IHJPAS. 36(1)2023 292 This work is licensed under a Creative Commons Attribution 4.0 International License On the Stability and Acceleration of Projection Algorithms Abstract The focus of this paper is the presentation of a new type of mapping called projection Jungck zn- Suzuki generalized and also defining new algorithms of various types (one-step and two-step algorithms) (projection Jungck-normal ๐’ฉ algorithm, projection Jungck-Picard algorithm, projection Jungck-Krasnoselskii algorithm, and projection Jungck-Thianwan algorithm). The convergence of these algorithms has been studied, and it was discovered that they all converge to a fixed point. Furthermore, using the previous three conditions for the lemma, we demonstrated that the difference between any two sequences is zero. These algorithms' stability was demonstrated using projection Jungck Suzuki generalized mapping. In contrast, the rate of convergence of these algorithms was demonstrated by contrasting the rates of convergence of the various algorithms, leading us to conclude that the projection Jungck-normal ๐’ฉ algorithm is the fastest of all the algorithms mentioned above. Keywords: metric projection, Jungck-Picard algorithm, Jungck-normal ๐’ฉ algorithm, Jungck- Thianwan algorithm, Jungck-Krasnoselskii algorithm, Fixed Point. 1.Introduction and Preliminary There are a lot of published studies that included new algorithms and studied their strong convergence and stability. In addition, they proved the rate of convergence of these algorithms, see [1-9]. These algorithms are valuable tools used to find the value of the fixed point and to resolve some problems. For example, they were used in solving nonlinear differential equations, integration problems, etc. The algorithms presented by the authors are varied (one-step, two-step, etc.). In 1967[10], scientist Jungck introduced a new algorithm called Jungck Picard algorithm, but sometimes it is called Jungck algorithm, as it consists of one step doi,org/10.30526/36.1.2923 Article history: Received 29 June 2022, Accepted 21 Augest 2022, Published in January 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Zena Hussein Maibed Department of Mathematics , College of Education for Pure Sciences,Ibn Al โ€“Haitham/ University of Baghdad- Iraq. mrs_ zena.hussein@yahoo.com Noor Nabil Salem Department of Mathematics , College of Education for Pure Sciences,Ibn Al โ€“Haitham/ University of Baghdad- Iraq. Nour.Nabeel1203a@ihcoedu.uobaghdad.edu.iq https://creativecommons.org/licenses/by/4.0/ about:blank mailto:Nour.Nabeel1203a@ihcoedu.uobaghdad.edu.iq IHJPAS. 36(1)2023 293 ฮจ๐‘˜๐‘›+1 = ๐‘‡๐‘˜๐‘› , where ๐‘˜0 โˆˆ C, ๐‘› โˆˆ โ„•. In 2011[11], the author Alfred Olufemi Bosede presented an algorithm called Jungck-krasnoselskii. This algorithm is a special case of Jungck-Mann. The Jungck-Krasnoselskii algorithm is defined as follows: ฮจ๐‘›๐‘›+1 = ( 1 โˆ’ ๐›ฟ)ฮจ๐‘›๐‘› + ๐›ฟ ๐‘‡๐‘›๐‘› , where ๐‘›0 โˆˆ C, ๐‘› โˆˆ โ„•, and ๐›ฟ โˆˆ (0,1).He also proved the stability of Jungck-Mann and Jungck-Krasnoselskii algorithms. On the other hand, V. Brined proved in 2004[12] that the Picard algorithm converges faster than the Mann algorithm. In 2008, [13] presented a new two-step algorithm named after him. The