IHJPAS. 36(1)2023 345 This work is licensed under a Creative Commons Attribution 4.0 International License Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach Abstract This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions π‘’πœ”π‘₯ and π‘’βˆ’πœ”π‘₯ for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency πœ” ∈ 𝑅 is used. The novel method is more accurate than the conventional Runge-Kutta method and IRK4. Several test problems for the system of first-order ordinary differential equations carry out numerically to demonstrate the effectiveness of this approach. The computational studies show that the TFIRK4 approach is more efficient than the existing Runge-Kutta methods. Keywords: Improved Runge-Kutta Method, Trigonometrically-Fitted, Initial Value Problem, Oscillating Solution. 1. Introduction This paper focuses on solving the system of the first-order ordinary differential equations (ODEs) of the form: 𝑒′(𝑑) = 𝑓(𝑑, 𝑒), 𝑒(𝑑0) = 𝑒0. (1) These issues are frequently seen in various applied sciences, including quantum mechanics, electronics, chemical physics, and astronomy (see [1] and [2]). Traditionally, Runge-Kutta (RK) doi.org/10.30526/36.1.2963 Article history: Received 29 July 2022, Accepted 1 September 2022, Published in January 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Kasim Abbas Hussain Department of Mathematics, College of Sciences, Mustansiriyah University, Baghdad, Iraq kasimabbas@uomustansiriyah.edu.iq Waleed Jamal Hasan Department of Mathematics, College of Sciences, Mustansiriyah University, Baghdad, Iraq waleedjamalhasan1979@gmail.com https://creativecommons.org/licenses/by/4.0/ mailto:kasimabbas@uomustansiriyah.edu.iq mailto:waleedjamalhasan1979@gmail.com IHJPAS. 36(1)2023 346 methods or two-step methods are used to solve equation (1) [3]. In 2013, [4] developed the Improved Runge-Kutta technique for solving first ODEs using new terms π‘˜βˆ’π‘– taking the values of π‘˜π‘– , 𝑖 β‰₯ 2 from earlier stages.. Another choice for coming up with approaches to solve the oscillatory ODEs is the