IHJPAS. 36(2)2023 331 This work is licensed under a Creative Commons Attribution 4.0 International License Abstract This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for optimality (NCSO) theorems for the proposed problem are stated and proved. Keywords: Necessary and Sufficient Conditions fro optimality, Nonlinear Hyperbolic System, Quaternary Optimal Classical Continuous Control vector. 1. Introduction Optimal control problems (OCPs) are important in a wide range of practical applications, including robotics robotics[1], economics[2], weather conditions[3], community health[4], and a variety of other scientific fields. Nonlinear ODEs [5]or nonlinear PDEs (NLPDEs) [6] usually dominate OCPs. This significance pushed many researchers to be concerned about OCPs in general and optimal classical continuous control problems (OCCCPs) in particular. During the last decade much emphasis has been place on studying the OCPs for system dominating by nonlinear PDEs (NLPDEs) of the three types in general; hyperbolic, elliptic and parabolic [7-9]. Later the study of this subject, in particular for hyperbolic type of PDEs was generalized to deal with CCOCPs dominated by coupled NLPDEs of it [10], and then to CCOCPs dominating by triple NLPDEs of it [11]. the problem in each type of these OCCCPs was typically comprised of an initial and boundary value problem, the CF and the constraints on the state and the control vectors (CSCV). The study of each one of these problems had been included of; the existence theorem of constraints OCCC vector satisfying the SCCV had been stated and demonstrated under appropriate HYPs, the mathematical formulation for the QAEs related to the given QSEs had been obtained, doi.org/10.30526/36.2.2992 Article history: Received 5 September 2022, Accepted 9 October 2022, Published in April 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Constraints Optimal Classical Continuous Control Vector Problem for Quaternary Nonlinear Hyperbolic System Mayeada Abd Alsatar Hassan Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. mayeadabd1989@uomustanriyah.edu.iq Jamil A. Ali Al-Hawasy Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. jhawassy17@uomustansiriyah.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:mayeadabd1989@uomustanriyah.edu.iq mailto:jhawassy17@uomustansiriyah.edu.iq mailto:jhawassy17@uomustansiriyah.edu.iq IHJPAS. 36(2)2023 332 and the DD for the Ham had been derived. The theorems of necessity and sufficient conditions for optimality had been stated and demonstrated. All of these concerns motivated us to consider extending the study of the CCOCP dominating by triple NLPDEs of hyperbolic type to a CCOCP dominating by QNLHBVP. As a result of this expansion, there was a need to generalize the mathematical model and then to generalize all the proofs related to this generalization, and accordingly. The authors created new Theorems, Lemma and then proved them in this paper. The existence theorem (ETH) of a CQOCCCV dominating by the QNLHBVPs with EIQSCCV was stated and demonstrated in this work using the ACTH under appropriate HYPs. Moreover mathematical formulation of the QAEs related to QSEs was discovered as was the WF of the QAEs. The derivative of DD was obtained. Lastly, both the theorems for the NCSO of the proposed problems were stated and demonstrated. 2. Problem Description: Let 𝐼 = [0, 𝑇], T < ∞, Ξ© βŠ‚ ℝ2, be an open bounded regular region with boundary Ξ“ = πœ•Ξ©, 𝑄 = Ξ© Γ— 𝐼, Ξ£ = Ξ“ Γ— 𝐼. The CQOCCCV including of the QSEs are given by the following QNLHBVP: 𝑦1𝑑𝑑 βˆ’ βˆ†π‘¦1 + 𝑦1 βˆ’ 𝑦2 + 𝑦3 + 𝑦4 = 𝑓1(π‘₯, 𝑑, 𝑦1, 𝑒1), in 𝑄, (1) 𝑦2𝑑𝑑 βˆ’ βˆ†π‘¦2 + 𝑦1 + 𝑦2 βˆ’ 𝑦3 βˆ’ 𝑦4 = 𝑓2(π‘₯, 𝑑, 𝑦2, 𝑒2), in 𝑄, (2) 𝑦3𝑑𝑑 βˆ’ βˆ†π‘¦3 βˆ’ 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 𝑓3(π‘₯, 𝑑, 𝑦3, 𝑒3), in 𝑄, (3) 𝑦4𝑑𝑑 βˆ’ βˆ†π‘¦4 βˆ’ 𝑦1 + 𝑦2 βˆ’ 𝑦3 + 𝑦4 = 𝑓4(π‘₯, 𝑑, 𝑦4, 𝑒4), in 𝑄, (4) with the following boundary conditions (BCs) and the initial conditions (ICs) 𝑦𝑖 (π‘₯, 𝑑) = 0, on Ξ£, for 𝑖 = 1,2,3,4 . (5) 𝑦1(π‘₯, 0) = 𝑦𝑖 0(π‘₯),and 𝑦𝑖𝑑 (π‘₯, 0) = 𝑦𝑖 1(π‘₯), in Ξ© for 𝑖 = 1,2,3,4. (6) where οΏ½βƒ—οΏ½ = (𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ 𝑯 𝟏(𝛀) = (𝐻1(Ξ©))4is the quaternary solution vectors (QSVs), corresponding to the quaternary classical continuous control vector (QCCCV) οΏ½βƒ—βƒ—οΏ½ = (𝑒1, 𝑒2, 𝑒3, 𝑒4) ∈ 𝑳 𝟐(𝐐) = (𝐿2(𝑄))4 and (𝑓1, 𝑓2, 𝑓3, 𝑓4) ∈ 𝑳 𝟐(𝐐) is a vector of a given function on (𝑄 Γ— ℝ Γ— π‘ˆ1) Γ— (𝑄 Γ— ℝ Γ— π‘ˆ2) Γ— (𝑄 Γ— ℝ Γ— π‘ˆ3) Γ— (𝑄 Γ— ℝ Γ— π‘ˆ4), with π‘ˆπ‘– βŠ‚ ℝ, βˆ€π‘– = 1,2,3,4 . The QSCCs are οΏ½βƒ—βƒ—οΏ½ ∈ π‘Š βƒ—βƒ—βƒ—βƒ—βƒ—, π‘Š βƒ—βƒ—βƒ—βƒ—βƒ— βŠ‚ 𝑳 𝟐(𝐐) where οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ = {οΏ½βƒ—βƒ—βƒ—οΏ½ ∈ π‘ˆ βƒ—βƒ—βƒ—βƒ— βŠ‚ ℝ 4, π‘Ž. 