Thianwan algorithm is defined as follows: ๐“๐‘›+1 = ( 1 โˆ’ ๐‘Ž๐‘›)๐“‡๐‘› + ๐‘Ž๐‘› ๐‘‡๐“‡๐‘› ๐“‡๐‘› = ( 1 โˆ’ ๐›ฝ๐‘›)๐“๐‘› + ๐›ฝ๐‘› ๐‘‡๐“๐‘› , where ๐“0 โˆˆ C, ๐‘› โˆˆ โ„•, and {๐›ผ๐‘›}๐‘›=0 โˆž and {๐›ฝ๐‘›}๐‘›=0 โˆž are the real sequence in [0,1]. In addition, it has been proven the strong and weak convergence of this algorithm in the uniformly convex Banach space. Now, we will mention some of the priorities we need: Definition (1.1):[12] Let {๐“‚๐‘›}๐‘›=0 โˆž , {๐“ƒ๐‘›}๐‘›=0 โˆž are two sequence lies in R such that {๐“‚๐‘›}๐‘›=0 โˆž converge to ๐“‚, {๐“ƒ๐‘›}๐‘›=0 โˆž converge to ๐“ƒ, and ๐’ฒ = lim ๐‘›โ†’โˆž |๐“‚๐‘›โˆ’๐“‚| |๐“ƒ๐‘›โˆ’๐“ƒ| 1. If ๐’ฒ = 0 โŸถ the sequence {๐“‚๐‘›}๐‘›=0 โˆž is converge to ๐“‚ faster then {๐“ƒ๐‘›}๐‘›=0 โˆž converge to ๐“ƒ. 2. If 0 < ๐’ฒ < โˆž โ†’ {๐“‚๐‘› }๐‘›=0 โˆž and {๐“ƒ๐‘›}๐‘›=0 โˆž have the same rate of convergence. Lemma (1.2):[14] Let ๐’ฐ be a uniformly convex Banach space and {๐“‚๐‘›}๐‘›=0 โˆž be any sequence such that 0 < ๐”ญ โ‰ค ๐›ผ๐‘› โ‰ค ๐”ฎ < 1, for some ๐”ญ,๐”ฎ โˆˆ โ„ + and for all ๐‘› โ‰ฅ 1. Let {๐“‚๐‘›}๐‘›=0 โˆž and {๐“ƒ๐‘›}๐‘›=0 โˆž are two sequences of ๐’ฐ such that: lim ๐‘›โ†’โˆž supโ€–๐“‚๐‘›โ€– โ‰ค ๐‘, lim ๐‘›โ†’โˆž supโ€–๐“ƒ๐‘›โ€– โ‰ค ๐‘ and lim ๐‘›โ†’โˆž supโ€–๐›ผ๐‘› ๐“‚๐‘› + (1 โˆ’ ๐›ผ๐‘› )๐“ƒ๐‘›โ€– = ๐‘ for some ๐‘ โ‰ฅ 0 Then lim ๐‘›โ†’โˆž โ€–๐“‚๐‘› โˆ’ ๐“ƒ๐‘›โ€– = 0 Definition (1.3): [15] Let ฮจ, ๐‘‡ โˆถ ๐ถ โ†’ ๐ถ such that ๐‘‡(๐ถ) ๏ƒ ฮจ(๐ถ) and ๐‘ a coincidence point of ฮจ and ๐‘‡, that is, ฮจ๐‘ = ๐‘‡๐‘ = ๐‘. For ๐‘Ž๐‘›๐‘ฆ ๐’ธ0๏ƒŽ ๐ถ, let the sequence {ฮจ๐“‚๐‘›}๐‘›=0 โˆž generated by the algorithm procedure ฮจ๐“‚๐‘› = ๐‘“(๐‘‡, ๐“‚๐‘› ) ๐‘› โ‰ฅ 0 converge to ๐‘. Let {ฮจ๐“Ž๐‘› }๐‘›=0 โˆž โŠ‚ ๐ถ be an arbitrary sequence and set ๐‘› = ๐‘‘(ฮจ๐“Ž๐‘›+1, ๐‘“(๐‘‡, ๐“Ž๐‘›)) , ๐‘› = 0, 1,ยท ยท ยท . Then, the algorithm ฮจ๐’ธ๐‘› will be called (ฮจ, ๐‘‡) โˆ’ ๐‘ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ if and only if lim ๐‘›โ†’โˆž ๐œ–๐‘› = 0 implies that lim ๐‘›โ†’โˆž ฮจ๐“Ž๐‘› = ๐‘. Lemma (1.4): [12] If ๐œ‚ is a real number such that 0 < ๐œ‚ < 1 and {๐œ–๐‘›}๐‘›=0 โˆž is a sequence of positive numbers, such that lim ๐‘›โ†’โˆž ๐œ–๐‘› = 0 then, for any sequence of positive numbers {๐“‚๐‘› }๐‘›=0 โˆž satisfying ๐“‚๐‘›+1 โ‰ค ๐œ‚๐“‚๐‘› + ๐œ–๐‘› Definition (1.5): [16] the mapping ๐‘‡: ๐ถ โ†’ ๐ถ is said Suzuki if satisfying the following condition: 1 2 โ€–๐“‚ โˆ’ ๐‘‡(๐“‚)โ€– โ‰ค โ€–๐“‚ โˆ’ ๐“ƒโ€– โŸน โ€–๐‘‡(๐“‚) โˆ’ ๐‘‡(๐“ƒ)โ€– โ‰ค โ€–๐“‚ โˆ’ ๐“ƒโ€–, โˆ€๐“‚, ๐“ƒ โˆˆ ๐ถ 2 .Main Results We introduce a new type of mapping called projection Jungck zn-Suzuki generalized and by using this type of mapping, we will propose new algorithms and analyse their convergence and rate of convergence. Definition (2.1): Let ๐’ณ be a normed space, ๐ถ be a nonempty closed convex subset of ๐’ณ. A mapping ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ and ๐’ซ๐’ธ are called projection Jungck zn-Suzuki generalized mapping if 1 2 โ€–๐‘ฅ โˆ’ ๐‘‡(๐‘ฅ)โ€– โ‰ค โ€–ฮจ๐‘ฅ โˆ’ ฮจ๐‘ฆโ€– Implies that โ€–๐‘‡(๐‘ฅ) โˆ’ ๐‘‡(๐‘ฆ)โ€– โ‰ค ๐ฟโ€–ฮจ๐‘ฅ โˆ’ ฮจ๐‘ฆโ€– + ๐œ™ (โ€–๐‘ฅโˆ’๐’ซ๐’ธ (๐‘ฅ)โ€–+โ€–๐‘ฅโˆ’ฮจ๐‘ฅโ€–) 1+๐‘š๐‘Ž๐‘ฅ {โ€–๐’ซ๐’ธ (๐‘ฅ)โˆ’๐’ซ๐’ธ (๐‘ฆ)โ€–,โ€–ฮจ๐‘ฅโˆ’ฮจ๐‘ฆโ€–} ๐œ™: โ„›+ โ†’ โ„›+ is a monotone increasing function such that ๐œ™(0) = 0 and ๐ฟ โ‰ค 1. IHJPAS. 