trigonometrically-fitted approach. These techniques are an improved version of any earlier techniques. In 2019, [5] developed trigonometrically-fitted sixth-order two- derivative Runge-Kutta method for solving oscillatory problems. In 2021, [6] derived the fourth and fifth-order modified Runge-Kutta method to resolve oscillatory problems using phase-Lag properties. Recently, [7] derived the trigonometrically-fitted third-order Improved Runge-Kutta method for solving oscillatory problems. This paper aims to develop the fourth-order IRK method called Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) to solve a system of first-order ODEs with oscillatory solutions. Numerical experiments demonstrate the accuracy of the newly proposed method over other methods. A proposed TFIRK technique derivation is presented in Section 2. A numerical test and comparison with different approaches are discussed in Section 3 to show the efficiency of the TFIRK4 method. Section 4 contains the discussion and conclusion of this paper. 2. The Derivation of TFIRK4 Method The Improved Runge-Kutta (IRK) method for solving equation (1) has the following form: [4] 𝑒𝑛+1 β€² = 𝑒𝑛 + β„Ž(𝑏1π‘˜1 βˆ’ π‘βˆ’1π‘˜βˆ’1 + βˆ‘ 𝑏𝑖 (π‘˜π‘– βˆ’ π‘˜βˆ’π‘– ), 𝑠 𝑖=2 (2) π‘˜1 = 𝑓(𝑑𝑛, 𝑒𝑛 ), (3) π‘˜βˆ’1 = 𝑓(π‘‘π‘›βˆ’1, π‘’π‘›βˆ’1), (4) π‘˜π‘– = 𝑓(𝑑𝑛 + 𝑐𝑖 β„Ž, 𝑒𝑛 + β„Ž βˆ‘ π‘Žπ‘–π‘— π‘˜π‘— ), π‘–βˆ’1 𝑗=1 (5) π‘˜βˆ’π‘– = 𝑓(π‘‘π‘›βˆ’1 + 𝑐𝑖 β„Ž, π‘’π‘›βˆ’1 + β„Ž βˆ‘ π‘Žπ‘–π‘— π‘˜βˆ’π‘— ). π‘–βˆ’1 𝑗=1 (6) Where 𝑐𝑖 , 𝑏𝑖 , π‘βˆ’1, and π‘Žπ‘–π‘— are real numbers and 𝑖, 𝑗 = 1,2, … , 𝑠. IRK method (2)-(6) can be expressed using the following Butcher Tableau (see Table 1): Table 1. 𝑠 βˆ’ Stages IRK method 0 𝑐2 π‘Ž21 𝑐3 π‘Ž31 π‘Ž32 . . . . . . . . . . . . 𝑐𝑠 π‘Žπ‘ 1 π‘Žπ‘ 2 … π‘Žπ‘ π‘ βˆ’1 π‘βˆ’1 𝑏1 𝑏2 … π‘π‘ βˆ’1 𝑏𝑠 IHJPAS. 