IHJPAS. 36(1)2023 400 This work is licensed under a Creative Commons Attribution 4.0 International License Using a New General Complex Integral Transform for Solving Population Growth and Decay Problems Abstract The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects . We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions . Finally, we conclude that the SEJI transform can readily solve the problems of population increase and decay, and that the action of this integral transform in overcoming these challenges can be explained through applications. Keywords: decay problems, inverse of SEJI transform, population growth, SEJI transform. 1. Introduction: There are many integral transforms have been solved the population growth and decay problems, such as Sawi, Mohand, Kamal, Shehu, Elzaki and complex SEE transform [1-7]. The equation of population growth is a first order linear ordinary differential equation [8-12]. 𝑑𝑁 𝑑𝑑 = πœ‡π‘. (1) With initial condition doi.org/10.30526/36.1.2882 Article history: Received 21 June 2022, Accepted 21 Augest 2022, Published in January 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Sadiq A. Mehdi Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq Sadiqmehdi71@uomustansiriyah.edu.iq Emad A. Kuffi Department of Materials, College of Engineering, Al-Qadisiyah University, Al-Qadisiyah, Iraq. emad.abbas@qu.edu.iq Jinan A. Jasim Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq jinanadel78@uomustansiriyah.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:Sadiqmehdi71@uomustansiriyah.edu.iq mailto:emad.abbas@qu.edu.iq mailto:jinanadel78@uomustansiriyah.edu.iq IHJPAS. 36(1)2023 401 𝑁(𝑑0) = 𝑁0. (2) Where πœ‡ is a positive real number, 𝑁 is the population value at time 𝑑 and 𝑁0 is the initial population at time 𝑑0 . This equation is known as the Malthusian law of population growth. The decay problems of the core are defined as first order linear ordinary differential equations [13-15]. 