𝑒 𝑖𝑛 𝑄}, with is a convex (CO). The CF is given and The EINEQSCC on the QSCCs are resp. 𝐺0(οΏ½βƒ—βƒ—οΏ½) = Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔0𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 , (7) 𝐺1(οΏ½βƒ—βƒ—οΏ½) = Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔1𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 = 0, (8) 𝐺2(οΏ½βƒ—βƒ—οΏ½) = Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔2𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 ≀ 0, (9) The set of admissible quaternary control (AQC) is: �⃗⃗⃗⃗�𝐴 = {οΏ½βƒ—βƒ—οΏ½ ∈ π‘Š βƒ—βƒ—βƒ—βƒ—βƒ— ∣ 𝐺1(οΏ½βƒ—βƒ—οΏ½) = 0, 𝐺2(οΏ½βƒ—βƒ—οΏ½) ≀ 0}. The CQOCCCV is to find οΏ½βƒ—βƒ—οΏ½ ∈ �⃗⃗⃗⃗�𝐴, s.t. 𝐺0(οΏ½βƒ—βƒ—οΏ½) = π‘šπ‘–π‘› οΏ½βƒ—βƒ—βƒ—οΏ½βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺0 (οΏ½βƒ—βƒ—βƒ—οΏ½) . LetοΏ½βƒ—βƒ—οΏ½ = {οΏ½βƒ—οΏ½ = (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝑯 𝟏(𝛀), 𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 0 π‘œπ‘› πœ•Ξ©},Vβƒ—βƒ—βƒ— = π‘―πŸŽ 𝟏(𝛀) = (𝐻0 1(Ξ©))4 , π‘³πŸ(𝑰, 𝑽) = (𝐿2(𝐼, 𝑉))4 and 𝑉 = 𝐻0 1(Ξ©), the inner product (IP) and the norm(Nr) in π‘³πŸ(𝐐) are denoted by (οΏ½βƒ—οΏ½, οΏ½βƒ—οΏ½) and βˆ₯ οΏ½βƒ—οΏ½ βˆ₯π‘³πŸ(𝐐)= Ξ£ 𝑖=1 4 βˆ₯ 𝑣1 βˆ₯𝐿2(Q) 2 resp., the Nr in π‘³πŸ(𝑰, 𝑽) by βˆ₯ οΏ½βƒ—οΏ½ βˆ₯π‘³πŸ(𝑰,𝑽)= Ξ£ 𝑖=1 4 βˆ₯ 𝑣1 βˆ₯𝐿2(𝐼,𝑉) 2 , and π‘³πŸ(𝑰, π‘½βˆ—) is the dual of π‘³πŸ(𝑰, 𝑽). The WF of ((1)-(6)) with οΏ½βƒ—οΏ½ ∈ π‘―πŸŽ 𝟏(𝛀) is given (a.e. on I and βˆ€π‘£π‘– , 𝑦𝑖 (0, 𝑑) ∈ 𝑉,βˆ€π‘– = 1,2,3,4 ) by : (𝑦1𝑑𝑑 , 𝑣1) + (βˆ‡π‘¦1, βˆ‡π‘£1) + (𝑦1, 𝑣1) βˆ’ (𝑦2, 𝑣1) + (𝑦3, 𝑣1) + (𝑦4, 𝑣1) = (𝑓1, 𝑣1), (10) IHJPAS. 36(2)2023 333 (𝑦1 0, 𝑣1) = (𝑦1(0), 𝑣1), and (𝑦1𝑑 1 , 𝑣1) = (𝑦1𝑑 (0), 𝑣1), (11) (𝑦2𝑑𝑑 , 𝑣2) + (βˆ†π‘¦2, βˆ‡π‘£2) + (𝑦1, 𝑣2) + (𝑦2, 𝑣2) βˆ’ (𝑦3, 𝑣2) βˆ’ (𝑦4, 𝑣2) = (𝑓2, 𝑣2), (12) (𝑦2 0, 𝑣2) = (𝑦2(0), 𝑣2), and (𝑦2𝑑 1 , 𝑣2) = (𝑦2𝑑 (0), 𝑣2) , (13) (𝑦3𝑑𝑑 , 𝑣3) + (βˆ‡π‘¦3, βˆ‡π‘£3) βˆ’ (𝑦1, 𝑣3) + (𝑦2, 𝑣3) + (𝑦3, 𝑣3) + (𝑦4, 𝑣3) = (𝑓3, 𝑣3), (14) (𝑦3 0, 𝑣3) = (𝑦3(0), 𝑣3), and (𝑦3𝑑 1 , 𝑣3) = (𝑦3𝑑 (0), 𝑣3), (15) (𝑦4𝑑𝑑 , 𝑣4) + (βˆ‡π‘¦4, βˆ‡π‘£4) βˆ’ (𝑦1, 𝑣4) + (𝑦2, 𝑣4) βˆ’ (𝑦3, 𝑣4) + (𝑦4, 𝑣4) = (𝑓4, 𝑣4), (16) (𝑦4 0, 𝑣4) = (𝑦4(0), 𝑣4), and (𝑦4𝑑 1 , 𝑣4) = (𝑦4𝑑 (0), 𝑣4), (17) Assums (A): Suppose that 𝑓𝑖 is of CarathΓ©odory type (CaraT) on 𝑄 Γ— (ℝ Γ— π‘ˆπ‘– ) satisfies (w.r.t. 𝑦𝑖 &𝑒𝑖 ) the following (i)|𝑓𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐹𝑖 (π‘₯, 𝑑)+∣ 𝑒𝑖 | + 𝛽𝑖 |𝑦𝑖 |, where 𝑦𝑖 , 𝑒𝑖 ∈ ℝ, 𝛽𝑖 > 0 and 𝐹𝑖 ∈ 𝐿 2(Q). (ii) 𝑓𝑖 is satisfied Lipschitz condition (LPC) w.r.t. 𝑦𝑖, i.e. |𝑓𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) βˆ’ 𝑓𝑖 (π‘₯, 𝑑, �̅�𝑖 , 𝑒𝑖 )| ≀ 𝐿𝑖 |𝑦𝑖 βˆ’ �̅�𝑖 | , 𝑦𝑖 , �̅�𝑖 , 𝑒𝑖 ∈ ℝ, 𝐿𝑖 > 0, for (π‘₯, 𝑑) ∈ 𝑄. Proposition 2.1[12]: Let 𝐷 βŠ‚ ℝ2 be measurable, 𝑓: 𝐷 Γ— ℝ𝑛 ⟢ β„π‘š is of CaraT satisfies: ‖𝑓(𝑣, π‘₯)β€– ≀ (𝑣) + (𝑣)β€–π‘₯‖𝛼, where π‘₯ ∈ 𝐿𝑝(𝐷 Γ— ℝ𝑛 ), ∈ 𝐿1(𝐷 Γ— ℝ ), ∈ 𝐿 𝑝 π‘βˆ’π›Ό(𝐷 Γ— ℝ ), 𝛼 ∈ [0, ∞). Then the functional (funl) 𝐹(π‘₯) = ∫ 𝐷 𝑓(𝑣, π‘₯(𝑣))𝑑𝑣 is continuous (cont.). Theorem2.1 (ETH of a Unique QSVs)[13]: If Assums (A) hold, then for each given οΏ½βƒ—βƒ—οΏ½ ∈ π‘³πŸ(𝐐), the WF (10- 17) has a unique QSVs οΏ½βƒ—οΏ½ = (𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ 𝑳 𝟐(𝑰, 𝑽) with �⃗�𝑑 = (𝑦1𝑑 , 𝑦2𝑑 , 𝑦3𝑑 , 𝑦4𝑑 ) ∈ π‘³πŸ(𝐐), �⃗�𝑑𝑑 = (𝑦1𝑑𝑑 , 𝑦2𝑑𝑑 , 𝑦3𝑑𝑑 , 𝑦4𝑑𝑑 ) ∈ 𝑳 𝟐(𝑰, π‘½βˆ—). Assums (B): Consider 𝑔𝑙𝑖 (for 𝑖 = 1,2,3,4 & 𝑙 = 0,1,2) is of the CaraT on 𝑄 Γ— (ℝ Γ— π‘ˆπ‘– ) and satisfies:|𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐺𝑙𝑖 (π‘₯, 𝑑) + 𝐢𝑙𝑖 (𝑦𝑖 ) 2 + 𝐢𝑙𝑖 (𝑒𝑖 ) 2, where 𝐺𝑙𝑖 ∈ 𝐿 1(𝑄), 𝑦𝑖 ∈ ℝ &𝑒𝑖 ∈ π‘ˆπ‘–. Lemma 2.1: With Assums (B), the funl οΏ½βƒ—βƒ—οΏ½ β†’ 𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½), βˆ€π‘™ = 0,1,2 is cont. on 𝑳 𝟐(𝐐). Proof: The proof is obtained from the Assums (B) and Proposition 1. Lemma 2.2[12]: Let 𝑔: 𝑄 Γ— ℝ β†’ ℝ is of CaraT on 𝑄 Γ— (ℝ Γ— ℝ) and satisfies |𝑔 (π‘₯, 𝑑, 𝑦, 𝑒)| ≀ 𝐺 (π‘₯, 𝑑) + 𝑐 𝑦 2 + �́�𝑒 2, where 𝐺(π‘₯, 𝑑) ∈ 𝐿1(Q),𝑒 ∈ π‘ˆ, 𝑐, 𝑐́ β‰₯ 0, π‘ˆ βŠ‚ ℝ, is compact(COM). Then ∫ 𝑄 𝑔 (π‘₯, 𝑦, 𝑒 )𝑑π‘₯ is cont. on 𝐿 2(𝑄) w.r.t. 