36(1)2023 347 Following are the four stages of the IRK4 method in its general form: 𝑒𝑛+1 β€² = 𝑒𝑛 + β„Ž(𝑏1π‘˜1 βˆ’ π‘βˆ’1π‘˜βˆ’1 + 𝑏2(π‘˜2 βˆ’ π‘˜βˆ’2) + 𝑏3(π‘˜3 βˆ’ π‘˜βˆ’3) + 𝑏4(π‘˜4 βˆ’ π‘˜βˆ’4), (7) π‘˜1 = 𝑓(𝑑𝑛, 𝑒𝑛 ), (8) π‘˜βˆ’1 = 𝑓(π‘‘π‘›βˆ’1, π‘’π‘›βˆ’1), (9) π‘˜2 = 𝑓(𝑑𝑛 + 𝑐2β„Ž, 𝑒𝑛 + β„Ž π‘Ž21π‘˜1), (10) π‘˜βˆ’2 = 𝑓(π‘‘π‘›βˆ’1 + 𝑐2β„Ž, π‘’π‘›βˆ’1 + β„Ž π‘Ž21π‘˜βˆ’1), (11) π‘˜3 = 𝑓(𝑑𝑛 + 𝑐3β„Ž, 𝑒𝑛 + β„Ž (π‘Ž31π‘˜1 + π‘Ž32π‘˜2)), (12) π‘˜βˆ’3 = 𝑓(π‘‘π‘›βˆ’1 + 𝑐3β„Ž, π‘’π‘›βˆ’1 + β„Ž (π‘Ž31π‘˜βˆ’1 + π‘Ž32π‘˜βˆ’2)), (13) π‘˜4 = 𝑓(𝑑𝑛 + 𝑐4β„Ž, 𝑒𝑛 + β„Ž (π‘Ž41π‘˜1 + π‘Ž42π‘˜2 + π‘Ž43π‘˜3)), (14) π‘˜βˆ’4 = 𝑓(𝑑𝑛 + 𝑐4β„Ž, π‘’π‘›βˆ’1 + β„Ž (π‘Ž41π‘˜βˆ’1 + π‘Ž42π‘˜βˆ’2 + π‘Ž43π‘˜βˆ’3)). (15) The coefficients of the IRK4 method in [4] are offered in Table 2: Table 2. IRK4 method Applying the exponential function into the IRK4 method (7)-(15), the trigonometrically fitting approach is implemented by allow: 𝑒n = 𝑒(𝑑n) = e iω𝑑n , (16) 𝑒n+1 = 𝑒(𝑑n+1) = e iΟ‰(𝑑n+β„Ž), (17) 𝑒nβˆ’1 = 𝑒(𝑑nβˆ’1) = e iΟ‰(𝑑nβˆ’β„Ž). (18) Using Euler formula 𝑒 𝑖𝑣 = cos(𝑣) + 𝑖𝑠𝑖𝑛(𝑣), and substituting the equations (16)-(18) into equation IRK4 method (7)-(15), we get: 𝑒𝑖𝑣 = cos(𝑣) + 𝑖𝑠𝑖𝑛(𝑣) = 1 βˆ’ π‘£π‘βˆ’1 sin(𝑣) βˆ’ 𝑣 2𝑏2 π‘Ž21 βˆ’ 𝑣𝑏2 sin(𝑣) βˆ’ 𝑣 2𝑏3 π‘Ž31 +𝑣2 𝑏2π‘Ž21 cos (𝑣) βˆ’ 𝑣 2𝑏3 π‘Ž32 βˆ’ 𝑣𝑏3 sin(𝑣) + 𝑣 2 𝑏3π‘Ž31 cos (𝑣) βˆ’ 𝑣 2𝑏4 π‘Ž41 +𝑣2 𝑏3π‘Ž32 cos(𝑣) + 𝑣 3 𝑏3π‘Ž32π‘Ž21 sin(𝑣) βˆ’ 𝑣 2 𝑏4π‘Ž42 βˆ’ 𝑣 2 𝑏4π‘Ž43 βˆ’ 𝑣𝑏4 sin(𝑣) +𝑣4 𝑏4π‘Ž43π‘Ž32π‘Ž21 + 𝑣 2 𝑏4π‘Ž41 cos(𝑣) + 𝑣 2 𝑏4π‘Ž42 cos(𝑣) + 𝑣 3 𝑏4π‘Ž42π‘Ž21 sin(𝑣) 0 1 5 1 5 3 5 0 3 5 4 5 2 15 4 25 38 75 19 288 307 288 βˆ’ 25 144 25 144 125 288 IHJPAS. 36(1)2023 348 +𝑣2 𝑏4π‘Ž43 cos(𝑣) + 𝑣 3 𝑏4π‘Ž43π‘Ž31 sin(𝑣) + 𝑣 3 𝑏4π‘Ž43π‘Ž32 sin(𝑣) βˆ’π‘£3 𝑏4π‘Ž43π‘Ž32 π‘Ž21 cos(𝑣) + 𝑖𝑣𝑏1 βˆ’ π‘–π‘£π‘βˆ’1 cos(𝑣) + 𝑖𝑣𝑏2 βˆ’ 𝑖𝑣𝑏2 cos(𝑣) +𝑖𝑣𝑏3 βˆ’ 𝑖𝑣 2𝑏2π‘Ž21 sin(𝑣) βˆ’ 𝑖𝑣 3 𝑏3π‘Ž32π‘Ž21 βˆ’ 𝑖𝑣𝑏3 cos(𝑣) βˆ’ 𝑖𝑣 2𝑏3π‘Ž31 sin(𝑣) +𝑖𝑣𝑏4 + 𝑖𝑣 3𝑏3π‘Ž32π‘Ž21 cos(𝑣) βˆ’ 𝑖𝑣 3𝑏4π‘Ž42π‘Ž21 βˆ’ 𝑖𝑣 3𝑏4π‘Ž43π‘Ž31 βˆ’ 𝑖𝑣 3𝑏4π‘Ž43π‘Ž32 βˆ’π‘–π‘£π‘4 cos(𝑣) βˆ’ 𝑖𝑣 2𝑏4π‘Ž41 sin(𝑣) βˆ’ 𝑖𝑣 2𝑏4π‘Ž42 sin(𝑣) βˆ’ 𝑖𝑣 2𝑏4π‘Ž43 sin(𝑣) +𝑖𝑣3𝑏4π‘Ž42π‘Ž21cos (𝑣) + 𝑖𝑣 3𝑏4π‘Ž43π‘Ž31cos (𝑣) + 𝑖𝑣 3𝑏4π‘Ž43π‘Ž32cos (𝑣) +𝑖𝑣4𝑏4π‘Ž43π‘Ž32π‘Ž21 sin(𝑣) βˆ’ 𝑖𝑣 2𝑏3π‘Ž32 sin(𝑣). (19) Where 𝑣 = πœ”β„Ž. We obtain the trigonometrically fitting order conditions by equating the real and imaginary parts: cos(𝑣) = 1 βˆ’ π‘£π‘βˆ’1 sin(𝑣) βˆ’ 𝑣 2𝑏2 π‘Ž21 βˆ’ 