𝑑𝑀 𝑑𝑑 = βˆ’πœ‚π‘€. (3) With initial condition 𝑀(𝑑0) = 𝑀0. (4) Where 𝑀 is the value of the matter at time 𝑑, πœ‚ ∈ ℝ+ and 𝑀0 is the initial matter at time 𝑑0. The negative sign in the equation (3) points the mass of the core decreases with time, thus the time derivative of 𝑀 denoted by 𝑑𝑀 𝑑𝑑 have to be negative. We define the SEJI integral transform as follows [16]: 𝑇𝑔 𝑐 {𝑓(𝑑); 𝑠} = 𝐹𝑔 𝑐 (𝑠) = 𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 𝑓(𝑑)𝑑𝑑, ∞ 𝑑=0 where 𝑑 β‰₯ 0, 𝑝(𝑠) β‰  0 and π‘ž(𝑠) are positive functions of parameter 𝑠, 𝑖 = βˆšβˆ’1. The SEJI integral transform of the function 𝑓(𝑑), 𝑑 β‰₯ 0 has a condition that 𝑓(𝑑) is a piecewise continuous and 𝑓(𝑑) of exponential order, which these sufficient conditions for the existence of SEJI integral transform for 𝑓(𝑑). 2. The Linearity Property of SEJE Transform We can prove easily the linearity property of the SEJE transform. Let 𝑇𝑔 𝑐 {𝑓(𝑑)} = 𝐹𝑔 𝑐 (𝑠) and 𝑇𝑔 𝑐 {β„Ž(𝑑)} = 𝐻𝑔 𝑐 (𝑠), then for every 𝛼 and 𝛽 are constants 𝑇𝑔 𝑐 {𝛼𝑓(𝑑) Β± π›½β„Ž(𝑑)} = 𝛼𝐹𝑔 𝑐 (𝑠) Β± 𝛽𝐻𝑔 𝑐 (𝑠) Proof: 𝑇𝑔 𝑐 {𝛼𝑓(𝑑) Β± π›½β„Ž(𝑑)} = 𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 (𝛼𝑓(𝑑) Β± π›½β„Ž(𝑑))𝑑𝑑, ∞ 𝑑=0 = 𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 (𝛼𝑓(𝑑))𝑑𝑑 Β± 𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 (π›½β„Ž(𝑑))𝑑𝑑, ∞ 𝑑=0 ∞ 𝑑=0 = 𝛼𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 𝑓(𝑑)𝑑𝑑 Β± 𝛽𝑝(𝑠) ∫ π‘’βˆ’π‘–π‘ž(𝑠)𝑑 β„Ž(𝑑)𝑑𝑑, ∞ 𝑑=0 ∞ 𝑑=0 = 𝛼𝐹𝑔 𝑐 (𝑠) Β± 𝛽𝐻𝑔 𝑐 (𝑠). ∎ Also, we can prove this property for the inverse of SEJI integral transform. 𝑓(𝑑) = 𝑇𝑔 𝑐 βˆ’1{𝐹𝑔 𝑐 (𝑠)} = 1 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) π‘’π‘–π‘ž(𝑠)𝑑 𝐹𝑔 𝑐 (𝑠)𝑑𝑠, 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž where 𝛿 is positive fixed number, 𝑑 β‰₯ 0. 𝑖 is complex number (𝑖2 = βˆ’1). Let 𝑇𝑔 𝑐 βˆ’1{𝐹𝑔 𝑐 (𝑠)} = 𝑓(𝑑) and 𝑇𝑔 𝑐 βˆ’1{𝐻𝑔 𝑐 (𝑠)} = β„Ž(𝑑) then for every 𝛼 and 𝛽 are constant IHJPAS. 36(1)2023 402 𝑇𝑔 𝑐 βˆ’1{𝛼𝐹𝑔 𝑐 (𝑠) Β± 𝛽𝐻𝑔 𝑐 (𝑠)} = 𝛼𝑓(𝑑) Β± π›½β„Ž(𝑑) . Proof: 𝑇𝑔 𝑐 βˆ’1{𝛼𝐹𝑔 𝑐 (𝑠) Β± 𝛽𝐻𝑔 𝑐 (𝑠)} = 1 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) π‘’π‘–π‘ž(𝑠)𝑑 (𝛼𝐹𝑔 𝑐 (𝑠) Β± 𝛽𝐻𝑔 𝑐 (𝑠)) 𝑑𝑠, 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž = 1 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) 𝑒 π‘–π‘ž(𝑠)𝑑 (𝛼𝐹𝑔 𝑐 (𝑠)) 𝑑𝑠 Β± 1 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) π‘’π‘–π‘ž(𝑠)𝑑 (𝛽𝐻𝑔 𝑐 (𝑠)) 𝑑𝑠, 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž = 𝛼 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) 𝑒 π‘–π‘ž(𝑠)𝑑 𝐹𝑔 𝑐 (𝑠)𝑑𝑠 Β± 𝛽 2πœ‹π‘– ∫ 𝑖 𝑝(𝑠) π‘’π‘–π‘ž(𝑠)𝑑 𝐻𝑔 𝑐 (𝑠)𝑑𝑠, 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž 𝛿+π‘–βˆž π›Ώβˆ’π‘–βˆž = 𝛼𝑓(𝑑) Β± π›½β„Ž(𝑑). ∎ 3. The SEJI Integral Transform for Some Fundamental Functions: [16] In the following a list the SEJE transform for some important functions: Table 1. The SEJE transform for some basic functions. Functions 𝒇(𝒕) π‘»π’ˆ 𝒄 {𝒇(𝒕)} = π‘­π’ˆ 𝒄 (𝒔) Functions 𝒇(𝒕) π‘»π’ˆ 𝒄 {𝒇(𝒕)} = π‘­π’ˆ 𝒄 (𝒔) 1. 