36(1)2023 294 Definition (2.2): The projection Jungck-Picard algorithm is defined as follows: ฮจ๐‘˜๐‘›+1 = ๐’ซ๐’ธ ๐‘‡๐‘˜๐‘› , ๐‘˜0 โˆˆ C. Definition (2.3): The projection Jungck-Krasnoselskii is defined as follows: ฮจ๐‘›๐‘›+1 = (1 โˆ’ ๐›ฟ)ฮจ๐’ซ๐’ธ (๐‘›๐‘›) + ๐›ฟ๐’ซ๐’ธ ๐‘‡๐‘›๐‘› , ๐‘›0 โˆˆ C where ๐’ซ๐’ธ is metric projection and ๐›ฟ โˆˆ (0,1). Definition (2.4): The projection Jungck-normal ๐’ฉ algorithm is defined as follows: ฮจ๐‘ข๐‘›+1 = ๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐‘ข๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐‘ข๐‘›)) , ๐“Š0 โˆˆ C where ๐›ผ๐‘› โˆˆ [0,1] and ฮจ has property ๐’ฉ, i.e., ฮจฮจ(๐‘ฅ) โ‰ค ฮจ(๐‘ฅ), ๐‘ฅ โˆˆ ๐ถ & ฮจ is a linear map Definition (2.5): The projection Jungck-Thianwan algorithm is defined as follows: ฮจ๐“๐‘›+1 = (1 โˆ’ ๐›ผ๐‘›)ฮจ๐’ซ๐’ธ (๐“‡๐‘›) + ๐›ผ๐‘›๐’ซ๐’ธ ๐‘‡๐“‡๐‘› ฮจ๐“‡๐‘› = (1 โˆ’ ๐›ฝ๐‘›)ฮจ๐’ซ๐’ธ (๐“๐‘›) + ๐›ฝ๐‘›๐’ซ๐’ธ ๐‘‡๐“๐‘› , ๐“0 โˆˆ ๐ถ. And this mapping is commute if ฮจ๐’ซ๐’ธ (๐“๐‘›) = ๐’ซ๐’ธ ฮจ(๐“๐‘›). Now, we talk about convergence, stability and rate of convergence. Lemma (2.6): Let ๐ถ be a non-empty closed convex subset of a uniformly convex Banach space ๐’ฐ. The mappings ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are a projection Jungck zn-Suzuki generalized if {ฮจ๐‘ข๐‘› } generated by projection Jungck-normal ๐’ฉ algorithm, such that 1. lim ๐‘›โ†’โˆž โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– exists for all ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ), where ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) is the family of a common fixed point. 2. lim ๐‘›โ†’โˆž โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ฮจ๐’ซ๐’ธ (๐‘ข๐‘›)โ€– = 0 Proof: Let ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ), โ€–ฮจ๐‘ข๐‘›+1 โˆ’ ๐‘โ€– = โ€–๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐‘ข๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค โ€–๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐‘ข๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค ๐ฟโ€–ฮจ((1 โˆ’ ๐›ผ๐‘›)ฮจ๐‘ข๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐‘ข๐‘› )) โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+max{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ((1โˆ’๐›ผ๐‘›)ฮจ๐‘ข๐‘›+๐›ผ๐‘›๐’ซ๐’ธ(๐‘ข๐‘›))โ€–,โ€–ฮจ๐‘โˆ’ฮจ((1โˆ’๐›ผ๐‘›)ฮจ๐‘ข๐‘›+๐›ผ๐‘›๐’ซ๐’ธ(๐‘ข๐‘›))โ€–} โ‰ค [(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘› ) โˆ’ ๐‘โ€–] โ‰ค [(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–๐’ซ๐’ธ ฮจ(๐‘ข๐‘›) โˆ’ ๐‘โ€–] โ‰ค โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– So, we have โ€–ฮจ๐‘ข๐‘›+1 โˆ’ ๐‘โ€– โ‰ค โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– (2.1) โ‰ค โ€–ฮจ๐‘ข๐‘›โˆ’1 โˆ’ ๐‘โ€– : โ‰ค โ€–ฮจ๐‘ข0 โˆ’ ๐‘โ€– (2.2) From (2.1) and (2.2) lim ๐‘›โ†’โˆž โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– is exist Now to prove lim ๐‘›โ†’โˆž โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ฮจ๐’ซ๐’ธ (๐‘ข๐‘›)โ€– = 0 Since, lim ๐‘›โ†’โˆž โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– = ๐‘ IHJPAS. 