𝑣𝑏2 sin(𝑣) βˆ’ 𝑣 2𝑏3 π‘Ž31+𝑣 2 𝑏2π‘Ž21 cos (𝑣) βˆ’π‘£2𝑏3 π‘Ž32 βˆ’ 𝑣𝑏3 sin(𝑣) + 𝑣 2 𝑏3π‘Ž31 cos (𝑣) βˆ’ 𝑣 2𝑏4 π‘Ž41 + 𝑣 2 𝑏3π‘Ž32 cos(𝑣) +𝑣3 𝑏3π‘Ž32π‘Ž21 sin(𝑣) βˆ’ 𝑣 2 𝑏4π‘Ž42 βˆ’ 𝑣 2 𝑏4π‘Ž43 βˆ’ 𝑣𝑏4 sin(𝑣) + 𝑣 4 𝑏4π‘Ž43π‘Ž32π‘Ž21 +𝑣2 𝑏4π‘Ž41 cos(𝑣) + 𝑣 2 𝑏4π‘Ž42 cos(𝑣) + 𝑣 3 𝑏4π‘Ž42π‘Ž21 sin(𝑣) + 𝑣 2 𝑏4π‘Ž43 cos(𝑣) +𝑣3 𝑏4π‘Ž43π‘Ž31 sin(𝑣) + 𝑣 3 𝑏4π‘Ž43π‘Ž32 sin(𝑣) βˆ’ 𝑣 3 𝑏4π‘Ž43π‘Ž32 π‘Ž21 cos(𝑣) , (20) sin(𝑣) = 𝑣𝑏1 βˆ’ π‘£π‘βˆ’1 cos(𝑣) + 𝑣𝑏2 βˆ’ 𝑣𝑏2 cos(𝑣) βˆ’ 𝑣𝑏3 cos(𝑣) βˆ’ 𝑣 2𝑏3π‘Ž31 sin(𝑣) +𝑣𝑏3 βˆ’ 𝑣 2𝑏2π‘Ž21 sin(𝑣) βˆ’ 𝑣 3 𝑏3π‘Ž32π‘Ž21 βˆ’ 𝑣 3𝑏4π‘Ž43π‘Ž31 βˆ’ 𝑣 3𝑏4π‘Ž43π‘Ž32 +𝑣𝑏4 + 𝑣 3𝑏3π‘Ž32π‘Ž21 cos(𝑣) βˆ’ 𝑣 3𝑏4π‘Ž42π‘Ž21 βˆ’ 𝑣 2𝑏4π‘Ž42 sin(𝑣) βˆ’ 𝑣 2𝑏4π‘Ž43 sin(𝑣) βˆ’π‘£π‘4 cos(𝑣) βˆ’ 𝑣 2𝑏4π‘Ž41 sin(𝑣) + 𝑣 3𝑏4π‘Ž43π‘Ž31cos (𝑣) + 𝑣 3𝑏4π‘Ž43π‘Ž32cos (𝑣) +𝑣3𝑏4π‘Ž42π‘Ž21cos (𝑣) + 𝑣 4𝑏4π‘Ž43π‘Ž32π‘Ž21 sin(𝑣) βˆ’ 𝑣 2𝑏3π‘Ž32 sin(𝑣). (21) Solving equations (20) and (21) using the coefficients of the IRK4 method in Table2 for unknowns parameters π‘Ž31 and π‘Ž41 we obtain the following solution: π‘Ž31 = βˆ’72 95 𝑣3(sin2(𝑣) + cos2(𝑣) βˆ’ 2 cos(𝑣) + 1) (βˆ’12 cos(𝑣) sin(𝑣) + 12 sin (𝑣) βˆ’3 𝑣 sin2(𝑣) + 𝑣3 sin2(𝑣) + 12 𝑣 π‘π‘œπ‘ (𝑣) βˆ’ 3 𝑣 cos2(𝑣) βˆ’ 2 𝑣3 cos(𝑣) βˆ’9𝑣 + 𝑣3 cos2(𝑣) + 𝑣3), (22) π‘Ž41 = 2 35625 𝑣3(sin2(𝑣)+cos2(𝑣)βˆ’2 cos(𝑣)+1) (βˆ’7560 𝑣 βˆ’ 9325 𝑣3 βˆ’17280𝑣 π‘π‘œπ‘ (𝑣) + 24840 𝑣 cos2(𝑣) + 18650 𝑣3 cos(𝑣) +1083 𝑣5 cos2(𝑣) + 64800 sin(𝑣) βˆ’ 57240 𝑣 sin2(𝑣) + 1083 𝑣5 βˆ’64800 cos(𝑣) sin(𝑣) βˆ’ 9325 𝑣3sin2(𝑣) βˆ’ 2166 𝑣5 cos(𝑣) βˆ’9325 𝑣3 cos2(𝑣) + 41040𝑣2 sin(𝑣) + 1083 𝑣5 sin2(𝑣)). (23) IHJPAS. 36(1)2023 349 It can be noticed that for 𝑣 β†’ 0 using Maple package, the series expansions are given in following form: π‘Ž31 = βˆ’ 18 475 𝑣2 + 3 3325 𝑣4 βˆ’ 1 79800 𝑣6 + 1 8778000 𝑣8 βˆ’ 1 1369368000 𝑣10 + 1 28756728000 𝑣12 βˆ’ 1 78218300160000 𝑣14 + β‹― , (24) π‘Ž41 = 2 15 βˆ’ 276 11875 𝑣2 + 689 249375 𝑣4 βˆ’ 77 1425000 𝑣6 + 1069 1975050000 𝑣8 βˆ’ 61849 10783773000000 𝑣10 βˆ’ 1 172540368000 𝑣12 βˆ’ 77963 87995587680000000 𝑣14 + β‹― , (25) which lead to the new TFIRK4 method. As 𝑣 β†’ 0, the newly obtained parameters π‘Ž31 and π‘Ž41 turn into the parameters of the original method. 