1 βˆ’π‘–π‘(𝑠) π‘ž(𝑠) 6. 𝑒 𝛼𝑑 , 𝛼 is a constant βˆ’π‘(𝑠) [ 𝛼 𝛼 2 + (π‘ž(𝑠)) 2 + 𝑖 π‘ž(𝑠) 𝛼 2 + (π‘ž(𝑠)) 2 ] , π‘ž(𝑠) > π‘Ž. 2. t βˆ’ 𝑝(𝑠) [π‘ž(𝑠)]2 7. sin(𝛼𝑑) βˆ’π›Ό 𝑝(𝑠) (π‘ž(𝑠)) 2 βˆ’ 𝛼 2 , π‘ž(𝑠) > |𝛼| 3. 𝑑 2 2𝑖𝑝(𝑠) [π‘ž(𝑠)]3 8. cos(𝛼𝑑) βˆ’π‘– 𝑝(𝑠) π‘ž(𝑠) (π‘ž(𝑠)) 2 βˆ’ 𝛼 2 , π‘ž(𝑠) > |𝛼|. 4. 𝑑 𝑛, 𝑛 ∈ 𝑁 (βˆ’π‘–)𝑛+1 𝑛! 𝑝(𝑠) [π‘ž(𝑠)]𝑛+1 9. sinh(𝛼𝑑) βˆ’π›Ό 𝑝(𝑠) (π‘ž(𝑠)) 2 + 𝛼 2 , π‘ž(𝑠) > 0. 5. 𝑑 𝑛, 𝑛 > βˆ’1 (βˆ’π‘–)𝑛+1 Ξ“(𝑛 + 1) 𝑝(𝑠) [π‘ž(𝑠)]𝑛+1 10. cosh(𝛼𝑑) βˆ’π‘– 𝑝(𝑠) π‘ž(𝑠) (π‘ž(𝑠)) 2 + 𝛼 2 , π‘ž(𝑠) > 0. 4. The Inverse of SEJI Integral Transform for Some Fundamental Functions: [16] In the following a list of the inverse of the SEJI integral transform for some important functions: Table 2. The inverse of SEJE transform for some basic functions. IHJPAS. 36(1)2023 403 π‘­π’ˆ 𝒄 (𝒔) 𝒇(𝒕) = π‘»π’ˆ 𝒄 βˆ’πŸ{π‘­π’ˆ 𝒄 (𝒔)} π‘­π’ˆ 𝒄 (𝒔) 𝒇(𝒕) = π‘»π’ˆ 𝒄 βˆ’πŸ{π‘­π’ˆ 𝒄 (𝒔)} 1. βˆ’π‘–π‘(𝑠) π‘ž(𝑠) 1 6. βˆ’π‘(𝑠) [ 𝛽 𝛽2+(π‘ž(𝑠)) 2 + 𝑖 π‘ž(𝑠) 𝛽2+(π‘ž(𝑠)) 2], π‘ž(𝑠) > 𝛽. 𝑒 𝛽𝑑 , 𝛽 is a constant 2. βˆ’ 𝑝(𝑠) [π‘ž(𝑠)]2 t 7. βˆ’π›½ 𝑝(𝑠) (π‘ž(𝑠)) 2 βˆ’π›½2 , π‘ž(𝑠) > |𝛽| sin(𝛽𝑑) 3. 2𝑖𝑝(𝑠) [π‘ž(𝑠)]3 𝑑 2 2! 8. βˆ’π‘– 𝑝(𝑠) π‘ž(𝑠) (π‘ž(𝑠)) 2 βˆ’π›½2 , π‘ž(𝑠) > |𝛽|. cos(𝛽𝑑) 4. (βˆ’π‘–)𝑛+1 𝑝(𝑠) [π‘ž(𝑠)]𝑛+1 , 𝑛 ∈ 𝑁 𝑑 𝑛 𝑛! 9. βˆ’π›½ 𝑝(𝑠) (π‘ž(𝑠)) 2 +𝛽2 , π‘ž(𝑠) > 0. sinh(𝛽𝑑) 5. (βˆ’π‘–)𝑛+1 𝑝(𝑠) [π‘ž(𝑠)]𝑛+1 , 𝑛 > βˆ’1 𝑑 𝑛 Ξ“(𝑛 + 1) 10. βˆ’π‘– 𝑝(𝑠) π‘ž(𝑠) (π‘ž(𝑠)) 2 +𝛽2 , π‘ž(𝑠) > 0. cosh(𝛽𝑑) 5.The SEJI Integral Transform of Derivatives of a Function 𝐟(𝐭): [16] In [10] gave the application of SEJI integral transform to derivative of 𝑓(𝑑). Let 𝑇𝑔 𝑐 {𝑓(𝑑)} = 𝐹𝑔 𝑐 (𝑠), we get: i. 𝑇𝑔 𝑐 {𝑓′(𝑑)} = π‘–π‘ž(𝑠)𝐹𝑔 𝑐 (𝑠) βˆ’ 𝑓(0)𝑝(𝑠). ii. 𝑇𝑔 𝑐 {𝑓′′(𝑑)} = (π‘–π‘ž(𝑠)) 2 𝐹𝑔 𝑐 (𝑠) βˆ’ 𝑝(𝑠)𝑓 β€²(0) βˆ’ π‘–π‘ž(𝑠)𝑝(𝑠)𝑓(0). iii. 𝑇𝑔 𝑐 {𝑓 (𝑛)(𝑑)} = (π‘–π‘ž(𝑠)) 𝑛 𝐹𝑔 𝑐 (𝑠) βˆ’ 𝑝(𝑠) [βˆ‘ (π‘–π‘ž(𝑠)) π‘˜βˆ’1𝑛 π‘˜=1 𝑓 (π‘›βˆ’π‘˜)(0)]. 