𝑦. Theorem 2.2 (LP Cont. Theorem)[13]: In addition to Assums (A), if οΏ½βƒ—οΏ½ and οΏ½βƒ—οΏ½ + 𝛿�⃗� are the QSVs corresponding to the bounded QCCCVs οΏ½βƒ—βƒ—οΏ½ and οΏ½βƒ—βƒ—οΏ½ + 𝛿�⃗⃗� resp. in 𝐿2(𝑄), then for 𝛿 ∈ ℝ+ βˆ₯ 𝛿�⃗� βˆ₯𝐿∞(𝐼,π‘³πŸ(𝛀))≀ 𝛿 βˆ₯ 𝛿�⃗⃗� βˆ₯π‘³πŸ(𝑸),βˆ₯ π›ΏοΏ½βƒ—οΏ½βˆˆ βˆ₯π‘³πŸ(𝑰,𝑽)≀ 𝛿 βˆ₯ 𝛿�⃗⃗� βˆ₯π‘³πŸ(𝑸)andβˆ₯ 𝛿�⃗� βˆ₯𝐿2𝑄)≀ 𝛿 βˆ₯ 𝛿�⃗⃗� βˆ₯π‘³πŸ(𝑸). Assums (C): Assume that for each (𝑙 = 0,1,2 &𝑖 = 1,2,3,4), the functions 𝑓𝑖 , 𝑓𝑖𝑦𝑖 , 𝑓𝑖𝑒𝑖 , 𝑔𝑙𝑖𝑦𝑖 , 𝑔𝑙𝑖𝑒𝑖 are of CaraT on 𝑄 Γ— (ℝ Γ— π‘ˆβ€²), where (π‘ˆβ€² is an open set containing π‘ˆ), s.t.( for(π‘₯, 𝑑) ∈ 𝑄) : |𝑓𝑖𝑦𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐿𝑖 , |𝑓𝑖𝑦𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐿′𝑖, |𝑔𝑖𝑦𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐺𝑙𝑖5(π‘₯, 𝑑) + 𝐺𝑙𝑖5(π‘₯, 𝑑) ∣ 𝑦𝑖 ∣, |𝑔𝑖𝑒𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )| ≀ 𝐺𝑙𝑖6(π‘₯, 𝑑) + 𝐺𝑙𝑖6(π‘₯, 𝑑) ∣ 𝑦𝑖 ∣,where𝑦𝑖 , 𝑒𝑖 ∈ ℝ, 𝐺𝑙𝑖5, 𝐺𝑙𝑖6 ∈ 𝐿 2(𝑄),𝐺𝑙𝑖5, 𝐺𝑙𝑖6 β‰₯ 0. Main Results 3.Existence of the CQOCCCV Theorem 3.1: In addition to Assums ((A) & (B)), if the set οΏ½βƒ—βƒ—βƒ—οΏ½ is CO and com., �⃗⃗⃗⃗�𝐴 β‰  πœ™, the function 𝑓𝑖 (βˆ€π‘– = 1,2,3,4) has the form: 𝑓𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) = 𝑓𝑖1(π‘₯, 𝑑, 𝑦𝑖 ) + 𝑓𝑖2(π‘₯, 𝑑)𝑒𝑖 , with |𝑓𝑖1(π‘₯, 𝑑, 𝑦𝑖 )| ≀ 𝑖 (π‘₯, 𝑑) + 𝑐𝑖 ∣ 𝑦𝑖 ∣,|𝑓𝑖2(π‘₯, 𝑑)| ≀ 𝐾𝑖, 𝑖 ∈ 𝐿 2(Q), 𝑐𝑖 β‰₯ 0. IHJPAS. 36(2)2023 334 𝑔1𝑖 is independent of 𝑒𝑖 , 𝑔0𝑖 and 𝑔2𝑖are CO w.r.t. 𝑒𝑖 for fixed (π‘₯, 𝑑, 𝑦𝑖 ), βˆ€ 𝑖 = 1,2,3,4. Then there is a CQOCCCV. Proof: From the Assum on οΏ½βƒ—βƒ—βƒ—οΏ½ βŠ‚ ℝ , οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ is weakly compact (WCOM), since �⃗⃗⃗⃗�𝐴 β‰  πœ™, then there is a minimum sequence(Seq.) {οΏ½βƒ—βƒ—οΏ½π‘˜ } = {(𝑒1π‘˜ , 𝑒2π‘˜ , 𝑒3π‘˜ , 𝑒4π‘˜ )} ∈ �⃗⃗⃗⃗�𝐴, βˆ€π‘˜ s.t. π‘™π‘–π‘š π‘˜β†’βˆž 𝐺0(οΏ½βƒ—βƒ—οΏ½π‘˜ ) = 𝑖𝑛𝑓 οΏ½βƒ—βƒ—βƒ—οΏ½π‘˜βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺0(οΏ½βƒ—βƒ—Μ…οΏ½). Since οΏ½βƒ—βƒ—οΏ½π‘˜ ∈ �⃗⃗⃗⃗�𝐴, βˆ€π‘˜ and οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ is WCOM, there exists a subsequence of {οΏ½βƒ—βƒ—οΏ½π‘˜ } say again {οΏ½βƒ—βƒ—οΏ½π‘˜ } s.t. . οΏ½βƒ—βƒ—οΏ½π‘˜ β†’ οΏ½βƒ—βƒ—οΏ½ weakly (WK) in π‘³πŸ(𝐐) and βˆ₯ οΏ½βƒ—βƒ—οΏ½π‘˜ βˆ₯π‘³πŸ(𝐐)≀ 𝑑,βˆ€π‘˜. From Theorem 1, corresponding to the Seq. QCV {οΏ½βƒ—βƒ—οΏ½π‘˜ } the WF of the QSEs has β€œa unique” solution {οΏ½βƒ—οΏ½π‘˜ = οΏ½βƒ—οΏ½π‘’π‘˜ } and βˆ₯ οΏ½βƒ—οΏ½π‘˜ βˆ₯π‘³πŸ(𝑰,𝑽), βˆ₯ οΏ½βƒ—οΏ½π‘˜π‘‘ βˆ₯π‘³πŸ(𝑸) are bounded, then by Alaoglu’s theorem (ATH), there exists a Subsequence of {οΏ½βƒ—οΏ½π‘˜ } and {οΏ½βƒ—οΏ½π‘˜π‘‘ }, say again {οΏ½βƒ—οΏ½π‘˜ } and {οΏ½βƒ—οΏ½π‘˜π‘‘ }, s.t. οΏ½βƒ—οΏ½π‘˜ β†’ οΏ½βƒ—οΏ½ WK in 𝑳 𝟐(𝑰, 𝑽), οΏ½βƒ—οΏ½π‘˜π‘‘ β†’ �⃗�𝑑 WK in (𝐿 2(𝑄))4. Now for each π‘˜. and by applying the ACTH[14] , there is a Subsequence of{οΏ½βƒ—οΏ½π‘˜ } say a gain {οΏ½βƒ—οΏ½π‘˜ } s.t. οΏ½βƒ—οΏ½π‘˜ β†’ οΏ½βƒ—οΏ½ strongly (ST) in π‘³πŸ(𝐐). Now, for each π‘˜, substituting the QSVs οΏ½βƒ—οΏ½π‘˜ in the WF ((10), (12), (14), (16)), multiplying both sides (MBSs) of each one by πœ™π‘– (𝑑), βˆ€π‘– = 1,2,3,4 (with πœ™π‘– ∈ 𝐢 2[0, 𝑇], s.t. πœ™π‘– (𝑇) = πœ™π‘– β€²(𝑇) = 0, πœ™π‘– (0) β‰  0, πœ™π‘– β€²(0) β‰  0), rewriting the 1st terms in the LHS of each one, then integrating both sides (IBS) on [0, 𝑇], and then integrating by parts (IBPs) for the 1st terms, yield to ∫ 0 𝑇 𝑑 𝑑𝑑 (𝑦1π‘˜π‘‘ , 𝑣1)πœ™1 𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘¦1π‘˜ , βˆ‡π‘£1) + (𝑦1π‘˜ , 𝑣1) βˆ’ (𝑦2π‘˜ , 𝑣1) + (𝑦3π‘˜ , 𝑣1) + (𝑦4π‘˜ , 𝑣1)]πœ™1 𝑑𝑑 =∫ 0 𝑇 (𝑓11(π‘₯, 𝑑, 𝑦1π‘˜ ), 𝑣1)πœ™1 (𝑑)𝑑𝑑 + ∫ 0 𝑇 (𝑓12(π‘₯, 𝑑)𝑒1π‘˜ , 𝑣1)πœ™1 (𝑑)𝑑𝑑 , (18) ∫ 0 𝑇 𝑑 𝑑𝑑 (𝑦2π‘˜π‘‘ , 𝑣2)πœ™2 𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘¦2π‘˜ , βˆ‡π‘£2) + (𝑦1π‘˜ , 𝑣2) + (𝑦2π‘˜ , 𝑣2) βˆ’ (𝑦3π‘˜ , 𝑣2) βˆ’ (𝑦4π‘˜ , 𝑣2)]πœ™2 𝑑𝑑 = ∫ 0 𝑇 (𝑓21(π‘₯, 𝑑, 𝑦2π‘˜ ), 𝑣2)πœ™2 (𝑑)𝑑𝑑 + ∫ 0 𝑇 (𝑓22(π‘₯, 𝑑)𝑒2π‘˜ , 𝑣2)πœ™2 (𝑑)𝑑𝑑, (19) ∫ 0 𝑇 𝑑 𝑑𝑑 (𝑦3π‘˜ , 𝑣3)πœ™3 𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘¦3π‘˜ , βˆ‡π‘£3) βˆ’ (𝑦1π‘˜ , 𝑣3) + (𝑦2π‘˜ , 𝑣3) + (𝑦3π‘˜ , 𝑣3) + (𝑦4π‘˜ , 𝑣3)]πœ™3 𝑑𝑑 = ∫ 0 𝑇 (𝑓31(π‘₯, 𝑑, 𝑦3π‘˜ ), 𝑣3)πœ™3 (𝑑)𝑑𝑑 + ∫ 0 𝑇 (𝑓32(π‘₯, 𝑑)𝑒3π‘˜ , 𝑣3)πœ™3 (𝑑)𝑑𝑑, (20) ∫ 0 𝑇 𝑑 𝑑𝑑 (𝑦4π‘˜ , 𝑣4)πœ™4 𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘¦4π‘˜ , βˆ‡π‘£4) βˆ’ (𝑦1π‘˜ , 𝑣4) + (𝑦2π‘˜ , 𝑣4) βˆ’ (𝑦3π‘˜ , 𝑣4) + (𝑦4π‘˜ , 𝑣4)]πœ™4 𝑑𝑑 = ∫ 0 𝑇 (𝑓41(π‘₯, 𝑑, 𝑦4π‘˜ ), 𝑣4)πœ™4 (𝑑)𝑑𝑑 + ∫ 0 𝑇 (𝑓42(π‘₯, 𝑑)𝑒4π‘˜ , 𝑣4)πœ™4 (𝑑)𝑑𝑑, (21) At this point, the same steps which were utilized in the