3. Numerical Results To evaluate the efficacy of the TFIRK4 method proposed, we apply them to oscillatory test problems and their numerical results are compared with the existing effective methods. The following numerical methods are applied in the comparison: β–ͺ Step size. β–ͺ TFIRK4: the Trigonometrically Fitted four-stage fourth-order IRK method presented here. β–ͺ IRK4: fourth-order IRK method derive in [4]. β–ͺ TFRK4: Trigonometrically-Fitted RK method developed in [8]. β–ͺ RK4Z: fifth-order RK method given in [1]. β–ͺ MRK4: modified RK method of order four proposed in [9]. β–ͺ Max Error: max (|𝑒(π‘₯𝑛) βˆ’ 𝑒𝑛|) This is the maximum between absolute errors of the exact solutions and the computed solutions. Problem 1: [10] Inhomogeneous problem: 𝑒1 β€² (𝑑) = 𝑒2(𝑑), 𝑒1(0) = 1, 𝑒2 β€² (𝑑) = βˆ’100 𝑒1(𝑑) + 99 sin(𝑑), 𝑒2(0) = 11. Exact solution is: 𝑒1(𝑑) = cos(10𝑑) + sin(10𝑑) + sin(𝑑), 𝑒2(𝑑) = βˆ’10 sin(10𝑑) + 10 cos(10𝑑) + cos(𝑑). Problem 2: [7] Inhomogeneous problem: 𝑒1 β€² (𝑑) = 𝑒2(𝑑), 𝑒1(0) = 1, 𝑒2 β€² (𝑑) = βˆ’π‘’1(𝑑) + 𝑑, 𝑒2(0) = βˆ’2. Exact solution is: 𝑒1(𝑑) = sin(𝑑) + cos(𝑑) + 𝑑, 𝑒2(𝑑) = cos(𝑑) βˆ’ sin(𝑑) + 1 Problem 3: [11] Duffing problem: 𝑒1 β€² (𝑑) = 𝑒2(𝑑), 𝑒1(0) = 0.200426728067, 𝑒3 β€² (𝑑) = βˆ’π‘’1(𝑑) βˆ’ (𝑒1(𝑑)) 3 + 0.002 cos(1.01 𝑑), 𝑒2(0) = 0, Exact solution is: 𝑒1(𝑑) = 0.200179477536 cos(1.01 𝑑) + 2.46946143 Γ— 10 βˆ’4 cos(3.03 𝑑) IHJPAS. 36(1)2023 350 +3.04014 Γ— 10βˆ’7 cos(5.05 𝑑) + 3.74 10βˆ’10 cos(7.07 𝑑), 𝑒2(𝑑) = βˆ’0.2021812723 sin(1.01 𝑑) βˆ’ 7.482468133 Γ— 10 βˆ’4 sin(3.03 𝑑) βˆ’1.53527070 Γ— 10βˆ’6 sin(5.05 𝑑) βˆ’ 2.64418 Γ— 10βˆ’9 sin(7.07 𝑑). Problem 4: [8] 𝑒1 β€² (𝑑) = 𝑒3(𝑑), 𝑒1(0) = 1, 𝑒3 β€² (𝑑) = βˆ’π‘’1(𝑑) (√(𝑒1(𝑑)) 2+(𝑒2(𝑑)) 2) 3 𝑒3(0) = 0, 𝑒2 β€² (𝑑) = 𝑒4(𝑑), 𝑒2(0) = 0, 𝑒4 β€² (𝑑) = βˆ’π‘’2(𝑑) (√(𝑒1(𝑑)) 2+(𝑒2(𝑑)) 2) 3 𝑒4(0) = 1. Exact solution is: 𝑒1(𝑑) = cos(𝑑), 𝑒1(𝑑) = sin(𝑑), 𝑒3(𝑑) = βˆ’sin(𝑑), 𝑒4(𝑑) = cos(𝑑), Problem 5: [11] 𝑒1 β€² (𝑑) = 𝑒3(𝑑), 𝑒1(0) = 1, 𝑒3 β€² (𝑑) = βˆ’π‘’1(𝑑) + 0.001 cos(𝑑), 𝑒3(0) = 0, 𝑒2 β€² (𝑑) = 𝑒4(𝑑), 𝑒2(0) = 0, 𝑒4 β€² (𝑑) = βˆ’π‘’2(𝑑) + 0.001 sin(𝑑), 𝑒4(0) = 0.9995. Exact solution is: 𝑒1(𝑑) = cos(𝑑) + 0.0005 𝑑 sin(𝑑), 𝑒2(𝑑) = βˆ’0.9995 sin(𝑑) + 0.0005 𝑑 cos(𝑑), 𝑒3(𝑑) = sin(𝑑) βˆ’ 0.0005 𝑑 cos(𝑑), 𝑒4(𝑑) = 0.9995 cos(𝑑) + 0.0005 𝑑 sin(𝑑). IHJPAS. 