6.The Method of SEJI Integral Transform for Solving The Population Growth Problem: In this section, we illustrate the method of solution the population growth problem in equation (1) and (2) by using the SEJI integral transform. Take the SEJI integral transform for equation (1): 𝑇𝑔 𝑐 { 𝑑𝑁 𝑑𝑑 } = 𝑇𝑔 𝑐 {πœ‡π‘}. (5) As we know, SEJE transform of derivative of function, so we get: π‘–π‘ž(𝑠)𝑁𝑔 𝑐 (𝑠) βˆ’ 𝑁(0)𝑝(𝑠) = πœ‡π‘π‘” 𝑐 (𝑠). (6) By applying the initial condition (2) and on simplification, we get: 𝑁𝑔 𝑐 (𝑠)[π‘–π‘ž(𝑠) βˆ’ πœ‡] = 𝑁0𝑝(𝑠). Then, 𝑁𝑔 𝑐 (𝑠) = 𝑁0𝑝(𝑠) [π‘–π‘ž(𝑠) βˆ’ πœ‡] . (7) For obtaining the value of 𝑁(𝑑) we take the inverse SEJE integral transform on both sides of (7), so we have: 𝑁(𝑑) = 𝑇𝑔 𝑐 βˆ’1{𝑁𝑔 𝑐 (𝑠)} = 𝑁0 𝑇𝑔 𝑐 βˆ’1 { 𝑝(𝑠) [π‘–π‘ž(𝑠) βˆ’ πœ‡] }, 𝑁(𝑑) = 𝑁0𝑒 πœ‡π‘‘ . βˆ€t β‰₯ 0 where 𝑁(𝑑) be the value of population at time 𝑑. IHJPAS. 36(1)2023 404 7.The Method of SEJE Transform for Solving The Decay Problem: In this section, we introduce the method of solution the decay problem in equations (3) and (4) by using the SEJE transform. Take the SEJE transform for equation (3): 𝑇𝑔 𝑐 { 𝑑𝑀 𝑑𝑑 } = 𝑇𝑔 𝑐 {βˆ’πœ‚π‘€}. (8) As we know, SEJE transform of derivative of function, so we have: π‘–π‘ž(𝑠)𝑀𝑔 𝑐 (𝑠) βˆ’ 𝑀(0)𝑝(𝑠) = βˆ’πœ‚π‘€π‘” 𝑐 (𝑠). (9) By applying the initial condition (4) and on simplification, we get: 𝑀𝑔 𝑐 (𝑠)[π‘–π‘ž(𝑠) + πœ‚] = 𝑀0𝑝(𝑠), we obtain: 𝑀𝑔 𝑐 (𝑠) = 𝑀0𝑝(𝑠) [π‘–π‘ž(𝑠) + πœ‚] . (10) For obtaining the value of 𝑀(𝑑) we take the inverse SEJE transform on both sides of (10), so we have: 𝑀(𝑑) = 𝑇𝑔 𝑐 βˆ’1{𝑀𝑔 𝑐 (𝑠)} = 𝑀0 𝑇𝑔 𝑐 βˆ’1 { 𝑝(𝑠) [π‘–π‘ž(𝑠) + πœ‚] }, 𝑀(𝑑) = 𝑀0𝑒 βˆ’πœ‚π‘‘ . βˆ€t β‰₯ 0 Where 𝑀(𝑑) is the value of substance at time 𝑑. 8.Applications: We have now some applications to explain the effect of SRJE integral transform in solving population growth and decay problems. Application 8.1: A country's population expands at a rate proportional to the number of people currently residing there. If the population doubles in three years and reaches 10,000 in five years, calculate the number of individuals who lived in the country at the start [10]. We can write this information by the following equation: 𝑑𝑁 𝑑𝑑 = πœ‡π‘. (11) Where 𝑁 is the number of people living in the country at time 𝑑 and πœ‡ is a proportionality rate. Assume that 𝑁0 is the country's initial population at time 𝑑 = 0. Now, we will apply the same steps in equation (11), 𝑇𝑔 𝑐 { 𝑑𝑁 𝑑𝑑 } = πœ‡π‘‡π‘” 𝑐 {𝑁}. (12) Since 𝑁 = 𝑁0 when 𝑑 = 0, so we get: 𝑁𝑔 𝑐 (𝑠) = 𝑁0𝑝(𝑠) [π‘–π‘ž(𝑠) βˆ’ πœ‡] . (13) By applying inverse of SEJE transform for (13), 𝑁(𝑑) = 𝑇𝑔 𝑐 βˆ’1{𝑁𝑔 𝑐 (𝑠)} = 𝑁0 𝑇𝑔 𝑐 βˆ’1 { 𝑝(𝑠) [π‘–π‘ž(𝑠) βˆ’ πœ‡] }, 𝑁(𝑑) = 𝑁0𝑒 πœ‡π‘‘ . (14) At time 𝑑 = 3, 𝑁 = 2𝑁0, by using in (14), we find: 2𝑁0 = 𝑁0𝑒 3πœ‡ β‡’ 𝑒3πœ‡ = 2 IHJPAS. 