36(1)2023 295 โŸน lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– = ๐‘ Now, lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– = ๐‘ So, lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– โ‰ค ๐‘ (2.3) To proof lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘โ€– โ‰ค ๐‘ lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘โ€– โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–๐’ซ๐’ธ ฮจ(๐‘ข๐‘›) โˆ’ ๐‘โ€– โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– = ๐‘ So, lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘ โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘โ€– โ‰ค ๐‘ (2.4) Since ๐‘ = lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–ฮจ๐‘ข๐‘›+1 โˆ’ ๐‘โ€– = lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘›)ฮจ๐‘ข๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–๐‘‡((1 โˆ’ ๐›ผ๐‘›)ฮจ๐‘ข๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–(1 โˆ’ ๐›ผ๐‘›)(ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘) + ๐›ผ๐‘›(ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘)โ€– (2.5) โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘[(1 โˆ’ ๐›ผ๐‘› )โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–๐’ซ๐’ธ ฮจ(๐‘ข๐‘›) โˆ’ ๐‘โ€–] โ‰ค lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘[(1 โˆ’ ๐›ผ๐‘› )โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€–] = lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– = ๐‘ So, lim ๐‘›โ†’โˆž ๐‘ ๐‘ข๐‘โ€–(1 โˆ’ ๐›ผ๐‘›)(ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘) + ๐›ผ๐‘› (ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘)โ€– = ๐‘ From (2.3), (2.4), (2.5) and by using lemma (1.2) we get lim ๐‘›โ†’โˆž โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ฮจ๐’ซ๐’ธ (๐‘ข๐‘›)โ€– = 0. Lemma (2.7): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are a projection Jungck zn-Suzuki generalized if {ฮจ๐‘˜๐‘› } generated by the projection Jungck-Picard algorithm, such that lim ๐‘›โ†’โˆž โ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– exists for all ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) Proof: Let, ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) โ€–ฮจ๐‘˜๐‘›+1 โˆ’ ๐‘โ€– = โ€–๐’ซ๐’ธ ๐‘‡๐‘˜๐‘› โˆ’ ๐‘โ€– โ‰ค โ€–๐‘‡๐‘˜๐‘› โˆ’ ๐‘โ€– โ‰ค ๐ฟโ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+๐‘š๐‘Ž๐‘ฅ{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ(๐‘˜๐‘›)โ€–,โ€–ฮจ๐‘โˆ’ฮจ๐‘˜๐‘›โ€–} โ‰ค โ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– So, we have โ€–ฮจ๐‘˜๐‘›+1 โˆ’ ๐‘โ€– โ‰ค โ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– โŸน {ฮจ๐‘˜๐‘›} is non-increasing sequence (2.6) โ‰ค โ€–ฮจ๐‘˜๐‘›โˆ’1 โˆ’ ๐‘โ€– : โ‰ค โ€–ฮจ๐‘˜0 โˆ’ ๐‘โ€– โŸน {ฮจ๐‘˜๐‘›} is bounded sequence (2.7) From (2.6) and (2.7) the lim ๐‘›โ†’โˆž โ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– is exist. Lemma (2.8): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ be a projection Jungck zn-Suzuki generalized mapping if {ฮจ๐‘›๐‘›} is generated by the projection Jungck-Krasnoselskii algorithm, such that IHJPAS. 36(1)2023 296 1. lim ๐‘›โ†’โˆž โ€–ฮจ๐‘›๐‘› โˆ’ ๐‘โ€– exists for all ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) 2. lim ๐‘›โ†’โˆž โ€–ฮจ๐’ซ๐’ธ (๐‘›๐‘›) โˆ’ ๐’ซ๐’ธ ๐‘‡๐‘›๐‘› โ€– = 0 Proof: By following the same steps for the proof of theorem (2.6), we get the wanted results. Lemma (2.9): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are a projection Jungck zn-Suzuki generalized mapping if {ฮจ๐“๐‘›} is generated by the projection Jungck-Thianwan algorithm, such that: 1. lim ๐‘›โ†’โˆž โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– exists for all ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) 2. lim ๐‘›โ†’โˆž โ€–ฮจ๐’ซ๐’ธ (๐“‡๐‘›) โˆ’ ๐’ซ๐’ธ ๐‘‡(๐“‡๐‘›)โ€– = 0 Proof: Proof in the same way as lemma proof (2.6) Theorem (2.10): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are a projection Jungck zn-Suzuki generalized mapping with ๐ฟ โˆˆ (0,1). Let {ฮจ๐‘›๐‘›} be projection Jungck-Krasnoselskii algorithm converging to ๐‘ where ๐›ฟ โˆˆ (0,1). Then, the projection Jungck-Krasnoselskii algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Proof: Let {๐“Ž๐‘›} โŠ‚ ๐ถ and ๐‘› = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ ๐‘“(๐‘‡, ๐“Ž๐‘›)โ€– = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ (1 โˆ’ ๐›ฟ)ฮจ๐’ซ๐’ธ (๐“Ž๐‘›) + ๐›ฟ๐’ซ๐’ธ ๐‘‡๐“Ž๐‘›โ€– So, ๐‘› = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ (1 โˆ’ ๐›ฟ)ฮจ๐’ซ๐’ธ (๐“Ž๐‘›) + ๐›ฟ๐’ซ๐’ธ ๐‘‡๐“Ž๐‘›โ€– If lim ๐‘›โ†’โˆž ๐‘› = 0 , we get lim ๐‘›โ†’โˆž ฮจ๐“Ž๐‘›+1 = ๐‘ Then, the projection Jungck-Krasnoselskii algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Theorem (2.11): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are a projection Jungck zn-Suzuki generalized mapping with ๐ฟ โˆˆ (0,1). Let {ฮจ๐‘ข๐‘›} be a projection Jungck-normal ๐’ฉ algorithm converging to ๐‘ , where {๐›ผ๐‘›} are sequences in [0,1], such that 0 < ๐›ผ โ‰ค ๐›ผ๐‘›. Then, the projection Jungck-normal ๐’ฉ algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Proof: Let {๐“Ž๐‘›} โŠ‚ ๐ถ and ๐‘› = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ ๐‘“(๐‘‡, ๐“Ž๐‘›)โ€– = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ ๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐“Ž๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐“Ž๐‘›))โ€– So, ๐‘› = โ€–ฮจ๐“Ž๐‘›+1 โˆ’ ๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘›)ฮจ๐“Ž๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐“Ž๐‘›))โ€– If lim ๐‘›โ†’โˆž ๐‘› = 0, we get lim ๐‘›โ†’โˆž ฮจ๐“Ž๐‘›+1 = ๐‘ Then, the projection Jungck-normal ๐’ฉ algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Theorem (2.12): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are projection Jungck zn-Suzuki generalized mapping with ๐ฟ โˆˆ (0,1). Let {ฮจ๐‘˜๐‘›} be a projection Jungck-Picard algorithm converging to ๐‘, where {๐›ผ๐‘›} are sequences in [0,1]. Then, the projection Jungck-Picard algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Theorem (2.13): Let ๐‘‡, ฮจ: ๐ถ โ†’ ๐ถ are projection Jungck zn-Suzuki generalized mapping with ๐ฟ โˆˆ (0,1). Let {ฮจ๐“๐‘›} be a projection Jungck- Thianwan algorithm converging to ๐‘, where {๐›ผ๐‘›} and {๐›ฝ๐‘›} are sequences in [0,1] such that 0 < ๐›ผ โ‰ค ๐›ผ๐‘› and , 0 < ๐›ฝ โ‰ค ๐›ฝ๐‘› then, the projection Jungck- Thianwan algorithm is (ฮจ, ๐‘‡, ๐’ซ๐’ธ )-stable. Proof: By following the same steps of the proof of theorem (2.9), we get the wanted results. IHJPAS. 