36(1)2023 351 Figure 1. The curves comparisons for Problem 1 with step size β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. Figure 2. The curves comparisons for Problem 2 with step size β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. IHJPAS. 36(1)2023 352 Figure 3. The curves comparisons for Problem 3 with step size β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. Figure 4. The curves comparisons for Problem 4 with step size β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. IHJPAS. 36(1)2023 353 Figure 5. The curves comparisons for Problem 5 with step size β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. To assess the method's accuracy, we utilize the absolute error criterion. The step size is β„Ž = 1 2π‘Ÿ , π‘Ÿ = 0,1,2,4. and integration interval is [0, 1000] for all problems. The accuracy of the new TFIRK4 approach is depicted in Figures 1–5 in terms of the greatest global absolute error versus the step sizes required by each method. Compared to other RK methods of the same order, the TFIRK4 approaches, as shown in Figures 1–5, have the smallest maximum global error per step. The TFIRK4 produces results that are more accurate than those of other research in the literature, as seen in Figures 1–5. 4. Conclusions We derived the conditions of the Trigonometrically-Fitted IRK approach to solving oscillatory problems in this paper. As a result, we developed the TFIRK4 method, a four-stage, fourth-order IRK method that is trigonometrically fitted. The Figures show how the step size was used to calculate the common logarithm of the most significant global error during integration and computing cost. The numerical results made it clear that the TFIRK4 approach using a trigonometrically fitted strategy, had less global error than the existing methods used to solve oscillatory problems. References 1. Hairer, E.; Nrsett, S.P.; and Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer; Berlin; 1993. ISBN: 978-3-540-78862-1. 