36(1)2023 405 πœ‡ = 0.231. Now at time 𝑑 = 5, N = 104, using in (14), we get: 104 = 𝑁0𝑒 3(0.231), 𝑁0 = 3151. Where 𝑁0 is the desired initial value of people living in the country. Application 8.2: If there is originally 100 mg. of radioactive material present and after three hours it is noticed that the radioactive material has lost 20% of its original mass, calculate the half-life of the radioactive substance [10] . We write these information by the following equation: 𝑑𝑀 𝑑𝑑 = βˆ’πœ‚π‘€, (15) where πœ‚ is the rate of proportionality and 𝑀 represents the value of radioactive material at time. Assume that at time 𝑑 = 0 and 𝑀0is the initial value of p radioactive material. Now, we will apply the same steps in equation (15), 𝑇𝑔 𝑐 { 𝑑𝑀 𝑑𝑑 } = βˆ’πœ‚π‘‡π‘” 𝑐 {𝑀}. (16) Since 𝑀 = 𝑀0 when 𝑑 = 0, so we get: 𝑀𝑔 𝑐 (𝑠) = 𝑀0𝑝(𝑠) [π‘–π‘ž(𝑠) + πœ‚] . (17) By applying inverse of SEJE integral transform for (17), 𝑀(𝑑) = 𝑇𝑔 𝑐 βˆ’1{𝑀𝑔 𝑐 (𝑠)} = 𝑀0 𝑇𝑔 𝑐 βˆ’1 { 𝑝(𝑠) [π‘–π‘ž(𝑠) + πœ‚] }, 𝑀(𝑑) = 𝑀0𝑒 βˆ’πœ‚π‘‘ . (18) At time 𝑑 = 0, 𝑀 = 𝑀0 = 100, by using in (8.8), we find: 𝑀(t) = 100π‘’πœ‚π‘‘ . (19) Now at time t = 5, the radioactive material has lost 20 present of its original mass 100 mg. therefore, 𝑀 = 100 βˆ’ 20 = 80 is using in (18), we get: 80 = 100π‘’βˆ’3πœ‚ , πœ‚ = 0.07438. (20) we wanted 𝑑 when 𝑀 = 𝑀0 2 = 50, then from (19), we get: 50 = 100π‘’βˆ’πœ‚π‘‘ . (21) By substituting the value of πœ‚ in (21), 50 = 100π‘’βˆ’0.07438𝑑 β‡’ 𝑑 = 9.32 hours, which t is the desired half-life of the radioactive material. 9.Conclusion In this study, we show how to improve the SEJI integral transform approach for solving population growth and decay problems. The effect of the SEJI integral transform for tackling these difficulties is explained through the applications. So, we can use the suggested transform to solve the population growth and decay problems for the different organisms. References IHJPAS. 36(1)2023 406 1. Singh, G.P. ; Aggarwal, S. Sawi Transform for Population Growth and Decay Problems. International Journal of Latest Technology in Engineering, Management & Applied Science, 2019, 8(8). 