proof of Theorem 2.1, can be utilized here to passage the limit in the WF of ((18) – (21)), to acquire (𝑦1𝑑 , 𝑣1) + (βˆ‡π‘¦1, βˆ‡π‘£1) + (𝑦1, 𝑣1) βˆ’ (𝑦2, 𝑣1) + (𝑦3, 𝑣1) + (𝑦4, 𝑣1) = (𝑓11(π‘₯, 𝑑, 𝑦1) + 𝑓12(π‘₯, 𝑑)𝑒1, 𝑣1), βˆ€π‘£1 ∈ 𝑉 a.e. on I, (22) (𝑦2𝑑 , 𝑣2) + (βˆ†π‘¦2, βˆ‡π‘£2) + (𝑦1, 𝑣2) + (𝑦2, 𝑣2) βˆ’ (𝑦3, 𝑣2) βˆ’ (𝑦4, 𝑣2) = (𝑓21(π‘₯, 𝑑, 𝑦2) + 𝑓22(π‘₯, 𝑑)𝑒2, 𝑣2), βˆ€π‘£2 ∈ 𝑉 a.e. on I, (23) (𝑦3𝑑 , 𝑣3) + (βˆ‡π‘¦3, βˆ‡π‘£3) βˆ’ (𝑦1, 𝑣3) + (𝑦2, 𝑣3) + (𝑦3, 𝑣3) + (𝑦4, 𝑣3) = (𝑓31(π‘₯, 𝑑, 𝑦3) + 𝑓32(π‘₯, 𝑑)𝑒3, 𝑣3), βˆ€π‘£3 ∈ 𝑉 a.e. on I, (24) (𝑦4𝑑 , 𝑣4) + (βˆ‡π‘¦4, βˆ‡π‘£4) βˆ’ (𝑦1, 𝑣4) + (𝑦2, 𝑣4) βˆ’ (𝑦3, 𝑣4) + (𝑦4, 𝑣4) = (𝑓41(π‘₯, 𝑑, 𝑦4) + 𝑓42(π‘₯, 𝑑)𝑒4, 𝑣4), βˆ€π‘£4 ∈ 𝑉 a.e. on I, (25) Same manner also can be utilized to that the ICs are held. Thus οΏ½βƒ—οΏ½ is QSVs IHJPAS. 36(2)2023 335 From the other side, since 𝐺1(οΏ½βƒ—βƒ—οΏ½) = Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔1𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ )𝑑π‘₯𝑑𝑑, with 𝑔1𝑖 (βˆ€π‘– = 1,2,3,4) is cont. w.r.t. 𝑦𝑖, then by Lemma 2.1, ∫ 𝑄 𝑔1𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ )𝑑π‘₯𝑑𝑑 is cont. w.r.t. 𝑦𝑖 but οΏ½βƒ—οΏ½π‘˜ β†’ οΏ½βƒ—οΏ½ ST in 𝑳 𝟐(𝑸) , therefore ∫ 𝑄 𝑔1𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ ) 𝑑π‘₯𝑑𝑑 β†’ ∫ 𝑄 𝑔1𝑖 (π‘₯, 𝑑, 𝑦𝑖 )𝑑π‘₯𝑑𝑑. Thus 𝐺1(οΏ½βƒ—βƒ—οΏ½) = π‘™π‘–π‘š π‘˜β†’βˆž 𝐺1(οΏ½βƒ—βƒ—οΏ½π‘˜ ) = 0 . As well, since for 𝑙 = 0,2 &𝑖 = 1,2,3,4, 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) is cont. w.r.t. (𝑦𝑖 , 𝑒𝑖 ) and π‘ˆπ‘– is COM with 𝑒𝑖 ∈ π‘ˆπ‘– a.e. in 𝑄, then using Lemma 2.2 to get ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ , π‘’π‘–π‘˜ ) 𝑑π‘₯𝑑𝑑 β†’ ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , π‘’π‘–π‘˜ )𝑑π‘₯𝑑𝑑 , (26) But 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) is CO and cont. w.r.t. 𝑒𝑖 , then ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 is weakly lowe semi cont. (WLSC) w.r.t. 𝑒𝑖 , βˆ€ 𝑙 = 0,2 &𝑖 = 1,2,3,4, i.e. ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 ≀ π‘™π‘–π‘š π‘˜β†’βˆž 𝑖𝑛𝑓 ∫ 𝑄 [𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , π‘’π‘–π‘˜ ) βˆ’ 𝑔𝑙𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ , π‘’π‘–π‘˜ )]𝑑π‘₯𝑑𝑑 + π‘™π‘–π‘š π‘˜β†’βˆž 𝑖𝑛𝑓 ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ , π‘’π‘–π‘˜ )𝑑π‘₯𝑑𝑑 ≀ π‘™π‘–π‘š π‘˜β†’βˆž 𝑖𝑛𝑓 ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ , π‘’π‘–π‘˜ )𝑑π‘₯𝑑 ⟹ Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑 ≀ Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔𝑙𝑖 (π‘₯, 𝑑, π‘¦π‘–π‘˜ , π‘’π‘–π‘˜ )𝑑π‘₯𝑑𝑑. Thus 𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½) ≀ π‘™π‘–π‘š π‘˜β†’βˆž 𝑖𝑛𝑓 οΏ½βƒ—βƒ—βƒ—οΏ½π‘˜βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½π‘˜ ), then 𝐺2(οΏ½βƒ—βƒ—οΏ½) ≀ 0 , since οΏ½βƒ—βƒ—οΏ½π‘˜ ∈ �⃗⃗⃗⃗�𝐴, βˆ€π‘˜, and 𝐺0(οΏ½βƒ—βƒ—οΏ½) ≀ π‘™π‘–π‘š π‘˜β†’βˆž 𝑖𝑛𝑓 οΏ½βƒ—βƒ—βƒ—οΏ½π‘˜βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺0(οΏ½βƒ—βƒ—οΏ½π‘˜ ) = π‘™π‘–π‘š π‘˜β†’βˆž 𝐺0(οΏ½βƒ—βƒ—οΏ½π‘˜ ) = 𝑖𝑛𝑓 οΏ½βƒ—βƒ—βƒ—οΏ½π‘˜βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺0(οΏ½βƒ—βƒ—Μ…οΏ½) ⟹ 𝐺0(οΏ½βƒ—βƒ—οΏ½) = π‘šπ‘–π‘› οΏ½βƒ—βƒ—βƒ—οΏ½π‘˜βˆˆοΏ½βƒ—βƒ—βƒ—βƒ—οΏ½π΄ 𝐺0(οΏ½βƒ—βƒ—Μ…οΏ½), then οΏ½βƒ—βƒ—οΏ½ is a QOCCCV. Theorem 3.2: Neglecting the index 𝑙 from 𝐺𝑙 and 𝑔𝑙𝑖. The QAEs οΏ½βƒ—οΏ½ = (𝑍1, 𝑍2, 𝑍3, 𝑍4) of the QSEs in ((1)-(6)) can be formulated as 𝑍1𝑑𝑑 βˆ’ βˆ†π‘1 + 𝑍1 + 𝑍2 βˆ’ 𝑍3 βˆ’ 𝑍4 = 𝑍1𝑓1𝑦1 (π‘₯, 𝑑, 𝑦1, 𝑒1) + 𝑔1𝑦1 (π‘₯, 𝑑, 𝑦1, 𝑒1), in 𝑄, (27) 𝑍1 = 0 on Ξ£, 𝑍1(π‘₯, 𝑇) = 𝑍1𝑑 (π‘₯, 𝑇) = 0 on Ξ© , (28) 𝑍2𝑑𝑑 βˆ’ βˆ†π‘2 βˆ’ 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4 = 𝑍2𝑓2𝑦2 (π‘₯, 𝑑, 𝑦2, 𝑒2) + 𝑔2𝑦2 (π‘₯, 𝑑, 𝑦2, 𝑒2), in 𝑄 , (29) 𝑍2 = 0 on Ξ£ , 𝑍2(π‘₯, 𝑇) = 𝑍2𝑑 (π‘₯, 𝑇) = 0 on Ξ©, (30) 𝑍3𝑑𝑑 βˆ’ βˆ†π‘3 + 𝑍1 βˆ’ 𝑍2 + 𝑍3 βˆ’ 𝑍4 = 𝑍3𝑓3𝑦3 (π‘₯, 𝑑, 𝑦3, 𝑒3) + 𝑔3𝑦3 (π‘₯, 𝑑, 𝑦3, 𝑒3) , in 𝑄, (31) 𝑍3 = 0 on Ξ£, 𝑍3(π‘₯, 𝑇) = 𝑍3𝑑 (π‘₯, 𝑇) = 0 on Ξ© , (32) 𝑍4𝑑𝑑 βˆ’ βˆ†π‘4 + 𝑍1 βˆ’ 𝑍2 + 𝑍3 + 𝑍4 = 𝑍4𝑓4𝑦4 (π‘₯, 𝑑, 𝑦4, 𝑒4) + 𝑔4𝑦4 (π‘₯, 𝑑, 𝑦4, 𝑒4) , in 𝑄, (33) 𝑍4 = 0 on Ξ£, 𝑍4(π‘₯, 𝑇) = 𝑍4𝑑 (π‘₯, 𝑇) = 0 on Ξ©, (34) And the Ham is defined as: 𝐻(π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½) = βˆ‘ 𝑖=1 4 (𝑍𝑖 𝑓𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) + 𝑔𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )) , Where 𝐺 (οΏ½βƒ—βƒ—οΏ½) = Ξ£ 𝑖=1 4 ∫ 𝑄 𝑔 𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )𝑑π‘₯𝑑𝑑. Then the DD of G is 𝐷𝐺(οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) = lim β†’0 𝐺(οΏ½βƒ—βƒ—βƒ—οΏ½+ 𝛿�⃗⃗⃗�)βˆ’πΊ(οΏ½βƒ—βƒ—βƒ—οΏ½) = ∫ 𝑄 𝐻�⃗⃗⃗�(π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½)(οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½)𝑑π‘₯𝑑𝑑 . Proof: The WF of the QAEs βˆ€π‘£π‘– ∈ 𝑉 and 𝑖 = 1,2,3,4 is (𝑍1𝑑𝑑 , 𝑣1) + (βˆ‡π‘1, βˆ‡π‘£1) + (𝑍1, 𝑣1) + (𝑍2, 𝑣1) βˆ’ (𝑍3, 𝑣1) βˆ’ (𝑍4, 𝑣1) = (𝑍1𝑓1𝑦1 , 𝑣1) + (𝑔1𝑦1 , 𝑣1) , βˆ€π‘£1 ∈ 𝑉 a.e. on 𝐼, (35) ( 𝑍1(𝑇), 𝑣1) = (𝑍1𝑑 (𝑇), 𝑣1) = 0, (36) (𝑍2𝑑𝑑 , 𝑣2) + (βˆ‡π‘2, βˆ‡π‘£2) βˆ’ (𝑍1, 𝑣2) + (𝑍2, 𝑣2) + (𝑍3, 𝑣2) + (𝑍4, 𝑣2) = (𝑍2𝑓2𝑦2 , 𝑣2) + (𝑔2𝑦2 , 𝑣2) , βˆ€π‘£2 ∈ 𝑉 a.e. on , (37) IHJPAS. 