36(1)2023 297 Theorem (2.14): Let ๐‘‡, ฮจ are projection Jungck zn-Suzuki generalized mapping and ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) โ‰  ๐œ™. Then, the projection Jungck-Picard algorithm converges faster than projection Jungck-Krasnoselskii algorithm. Proof: For projection Jungck-Picard algorithm โ€–ฮจ๐‘˜๐‘›+1 โˆ’ ๐‘โ€– = โ€–๐’ซ๐’ธ ๐‘‡๐‘˜๐‘› โˆ’ ๐‘โ€– โ‰ค โ€–๐‘‡๐‘˜๐‘› โˆ’ ๐‘โ€– โ‰ค ๐ฟโ€–ฮจ๐‘˜๐‘› โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+๐‘š๐‘Ž๐‘ฅ{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ(๐‘˜๐‘›)โ€–,โ€–ฮจ๐‘โˆ’ฮจ๐‘˜๐‘›โ€–} : โ‰ค ๐ฟ๐‘› โ€–ฮจ๐‘˜0 โˆ’ ๐‘โ€– Put ๐’ซ. ๐’ฅ. ๐‘ƒ. ๐’œ = ๐ฟ๐‘›โ€–ฮจ๐‘˜0 โˆ’ ๐‘โ€– For projection Jungck-Krasnoselskii algorithm. โ€–ฮจ๐‘›๐‘›+1 โˆ’ ๐‘โ€– = โ€–(1 โˆ’ ๐›ฟ)ฮจ๐’ซ๐’ธ (๐‘›๐‘›) + ๐›ฟ๐’ซ๐’ธ ๐‘‡๐‘›๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ฟ)โ€–ฮจ๐’ซ๐’ธ (๐‘›๐‘›) โˆ’ ๐‘โ€– + ๐›ฟโ€–๐’ซ๐’ธ ๐‘‡๐‘›๐‘› โˆ’ ๐‘โ€– = (1 โˆ’ ๐›ฟ)โ€–๐’ซ๐’ธ ฮจ(๐‘›๐‘›) โˆ’ ๐‘โ€– + ๐›ฟโ€–๐’ซ๐’ธ ๐‘‡๐‘›๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ฟ)โ€–ฮจ๐‘›๐‘› โˆ’ ๐‘โ€– + ๐ฟ๐›ฟโ€–ฮจ๐‘›๐‘› โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+max{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ(๐‘›๐‘›)โ€–,โ€–ฮจ๐‘โˆ’ฮจ๐‘›๐‘›โ€–} โ‰ค (1 โˆ’ ๐›ฟ(1 โˆ’ ๐ฟ))โ€–ฮจ๐‘›๐‘› โˆ’ ๐‘โ€– : โ‰ค [1 โˆ’ ๐›ฟ(1 โˆ’ ๐ฟ)]๐‘›โ€–ฮจ๐‘›0 โˆ’ ๐‘โ€– Put: ๐’ซ. ๐’ฅ. ๐’ฆ. ๐’œ = [1 โˆ’ ๐›ฟ(1 โˆ’ ๐ฟ)]๐‘›โ€–ฮจ๐‘›0 โˆ’ ๐‘โ€– Now since: ๐’ซ.๐’ฅ.๐‘ƒ.๐’œ ๐’ซ.๐’ฅ.๐’ฆ.๐’œ = ๐ฟ๐‘›โ€–ฮจ๐‘˜0โˆ’๐‘โ€– [1โˆ’๐›ฟ(1โˆ’๐ฟ)]๐‘›โ€–ฮจ๐‘›0โˆ’๐‘โ€– โ†’ 0 as ๐‘› โ†’ โˆž. Hence, the projection Jungck-Picard algorithm converges to ๐‘ faster than the projection Jungck- Krasnoselskii algorithm. Theorem (2.15): Let ๐‘‡, ฮจ be a projection Jungck zn-Suzuki generalized mapping and ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) โ‰  ๐œ™. Then, the projection Jungck-normal ๐’ฉ algorithm converges faster than the projection Jungck- Picard algorithm. Proof: Let ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) and suppose that there exists สŽ; 0 โ‰ค สŽ โ‰ค ๐›ผ๐‘› โ‰ค 1 For projection Jungck โ€“Picard algorithm We have, ๐’ซ. ๐’ฅ. ๐‘ƒ. ๐’œ = ๐ฟ๐‘› โ€–ฮจ๐‘˜0 โˆ’ ๐‘โ€– From projection Jungck-normal ๐’ฉalgorithm โ€–ฮจ๐‘ข๐‘›+1 โˆ’ ๐‘โ€– = โ€–๐’ซ๐’ธ ๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐‘ข๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค โ€–๐‘‡((1 โˆ’ ๐›ผ๐‘› )ฮจ๐‘ข๐‘› + ๐›ผ๐‘› ๐’ซ๐’ธ (๐‘ข๐‘›)) โˆ’ ๐‘โ€– โ‰ค ๐ฟโ€–ฮจ((1 โˆ’ ๐›ผ๐‘›)ฮจ๐‘ข๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐‘ข๐‘› )) โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+๐‘š๐‘Ž๐‘ฅ{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ((1โˆ’๐›ผ๐‘›)ฮจ๐‘ข๐‘›+๐›ผ๐‘›๐’ซ๐’ธ(๐‘ข๐‘›))โ€–,โ€–ฮจ๐‘โˆ’ฮจ((1โˆ’๐›ผ๐‘›)ฮจ๐‘ข๐‘›+๐›ผ๐‘›๐’ซ๐’ธ(๐‘ข๐‘›))โ€–} โ‰ค ๐ฟโ€–ฮจ((1 โˆ’ ๐›ผ๐‘›)ฮจ๐‘ข๐‘› + ๐›ผ๐‘›๐’ซ๐’ธ (๐‘ข๐‘› )) โˆ’ ๐‘โ€– โ‰ค ๐ฟโ€–(1 โˆ’ ๐›ผ๐‘›)ฮจฮจ๐‘ข๐‘› + ๐›ผ๐‘›ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ (1 โˆ’ ๐›ผ๐‘› + ๐›ผ๐‘›)๐‘โ€– โ‰ค ๐ฟโ€–(1 โˆ’ ๐›ผ๐‘›)(ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘) + ๐›ผ๐‘› (ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘)โ€– โ‰ค ๐ฟ[(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘›) โˆ’ ๐‘โ€–] โ‰ค ๐ฟ[(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–ฮจ๐’ซ๐’ธ (๐‘ข๐‘› ) โˆ’ ๐‘โ€–] = ๐ฟ[(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–๐’ซ๐’ธ ฮจ(๐‘ข๐‘›) โˆ’ ๐‘โ€–] โ‰ค ๐ฟ[(1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘›โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€–] โ‰ค ๐ฟ[1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]โ€–ฮจ๐‘ข๐‘› โˆ’ ๐‘โ€– : IHJPAS. 36(1)2023 298 โ‰ค ๐ฟ๐‘›[1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]๐‘›โ€–ฮจ๐‘ข0 โˆ’ ๐‘โ€– Let, ๐’ซ. ๐’ฅ. ๐’ฉ. ๐’œ = ๐ฟ๐‘› [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]๐‘›โ€–ฮจ๐‘ข0 โˆ’ ๐‘โ€– Now, since: ๐’ซ.