconn๐‘’cted โ‚ขโˆ—๐›ผ-hyperconnected Diagram 1 hyperconnected space via grill space . Conclusion4 In this research we studied a connect space in the grill ฮฑ -open topological spaces, we showed some examples and applied some theorems for this new sets. We also found some new properties of these sets. IHJPAS. 53 (4)2022 219 References 1. Choquet. G. Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224 1947, 171- 173. 2. Esmaeel, R.B.; Mohammad. R.J On nano soft J-semi-g-closed sets, J. Phys. Conf. Ser. 2020, 159(1), 012071. 3. Esmaeel, R. B; Nasir. A. I; Bayda Atiya Kalaf. on ฮฑ- ฤจ-closed soft sets. Sci. Inter. (Lahore). 2018. 30(5): 703-705. 4. Levine, N. semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 1963,70, 36-41. 5. Ahmed Al-Omary ; Takasi Noiri. Decompositions of continuity via grills, Jordan Journal Mathematics and Statistics (JJMS) ,2011,4(1), 33-46 6. Dhanabal Saravanakumar ; Nagarajan Kalaivani. on grill Sp- open set in grill topological spaces, journal of new theory, 2018, 23,85-92. 7. Mustafa, M.O.; Esmaeel , R.B. . separation Axioms with Grill-Topological open set, J. Phys. 2021, 1879,2, 022107. 8. Arkhangel'skii, A.V. ; Ponomar''ev, V.I. Fundamentals of general topology-problems and exercises, Hindustan Pub.Corporation, Delhi, 1966. 9. B. Roy ; M. N. Mukherjee. on a typical topology induced by a grill, Soochow J. Math., 2007, 33 (4) , 771-786. 10. Saad, S. Suliman ; R. B. Esmaeel. On some topology concepts via grill, Int. J. Nonlinear Anal. 2022, Appl. 13 , 1, 3765 โ€“ 3772.