36(2)2023 336 ( 𝑍2(𝑇), 𝑣2) = ( 𝑍2𝑑 (𝑇), 𝑣2) = 0, (38) (𝑍3𝑑𝑑 , 𝑣3) + (βˆ‡π‘3 , βˆ‡π‘£3) + (𝑍1 , 𝑣3) βˆ’ (𝑍2 , 𝑣3) + (𝑍3 , 𝑣3) βˆ’ (𝑍4 , 𝑣3) = (𝑍3𝑓3𝑦3 , 𝑣3) + (𝑔3𝑦3 , 𝑣3) , βˆ€π‘£3 ∈ 𝑉 a.e. on 𝐼, (39) ( 𝑍3(𝑇) , 𝑣3) = (𝑍3𝑑 (𝑇) , 𝑣3) = 0 , (40) (𝑍4𝑑𝑑 , 𝑣4) + (βˆ‡π‘4 , βˆ‡π‘£4) + (𝑍1 , 𝑣4) βˆ’ (𝑍2 , 𝑣4) + (𝑍3 , 𝑣4) + (𝑍4 , 𝑣4) = (𝑍4𝑓4𝑦4 , 𝑣4) + (𝑔4𝑦4 , 𝑣4) , βˆ€π‘£4 ∈ 𝑉 a.e. on, (41) (𝑍4(π‘₯, 𝑇) , 𝑣4) = (𝑍4𝑑 (𝑇) , 𝑣4) = 0, (42) The WF ((35-(42)) has a unique solution οΏ½βƒ—οΏ½ = (𝑍1, 𝑍2, 𝑍3, 𝑍4) ∈ (𝐿 2(𝑄))4 (this it can proved so as the proof of existence a unique QSVs for the WF ((11)-(15)). Now, replacing 𝑣𝑖 = 𝛿𝑦𝑖 in (35), (37), (39) and (41), for 𝑖 = 1,2,3,4 resp. ∫ 0 𝑇 (𝛿𝑦1 , 𝑍1𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘1, βˆ‡π›Ώπ‘¦1 ) + (𝑍1, 𝛿𝑦1 ) + (𝑍2, 𝛿𝑦1 ) βˆ’ (𝑍3, 𝛿𝑦1 ) βˆ’ (𝑍4, 𝛿𝑦1 )]𝑑𝑑 = ∫ 0 𝑇 (𝑍1𝑓1𝑦1 , 𝛿𝑦1 ) + (𝑔1𝑦1 , 𝛿𝑦1 )𝑑𝑑, (43) ∫ 0 𝑇 (𝛿𝑦2 , 𝑍2𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘2, βˆ‡π›Ώπ‘¦2 ) βˆ’ (𝑍1, 𝛿𝑦2 ) + (𝑍2, 𝛿𝑦2 ) + (𝑍3, 𝛿𝑦3 ) + (𝑍4, 𝛿𝑦2 )]𝑑𝑑 = ∫ 0 𝑇 (𝑍2𝑓2𝑦2 , 𝛿𝑦2 ) + (𝑔2𝑦2 , 𝛿𝑦2 )𝑑𝑑, (44) ∫ 0 𝑇 (𝛿𝑦3 , 𝑍3𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘3, βˆ‡π›Ώπ‘¦3 ) + (𝑍1, 𝛿𝑦3 ) βˆ’ (𝑍2, 𝛿𝑦3 ) + (𝑍3, 𝛿𝑦3 ) βˆ’ (𝑍4, 𝛿𝑦3 )]𝑑𝑑 = ∫ 0 𝑇 (𝑍3𝑓3𝑦3 , 𝛿𝑦3 ) + (𝑔3𝑦3 , 𝛿𝑦3 )𝑑𝑑 , (45) ∫ 0 𝑇 (𝛿𝑦4 , 𝑍4𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π‘4, βˆ‡π›Ώπ‘¦4 ) + (𝑍1, 𝛿𝑦4 ) βˆ’ (𝑍2, 𝛿𝑦4 ) + (𝑍3, 𝛿𝑦4 ) + (𝑍4, 𝛿𝑦4 )]𝑑𝑑 = ∫ 0 𝑇 (𝑍4𝑓4𝑦4 , 𝛿𝑦4 ) + (𝑔4𝑦4 , 𝛿𝑦4 )𝑑𝑑, (46) Now, take οΏ½βƒ—βƒ—Μ…οΏ½, οΏ½βƒ—βƒ—οΏ½ ∈ π‘³πŸ(𝐐),set 𝛿𝑒⃗⃗ βƒ—βƒ— βƒ— = οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½ = οΏ½βƒ—βƒ—οΏ½ + 𝛿𝑒⃗⃗ βƒ—βƒ— βƒ— ∈ π‘³πŸ(𝐐) for > 0, then by Theorem 1, οΏ½βƒ—οΏ½ = οΏ½βƒ—οΏ½οΏ½βƒ—βƒ—βƒ—οΏ½ & οΏ½βƒ—οΏ½ = οΏ½βƒ—οΏ½οΏ½βƒ—βƒ—βƒ—οΏ½πœ€ are their corresponding QSVs. Setting 𝛿𝑦 βƒ—βƒ— βƒ—βƒ— βƒ— = (𝛿𝑦1 , 𝛿𝑦2 , 𝛿𝑦3 , 𝛿𝑦4 ) = οΏ½βƒ—οΏ½ βˆ’ οΏ½βƒ—οΏ½, substituting 𝑣𝑖 = 𝑍𝑖 for 𝑖 = 1,2,3,4 in ((10)- (17)), IBSs on [0, 𝑇], then integrating by parts twice (IBPs2) the 1st in the LHS of each obtained equation, finding the FrD of 𝑓𝑖 (βˆ€π‘– = 1,2,3,4) in the RHS of each one equation (which is exists from the Assums C), then from the result of Theorem 2.2 and the Minkowiski inequality (MIN), once get ∫ 0 𝑇 (𝛿𝑦1 , 𝑍1𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π›Ώπ‘¦1 , βˆ‡π‘1) + (𝛿𝑦1 , 𝑍1) + (𝛿𝑦2 , 𝑍1) + (𝛿𝑦3 , 𝑍1) + (𝛿𝑦4 , 𝑍1)]𝑑𝑑 = ∫ 0 𝑇 (𝑓1𝑦1 𝛿𝑦1 + 𝑓1𝑒1 𝛿𝑒1, 𝑍1)𝑑𝑑 + 𝑂11( ) , (47) ∫ 0 𝑇 (𝛿𝑦2 , 𝑍2𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π›Ώπ‘¦2 , βˆ‡π‘2) + (𝛿𝑦1 , 𝑍2) + (𝛿𝑦2 , 𝑍2) + (𝛿𝑦3 , 𝑍2) + (𝛿𝑦4 , 𝑍2)]𝑑𝑑 = ∫ 0 𝑇 (𝑓2𝑦2 𝛿𝑦2 + 𝑓2𝑒2 𝛿𝑒2, 𝑍2)𝑑𝑑 + 𝑂12( ), (48) ∫ 0 𝑇 (𝛿𝑦3 , 𝑍3𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π›Ώπ‘¦3 , βˆ‡π‘3) + (𝛿𝑦1 , 𝑍3) βˆ’ (𝛿𝑦2 , 𝑍3) + (𝛿𝑦3 , 𝑍3) + (𝛿𝑦4 , 𝑍3)]𝑑𝑑 = ∫ 0 𝑇 (𝑓3𝑦3 𝛿𝑦3 + 𝑓3𝑒3 𝛿𝑒3, 𝑍3)𝑑𝑑 + 𝑂13( ), (49) ∫ 0 𝑇 (𝛿𝑦4 , 𝑍4𝑑𝑑 )𝑑𝑑 + ∫ 0 𝑇 [(βˆ‡π›Ώπ‘¦4 , βˆ‡π‘4) βˆ’ (𝛿𝑦1 , 𝑍4) βˆ’ (𝛿𝑦2 , 𝑍4) + (𝛿𝑦3 , 𝑍4) + (𝛿𝑦4 , 𝑍4)]𝑑𝑑 IHJPAS. 36(2)2023 337 = ∫ 0 𝑇 (𝑓4𝑦4 𝛿𝑦4 + 𝑓4𝑒4 𝛿𝑒4, 𝑍4)𝑑𝑑 + 𝑂14( ), (50) where 𝑂1𝑖 ( ) =βˆ₯ 𝛿𝑦𝑖 βˆ₯𝑄 2 + βˆ₯ 𝛿𝑒𝑖 βˆ₯𝑄 2 β†’ 0 , as β†’ 0, βˆ€π‘– = 1,2,3,4. Subtracting ((47) – (50)) from ((43)- (46)) resp., collecting the obtain equations, to acquire ∫ 0 𝑇 βˆ‘ 𝑖=1 4 (𝑓𝑖𝑒𝑖 𝛿𝑒𝑖 , 𝑍𝑖 )𝑑𝑑 + 𝑂1( ) = ∫ 0 𝑇 βˆ‘ 𝑖=1 4 (𝑔𝑖𝑦𝑖 , 𝛿𝑦𝑖 )𝑑𝑑 , βˆ€π‘– = 1,2,3,4 , (51) Where 𝑂1( ) = βˆ‘ 𝑖=1 4 𝑂1𝑖 ( ) β†’ 0 as β†’ 0. From the other side, by employing the Assums (C), the definition of the FrD the result of Theorem 2.2, and using the MIN, one has 𝐺(οΏ½βƒ—βƒ—οΏ½ ) βˆ’ 𝐺(οΏ½βƒ—βƒ—οΏ½) = βˆ‘ 𝑖=1 4 ∫ 𝑄 (𝑔𝑖𝑦𝑖 𝛿𝑦𝑖 + 𝑔𝑖𝑒𝑖 𝛿𝑒𝑖 )𝑑π‘₯𝑑𝑑 + 𝑂2( ), (52) Where 𝑂2( ) =βˆ₯ 𝛿𝑦⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— βˆ₯π‘³πŸ(𝐐) 2 + βˆ₯ 𝛿𝑒 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βˆ₯ π‘³πŸ(𝐐) 2 β†’ 0 as β†’ 0, βˆ€π‘– = 1,2,3,4. Now, by using (51) in (52), to obtain 𝐺(οΏ½βƒ—βƒ—οΏ½ ) βˆ’ 𝐺(οΏ½βƒ—βƒ—οΏ½) = ∫ 0 𝑇 βˆ‘ 𝑖=1 4 (𝑍𝑖 𝑓𝑖𝑒𝑖 + 𝑔𝑖𝑒𝑖 )𝛿𝑒𝑖 𝑑π‘₯𝑑𝑑 + 𝑂3( ) , Where 𝑂3( ) = 𝑂1( ) + 𝑂2( ). Lastly, dividing both sides by , then taking the limit β†’ 0, yields to 𝐷𝐺(οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) = ∫ 𝑄 𝐻�⃗⃗⃗�(π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½)(οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½)𝑑π‘₯𝑑𝑑 . 