2. Butcher, J.C. Numerical Methods for Ordinary Differential Equations. 2nd ed., John Wiley & Son; New York; 2016, ISBN: 978-0-470-72335-7. 3. Salih, M.; Ismail, F.; Senu, N. Phase Fitted and Amplification Fitted of Runge-Kutta- Fehlberg Method of Order 4 (5) for Solving Oscillatory Problems. Baghdad Science Journal. 2020, 17(2), 689-689. IHJPAS. 36(1)2023 354 4.Rabiei, F.; Ismail, F. Improved Runge-Kutta Methods for Solving Ordinary Differential Equations. Sains Malaysiana. 2013, 42(11), 1679–1687. 5. Ahmad, N.A.; Senu, N.; and Ismail, F. Trigonometrically-Fitted higher Order Two Derivative Runge-Kutta Method for Solving Orbital and Related Periodical IVPs. Hacettepe Journal of Mathematics and Statistics, 2019, 48(5),1312-1323. 6.Ghazal, Z.K.; Hussain, K.A. Solving Oscillating Problems Using Modifying Runge-Kutta Methods. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2021, 34(4), 58-67. 7. Senu, N.; Lee, K.C.; Wan Ismail, W.F.; Ahmadian, A.; Ibrahim S.N.; Laham, M. Improved Runge-Kutta Method with Trigonometrically-Fitting Technique for Solving Oscillatory Problem. Malaysian Journal of Mathematical Sciences. 2021,15(2), 253-266. 8.Fawzi, F.A.; Senu, N.; Ismail, F.;Majid, Z.A. Explicit Runge-Kutta Method with Trigonometrically-Fitted for Solving First Order ODEs. In AIP Conference proceedings. 2016, 1739(1),1-7. 9.Simos, T.E.; Aguiar, J.V. A Modified Runge–Kutta Method with Phase-Lag of Order Infinity for the Numerical Solution of the Schrodinger Equation and Related Problems. Computers & Chemistry, 2001, 25(3), 275-281. 10.Hussain, K.A. Solving Oscillation Problems Using Optimized Integrator Method. Italian Journal of Pure and Applied Mathematics. 2022, 47, 578-587. 11.Senu, N.; Ahmed, N.A., Ibrahim, Z.B.; Othman, M. Numerical Study on Phase-Fitted and Amplification-Fitted Diagonally Implicit Two Derivative Runge-Kutta Method for Periodic IVPs. Sains Malaysiana, 2021, 50(6), 1799-1814.