2. Aggarwal, S.; Sharma, S. D. Solution of Population Growth and Decay Problems Using Smudu Transform, International Journal of Research and Innovation Applied Scence (IJRIAS) (2020), Vol.V, Issue VII, July 3. Aggarwal, S. ; Sharma, N. ; Chauhan, R. Solution of Population Growth and Decay Problems by Using Mohand Transform. International Journal of Research in Advent Technology, 2018, 6(11), 3277-3282. 4. Aggarwal , S. ; Gupta, A.R.; Asthana, N. ; Singh, D.P. Application of Kamal Transform for Solving Population Growth and Decay Problems. Global Journal of Engineering Science and Researches, 2018 ,5(9), 254-260. 5. Aggarwal, S. ; Sharma, S.D. ; Gupta, A.R. Application of Shehu Transform for Handling Growth and Decay Problems. Global Journal of Engineering Science and Researches, 2019,6(4), 190-198. 6. Aggarwal, S.; Singh, D. P. ; Asthana, N. ; Gupta, A.R. Application of Elzaki Transform for Solving Population Growth and Decay Problems. Journal of Emerging Technologies and Innovative Research, 2018,5(9), 281-284, 7. Eman A. Mansour, Emad A. Kuffi ; Sadiq A. Mehdi, Solving Population Growth and Decay Problems Using Complex SEE Transform, 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM-2021), Mosul, Iraq. 8.Ahsan, Z., Differential Equations and Their Applications, PHI, 2006. 9.Ang, W.T. ; Park, Y.S.: Ordinary Differential Equations: Methods and Applications, Universal Publishers, 2008 . 10.Bronson, R. ; Costa, G.B.: Schaum’s Outline of Differential Equations, McGraw-Hill, 2021. 11.Weigelhofer, W.S. ; Lindsay, K.A.: Ordinary Differential Equations & Applications: Mathematical Methods for Applied Mathematicians, Physicists, Engineers and Bioscientists, Woodhead, 1999. 12.Zill, D.G. ; Cullen, M.R., Differential Equations with Boundary Value Problems, Thomson Brooks/ Cole, 1996. 13.Gorain, G.C., Introductory Course on Differential Equations, Narosa, 2014. 14.Kapur, J.N., Mathematical Modelling, New-Age, 2005. 15.Roberts, C., Ordinary Differential Equations: Applications, Models and Computing, Chapman and Hall/ CRC, 2010. 16.Sadiq A. Mehdi, Emad A. Kuffi ; Jinan A. Jasim, Solving Ordinary Differential Equations Using a New General Complex Integral Transform, Journal of interdisciplinary mathematics, DOI:10.1080/09720502.2022.2089381, 2022.