4.The NCSO and SCSO 4.1Theorem: (a) with Assums (A), (B) &( C), if οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ is CO., the οΏ½βƒ—βƒ—οΏ½ ∈ π‘Šπ΄βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— is CQOCCCV, then there exist πœ†π‘™ ∈ ℝ, 𝑙 = 0,1,2 with πœ†0 β‰₯ 0, πœ†2 β‰₯ 0 , βˆ‘ 𝑙=0 2 ∣ πœ†π‘™ ∣= 1, s.t. the following Kuhn-Tucher Lagrange (KTL) conditions are held: βˆ‘ 𝑙=0 2 πœ†π‘™ 𝐷𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) β‰₯ 0, βˆ€ οΏ½βƒ—βƒ—Μ…οΏ½ ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, (53) πœ†2𝐺2(οΏ½βƒ—βƒ—οΏ½) = 0, (54) (b) Inequality (53) is equivalent to: 𝐻�⃗⃗⃗�(π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½)οΏ½βƒ—βƒ—οΏ½(𝑑) = min οΏ½βƒ—βƒ—βƒ—οΏ½βˆˆοΏ½βƒ—βƒ—βƒ—οΏ½ 𝐻�⃗⃗⃗�(π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½)οΏ½βƒ—βƒ—Μ…οΏ½(𝑑) , π‘Ž. 𝑒. π‘œπ‘› 𝑄, (55) Where 𝐻�⃗⃗⃗� (π‘₯, 𝑑, οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½) = βˆ‘ 𝑖=1 4 (𝑍𝑖 𝑓𝑖𝑒𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) + 𝑔𝑖𝑒𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 )). Proof: From Lemma 2.1, the funl. 𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½) (for 𝑙 = 0,1,2) is cont. w.r.t. οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½ and linear in οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½, the 𝐷𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½) is M-differential for any M, then applying the KTL theorem[15], there exist πœ†π‘™ ∈ ℝ , 𝑙 = 0,1,2 with πœ†0, πœ†2 β‰₯ 0 , βˆ‘ 𝑙=0 2 ∣ πœ†π‘™ ∣= 1 s.t. ((53)-(54)) are satisfied, then by utilizing Theorem 3.2, (53) becomes ∫ 𝑄 (𝑍1𝑓1𝑒1 , 𝑍2𝑓2𝑒2 , 𝑍3𝑓3𝑒3 , 𝑍4𝑓4𝑒4 ). (οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½)𝑑π‘₯𝑑𝑑 β‰₯ 0, βˆ€ οΏ½βƒ—βƒ—Μ…οΏ½ ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, (56) where 𝑔𝑖 = βˆ‘ 𝑙=0 2 πœ†π‘™ 𝑔𝑙𝑖 and 𝑍𝑖 = βˆ‘ 𝑙=0 2 πœ†π‘™ 𝑍𝑙𝑖 , (βˆ€π‘– = 1,2,3,4). (b) Let {οΏ½Μ…οΏ½π‘˜βƒ—βƒ—βƒ—βƒ— βƒ—} be dense Seq (DSeq) in οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, πœ‡ is Lebesgue measure (LM) on 𝑄 and let 𝑆 βŠ‚ 𝑄 be a measurable set (MS) s.t. IHJPAS. 36(2)2023 338 οΏ½βƒ—βƒ—Μ…οΏ½(π‘₯, 𝑑) = { οΏ½Μ…οΏ½π‘˜βƒ—βƒ—βƒ—βƒ— βƒ—(π‘₯, 𝑑), 𝑖𝑓 (π‘₯, 𝑑) ∈ 𝑆 οΏ½βƒ—βƒ—οΏ½(π‘₯, 𝑑), 𝑖𝑓 (π‘₯, 𝑑) βˆ‰ 𝑆 . Which makes (56), gives ∫ 𝑆 (𝑍1𝑓1𝑒1 + 𝑔1𝑒1 , 𝑍2𝑓2𝑒2 + 𝑔2𝑒2 , 𝑍3𝑓3𝑒3 + 𝑔3𝑒3 , 𝑍4𝑓4𝑒4 + 𝑔4𝑒4 ). (οΏ½βƒ—βƒ—Μ…οΏ½π‘˜ βˆ’ οΏ½βƒ—βƒ—οΏ½)𝑑π‘₯𝑑𝑑 β‰₯ 0 , or (𝑍1𝑓1𝑒1 + 𝑔1𝑒1 , 𝑍2𝑓2𝑒2 + 𝑔2𝑒2 , 𝑍3𝑓3𝑒3 + 𝑔3𝑒3 , 𝑍4𝑓4𝑒4 + 𝑔4𝑒4 ). (οΏ½βƒ—βƒ—Μ…οΏ½π‘˜ βˆ’ οΏ½βƒ—βƒ—οΏ½) β‰₯ 0, π‘Ž. 𝑒. π‘œπ‘› 𝑄, i.e. this inequality holds on 𝑄\π‘„π‘˜ with πœ‡(π‘„π‘˜) = 0, βˆ€π‘˜, where πœ‡ is a LM, i.e. it is satisfies on 𝑄\βˆͺπ‘˜ π‘„π‘˜, with πœ‡(βˆͺπ‘˜ π‘„π‘˜ ) = 0, but {οΏ½Μ…οΏ½π‘˜βƒ—βƒ—βƒ—βƒ— βƒ—} is a DSeq in οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, then there is οΏ½βƒ—βƒ—Μ…οΏ½ ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ , s.t. (𝑍1𝑓1𝑒1 + 𝑔1𝑒1 , 𝑍2𝑓2𝑒2 + 𝑔2𝑒2 , 𝑍3𝑓3𝑒3 + 𝑔3𝑒3 , 𝑍4𝑓4𝑒4 + 𝑔4𝑒4 ). (οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) β‰₯ 0, π‘Ž. 𝑒. π‘œπ‘› 𝑄, βˆ€οΏ½βƒ—βƒ—Μ…οΏ½ ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½. i.e. (53) gives (56). The converse is clear. 4.2Theorem: (The SCSO) In addition to the assums (A), (B) &( C). Suppose οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ is CO., 𝑓𝑖 , 𝑔𝑖 are affine w.r.t. (𝑦𝑖 , 𝑒𝑖 ) for each (π‘₯, 𝑑), 𝑔0𝑖, 𝑔2𝑖 are CO. w.r.t. (𝑦𝑖 , 𝑒𝑖 ), βˆ€(π‘₯, 𝑑), 𝑖 = 1,2,3,4. Then the NCSO of Theorem 4.1, with πœ†0 > 0 are also sufficient. Proof: Assume οΏ½βƒ—βƒ—οΏ½ ∈ �⃗⃗⃗⃗�𝐴, is satisfied the KTL condition ((53)- (54)). Let 𝐺(οΏ½βƒ—βƒ—οΏ½) = βˆ‘ 𝑙=0 2 πœ†π‘™ 𝐺𝑙 (οΏ½βƒ—βƒ—οΏ½), then using Theorem 3.2, to get 𝐷𝐺(οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) = βˆ‘ 𝑙=0 2 πœ†π‘™ ∫ 𝑄 βˆ‘ 𝑖=1 4 𝑍𝑙𝑖 𝑓𝑙𝑖𝑒𝑖 + 𝑔𝑙𝑖𝑒𝑖 𝛿𝑒𝑖 𝑑π‘₯𝑑𝑑 β‰₯ 0, Since 𝑓𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) = 𝑓𝑖1(π‘₯, 𝑑)𝑦𝑖 + 𝑓𝑖2(π‘₯, 𝑑)𝑒𝑖 + 𝑓𝑖3(π‘₯, 𝑑). Let οΏ½βƒ—βƒ—οΏ½&οΏ½βƒ—βƒ—Μ…οΏ½ are given QCVs, then οΏ½βƒ—οΏ½& οΏ½βƒ—Μ…οΏ½ are their corresponding QSVs. Substituting the pair (οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½)in ((1)-(6)) and MBS by 𝛼 ∈ [0,1] once, and then substituting the pair (οΏ½βƒ—βƒ—Μ…οΏ½, οΏ½βƒ—Μ…οΏ½) in ((1)-(6)) and MBS by (1 βˆ’ 𝛼) once again, finally collecting each pair from the corresponding equations together one gets (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1)𝑑𝑑 βˆ’ βˆ†(𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) βˆ’ (𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) +(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) + (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) = 𝑓11(π‘₯, 𝑑)(𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + 𝑓12(π‘₯, 𝑑)(𝛼𝑒1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + 𝑓13(π‘₯, 𝑑), (57) 𝛼𝑦1(π‘₯, 𝑑) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1(π‘₯, 0) = 0, (58) 𝛼𝑦1(π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1(π‘₯, 0) = 𝑦1 0(π‘₯), 𝛼𝑦1𝑑 (π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1𝑑 (π‘₯, 0) = 𝑦1 1(π‘₯), (59) (𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2)𝑑𝑑 βˆ’ βˆ†(𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) + (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + (𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) βˆ’(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) βˆ’ (𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) = 𝑓21(π‘₯, 𝑑)(𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) + 𝑓22(π‘₯, 𝑑)(𝛼𝑒2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) + 𝑓23(π‘₯, 𝑑), (60) 𝛼𝑦2(π‘₯, 𝑑) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2(π‘₯, 0) = 0, (61) 𝛼𝑦2(π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2(π‘₯, 0) = 𝑦2 0(π‘₯), 𝑦2𝑑 (π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2𝑑 (π‘₯, 0) = 𝑦2 1(π‘₯) , (62) (𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3)𝑑𝑑 βˆ’ βˆ†(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) βˆ’ (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + (𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) +(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) + (𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) = 𝑓31(π‘₯, 𝑑)(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) + 𝑓32(π‘₯, 𝑑)(𝛼𝑒3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) + 𝑓33(π‘₯, 𝑑), (63) 𝛼𝑦3(π‘₯, 𝑑) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3(π‘₯, 0) = 0, (64) 𝛼𝑦3(π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3(π‘₯, 0) = 𝑦3 0(π‘₯), 𝛼𝑦3𝑑 (π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3𝑑 (π‘₯, 0) = 𝑦3 1(π‘₯), (65) (𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4)𝑑𝑑 βˆ’ βˆ†(𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) βˆ’ (𝛼𝑦1 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½1) + (𝛼𝑦2 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½2) βˆ’(𝛼𝑦3 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½3) + (𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) IHJPAS. 36(2)2023 339 = 𝑓41(π‘₯, 𝑑)(𝛼𝑦4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) + 𝑓42(π‘₯, 𝑑)(𝛼𝑒4 + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4) + 𝑓43(π‘₯, 𝑑), (66) 𝛼𝑦4(π‘₯, 𝑑) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4(π‘₯, 0) = 0, (67) 𝛼𝑦4(π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4(π‘₯, 0) = 𝑦4 0(π‘₯), 𝛼𝑦4𝑑 (π‘₯, 0) + (1 βˆ’ 𝛼)οΏ½Μ…οΏ½4𝑑 (π‘₯, 0) = 𝑦4 1(π‘₯), (68) Equalities ((57)- (68)), show that if the QCV is οΏ½βƒ—βƒ—Μ…οΏ½( with (οΏ½βƒ—βƒ—Μ…οΏ½ = 𝛼�⃗⃗� + (1 βˆ’ 𝛼)οΏ½βƒ—βƒ—Μ…οΏ½)) has corresponding QSVs οΏ½βƒ—Μ…οΏ½ with (�̅�𝑖 = 𝑦𝑖𝑒𝑖 = 𝑦𝑖(𝛼𝑒𝑖+(1βˆ’ 𝛼)𝑒𝑖)). This means the operator οΏ½βƒ—βƒ—οΏ½ β†’ οΏ½βƒ—οΏ½οΏ½βƒ—βƒ—βƒ—οΏ½ is CO-linear (COL) w.r.t. (οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½) in 𝑄. Now, since 𝑔1𝑖 (π‘₯, 𝑑, 𝑦𝑖 , 𝑒𝑖 ) is affine w.r.t. (𝑦𝑖 , 𝑒𝑖 ), in 𝑄, then 𝐺1(οΏ½βƒ—βƒ—οΏ½) is COL w.r.t. (οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—οΏ½), also, since 𝑔0𝑖 &𝑔2𝑖 are CO w.r.t.(𝑦𝑖 , 𝑒𝑖 ) , in 𝑄, βˆ€π‘– = 1,2,3,4 , then the funl. 𝐺0(οΏ½βƒ—βƒ—οΏ½), 𝐺2(οΏ½βƒ—βƒ—οΏ½) are CO. w.r.t. (οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½) in 𝑄 (from the assum. on the funl 𝑔𝑙𝑖 (βˆ€π‘™ = 0,1,2, &𝑖 = 1,2,3,4) and from the sum of two integral of CO function is also CO), i.e. 𝐺(οΏ½βƒ—βƒ—οΏ½) is CO w.r.t. (οΏ½βƒ—οΏ½, οΏ½βƒ—βƒ—οΏ½) , in 𝑄 in the CO set οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, and has a cont. DD satisfies 𝐷𝐺(οΏ½βƒ—βƒ—οΏ½, οΏ½βƒ—βƒ—Μ…οΏ½ βˆ’ οΏ½βƒ—βƒ—οΏ½) β‰₯ 0, which means 𝐺(οΏ½βƒ—βƒ—οΏ½) has a minimum at οΏ½βƒ—βƒ—οΏ½, i.e. 