๐’ฅ.๐’ฉ.๐’œ ๐’ซ.๐’ฅ.๐‘ƒ.๐’œ = ๐ฟ๐‘›[1โˆ’๐›ผ๐‘›(1โˆ’๐ฟ)] ๐‘›โ€–ฮจ๐‘ข0โˆ’๐‘โ€– ๐ฟ๐‘›โ€–ฮจ๐‘˜0โˆ’๐‘โ€– โ†’ 0 as ๐‘› โ†’ โˆž Hence, the projection Jungck-normal ๐’ฉ algorithm converges to ๐‘ faster than the projection Jungck-Picard algorithm. Theorem (2.16) Let ๐’ณ be a normed space and C be a nonempty closed convex subset of ๐’ณ if T is a projection Jungck zn-Suzuki generalized mapping and ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ) โ‰  ฯ•. Then, the projection Jungck- normal ๐’ฉalgorithm converges faster than the projection Jungck-Thianwan algorithm. Proof: Let ๐‘ โˆˆ ๐’žโ„ฑ(๐’ซ๐’ธ , ๐‘‡, ฮจ)and suppose that there exists สŽ; 0 โ‰ค สŽ โ‰ค ๐›ฝ๐‘›, ๐›ผ๐‘› โ‰ค 1 For projection Jungck Thianwan-algorithm โ€–ฮจ๐“๐‘›+1 โˆ’ ๐‘โ€– = โ€–(1 โˆ’ ๐›ผ๐‘›)ฮจ๐’ซ๐’ธ (๐“‡๐‘›) + ๐›ผ๐‘›๐’ซ๐’ธ ๐‘‡๐“‡๐‘› โˆ’ (1 โˆ’ ๐›ผ๐‘› + ๐›ผ๐‘›)๐‘โ€– โ‰ค (1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐’ซ๐’ธ (๐“‡๐‘›) โˆ’ ๐‘โ€– + ๐›ผ๐‘› โ€–๐’ซ๐’ธ ๐‘‡๐“‡๐‘› โˆ’ ๐‘โ€– = (1 โˆ’ ๐›ผ๐‘›)โ€–๐’ซ๐’ธ ฮจ(๐“‡๐‘›) โˆ’ ๐‘โ€– + ๐›ผ๐‘› โ€–๐’ซ๐’ธ ๐‘‡๐“‡๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐“‡๐‘› โˆ’ ๐‘โ€– + ๐›ผ๐‘› โ€–๐‘‡๐“‡๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ผ๐‘›)โ€–ฮจ๐“‡๐‘› โˆ’ ๐‘โ€– + ๐ฟ๐›ผ๐‘›โ€–ฮจ๐“‡๐‘› โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+๐‘š๐‘Ž๐‘ฅ{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ(๐“‡๐‘›)โ€–,โ€–ฮจ๐‘โˆ’ฮจ๐“‡๐‘›โ€–} โ‰ค (1 โˆ’ ๐›ผ๐‘›(1 โˆ’ ๐ฟ)โ€–ฮจ๐“‡๐‘› โˆ’ ๐‘โ€– (2.8) Now, โ€–ฮจ๐“‡๐‘› โˆ’ ๐‘โ€– = โ€–(1 โˆ’ ๐›ฝ๐‘›)ฮจ๐’ซ๐’ธ (๐“๐‘›) + ๐›ฝ๐‘›๐’ซ๐’ธ ๐‘‡๐“๐‘› โˆ’ (1 โˆ’ ๐›ฝ๐‘› + ๐›ฝ๐‘›)๐‘โ€– โ‰ค (1 โˆ’ ๐›ฝ๐‘›)โ€–ฮจ๐’ซ๐’ธ (๐“๐‘›) โˆ’ ๐‘โ€– + ๐›ฝ๐‘›โ€–๐’ซ๐’ธ ๐‘‡๐“๐‘› โˆ’ ๐‘โ€– = (1 โˆ’ ๐›ฝ๐‘›)โ€–๐’ซ๐’ธ ฮจ(๐“๐‘›) โˆ’ ๐‘โ€– + ๐›ฝ๐‘›โ€–๐’ซ๐’ธ ๐‘‡๐“๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ฝ๐‘›)โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– + ๐›ฝ๐‘›โ€–๐‘‡๐“๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ฝ๐‘›)โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– + ๐ฟ๐›ฝ๐‘›โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– + ๐œ™(โ€–๐‘โˆ’๐’ซ๐’ธ(๐‘)โ€–+โ€–๐‘โˆ’ฮจ๐‘โ€–) 1+๐‘š๐‘Ž๐‘ฅ{โ€–๐’ซ๐’ธ(๐‘)โˆ’๐’ซ๐’ธ(๐“๐‘›)โ€–,โ€–ฮจ๐‘โˆ’ฮจ๐“๐‘›โ€–} = (1 โˆ’ ๐›ฝ๐‘›(1 โˆ’ ๐ฟ))โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ))โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– (2.9) Substitute Equation (2.9) in to Equation (2.8) โ€–ฮจ๐“๐‘›+1 โˆ’ ๐‘โ€– โ‰ค (1 โˆ’ ๐›ผ๐‘› (1 โˆ’ ๐ฟ)[(1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ))โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€–] = [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ) โˆ’ ๐›ผ๐‘› (1 โˆ’ ๐ฟ) + ๐›ผ๐‘›๐œ†(1 โˆ’ ๐ฟ)]โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– โ‰ค [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ) โˆ’ ๐œ†(1 โˆ’ ๐ฟ) + ๐œ†2(1 โˆ’ ๐ฟ)]โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– โ‰ค [1 โˆ’ 2๐œ†(1 โˆ’ ๐ฟ) + ๐œ†2(1 โˆ’ ๐ฟ)]โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– โ‰ค [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]2โ€–ฮจ๐“๐‘› โˆ’ ๐‘โ€– : โ‰ค [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]2๐‘›โ€–ฮจ๐“0 โˆ’ ๐‘โ€– Put: ๐’ซ. ๐’ฅ. ๐’ฏ. ๐’œ = [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]2๐‘›โ€–ฮจ๐“0 โˆ’ ๐‘โ€– From projection Jungck-normal ๐’ฉalgorithm ๐’ซ. ๐’ฅ. ๐’ฉ. ๐’œ = ๐ฟ๐‘› [1 โˆ’ ๐œ†(1 โˆ’ ๐ฟ)]๐‘›โ€–ฮจ๐‘ข0 โˆ’ ๐‘โ€– Now since: ๐’ซ.