𝐺(οΏ½βƒ—βƒ—οΏ½) ≀ 𝐺(οΏ½βƒ—βƒ—Μ…οΏ½),βˆ€ οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ— ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, i.e. πœ†0𝐺0(οΏ½βƒ—βƒ—οΏ½) + πœ†1𝐺0(οΏ½βƒ—βƒ—οΏ½) + πœ†2𝐺2(οΏ½βƒ—βƒ—οΏ½) ≀ πœ†0𝐺0(οΏ½βƒ—βƒ—Μ…οΏ½) + πœ†1𝐺1(οΏ½βƒ—βƒ—Μ…οΏ½) + πœ†2𝐺2(οΏ½βƒ—βƒ—Μ…οΏ½), βˆ€οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ— ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½ Let οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ— ∈ �⃗⃗⃗⃗�𝐴, πœ†2 β‰₯ 0 and from (54), the above inequality becomes πœ†0𝐺0(οΏ½βƒ—βƒ—οΏ½) ≀ πœ†0𝐺0(οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ—), βˆ€οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ— ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, or 𝐺0(οΏ½βƒ—βƒ—οΏ½) ≀ 𝐺0(οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ—), βˆ€οΏ½Μ…οΏ½ βƒ—βƒ—βƒ— βƒ— ∈ οΏ½βƒ—βƒ—βƒ—βƒ—οΏ½, thus οΏ½βƒ—βƒ—οΏ½ ia a CQOCCCV. 5.Conclusions and Discussions: In this work, the CQOCCCVP dominating by a QNLHBVP is studied. The existence of a CQOCCCV dominating by a QNLHBVP with EINQSCC is stated and demonstrated under appropriate HYP with using the ACTH. Moreover mathematical formulation of the QAEs related to QSEs is found so as its WF. The derivation of the DD for the Ham is attained. Lastly, both the NCSO and the SCSO β€œtheorems” optimality of the proposed problem are stated and demonstrated. The study of the proposed problem is considered very interesting in the field of applied mathematics since the proposed model represents a generalization for a wave equation; from a side, and from the other, these results are very important because they give the green light about the ability for solving such problems numerically. References 1. Rigatos, G.; Abbaszadeh, M. Nonlinear optimal control for multi-DOF robotic manipulators with flexible joints. Optim. Control Appl. Methods 2002,42(6),1708-1733. 2. Syahrini, I.; Masabar, R.; Aliasuddin, A.; Munzir, S.; Hazim, Y. The Application of Optimal Control through Fiscal Policy on Indonesian Economy. J. Asian Finance Econ. Bus. 2021,8(3),0741-0750. 3. Derome, D.; Razali, H.;Fazlizan, A.; Jedi,A.; Purvis –Roberts, K. Determination of Optimal Time -Average Wind Speed Data in the Southern Part of Malaysia. Baghdad Sci. J. 2022, 19(5)1111-1122. 4. Khalaf, W.S; A Fuzzy Dynamic Programming for the Optimal Allocation of Health Centers in some Villages around Baghdad. Baghdad Sci. J. 2022, 3 , 593-604. 5. Lin P; Wang W. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Math. Control Relat. Fields. 2018, 8(4), 809-828. 6. Manzoni, A.; Quarteroni, A.; Salsa, S. Optimal Control of Partial Differential Equations: Analysis , Approximation, and Applications (Applied Mathematical Sciences, 207);1st ed.2021; New York: Spriger, 2021, ISBN-13 : 978-3030772253 IHJPAS. 36(2)2023 340 7. Hua, Y.; Tang, Y. Super convergence of Semi discrete Splitting Positive Definite Mixed Finite Elements for Hyperbolic Optimal Control Problems. Adv. in Math. Phys., 2022, Volume 2022:1- 10. 8. Casas, E.; TrΓΆltzsch, F. On Optimal Control Problems with controls Appearing Nonlinearly in an Elliptic State Equation. SIAM J. Control Optim.,2020, 58(4):1961–1983. 9. Cosgrove, E. Optimal Control of Multiphase Free Boundary Problems for Nonlinear Parabolic Equations. Doctoral dissertation. Florida: Florida Institute of Technology, 2020. 10. Al-Hawasy, J. The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints. Iraqi J. Sci, 2016; 57(2C):1528-1538. 11. Al-Hawasy, J.A.; Ali, L.H. Constraints Optimal Control Governing by Triple Nonlinear Hyperbolic Boundary Value Problem. Hindawi: J. Appl. Math. 2020; 2020: 14 pages. 12. Al-Rawdhanee EH. The Continuous Classical Optimal Control of a couple Non-Linear Elliptic Partial Differential Equations. Master thesis, Mustansiriyah University: Baghdad-Iraq, 2015. 13. Al-Hawasy, J.A.; Hassan, M. A. The Optimal Classical Continuous Control Quaternary Vector of Quaternary Nonlinear Hyperbolic Boundary Value Problem. IHJPAS. 2022;53(3):160-174 14. Sheldon, A. Measure, Integration and Real Analysis: Graduate Texts in Mathematics, 1sted.2021, Springer: Open ISBN-13: 978-3030331429, 2020. 15. Chyssoverghi, I. Optimization: National Technical University of Athens, Athens-Grecce, 2ndedition 2005.