๐’ฅ.๐’ฉ.๐’œ ๐’ซ.๐’ฅ.๐’ฏ.๐’œ = ๐ฟ๐‘›[1โˆ’๐œ†(1โˆ’๐ฟ)]๐‘›โ€–ฮจ๐‘ข0โˆ’๐‘โ€– [1โˆ’๐œ†(1โˆ’๐ฟ)]2๐‘›โ€–ฮจ๐“0โˆ’๐‘โ€– as ๐‘› โ†’ โˆž Hence, the projection Jungck-normal ๐’ฉ algorithm converges to ๐‘ is faster than the projection Jungck- Thianwan algorithm. IHJPAS. 36(1)2023 299 3. Conclusion This paper offered a new type of mapping as well as introduced new algorithms and demonstrated their convergence and stability. On the other hand, the acceleration and stability were examined. We discovered that the projection Jungck-normal algorithm is quicker than the techniques stated in this paper to achieve the fixed point. References 1. Rathee, S. ; Swami, M. Convergence Rate of Various Iterations with SM-Iteration for Continuous Functi Savita Ratheel. Journal of Mathematical and Computational Science. 2020, 3074-3089. 2. Maibed, Z. ; Thajil, A. Zenali Iteration Method For Approximating Fixed Point of ZA - Quasi Contractive mappings. Haitham Journal for Pure and Applied Science. 2021, 78-91. 3. Jamil, Z.; Abed, B, On A Modified SP-Iterative Scheme for Approximating Fixed Point of A Contraction Mapping. Iraqi Journal of Scienceno. 2015, 56, 3230-3239. 4. Daengsaen, J.; Khemphet, A. On the Rate of Convergence of P-Iteration, SP-Iteration, and D- Iteration Methods for Continuous Nondecreasing Functions on Closed Intervals. Hindawi Abstr. Appl. Anal. 2018, 6. 5. Ullah, K.; Muhammad, A. New Three-step Iteration Process and Fixed Point Approximation in Banach Spaces. Linear Topol. Algebra. 2018,7, 87โ€“100. 6. Maibed, Z.H.; Thajil, A. Q. Equivalence of Some Iterations for Class of Quasi Contractive Mappings. J. Phys.: Conf. Ser.1879 022115. 2021, 7. Maldar, S.; Dogan, K. Comparison rate of convergence and data dependence for a new iteration method. Tbilisi Mathematical Journal. 2020, 65-79. 8. Maldar, S.; Karakaya, V. Convergence of Jungck-Kirk type iteration method with applications. Punjab University Journal of Mathematics. 2022, 54, 75-87. 9. Albaqeri, D.; Rashwan, R. The comparably almost (S,T)- stability for random Jungck-type iterative scheme. Facta Universities (NISห‡). 2019, 34, 2, 175-192. 10. Jungck, G. Commuting mapping and fixed point. The American Mathematical Monthly. 1976, 83, 4, 261-263. 11. Bosede, A. On the Stability of Jungck-Mann, Jungck Krasnoselskij and Jungck Iteration Process in Arbitrary Banach spaces. Acta Univ. Palacki. Olomuc. Fac. rer. nat. ,Mathematica. 2011, 50, 1, 17-22. 12. Berinde,V. picard iteration converges faster than Mann iteration for a class of quasi contractive operators. Fixed Point Theory and Appl2. 2004, 97-105. 13.Thianwan, S. Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space. Journal of Computational and Applied Mathematics. 2009, 224, 2, 688โ€“695. 14. Agarwal, R.; Sahu, D. Fixed Point Theory for Lipschitzian-type Mappings with Applications; New York: Springer, 2009. 15. Olatinwo, M. Some stability and strong convergence results for the Jungck-Ishikawa iteration process. Creative Mathematics and Informatics. 2008, 17, 33โ€“42. 16. Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340. 2008, 1088-1095.