IHJPAS. 36 (3) 2023 283 This work is licensed under a Creative Commons Attribution 4.0 International License *Corresponding Author: mrs_ zena.hussein@yahoo.com Abstract The focus of this paper reviewed generalized contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed points and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes, two-step schemes, and three-step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, Noor scheme algorithm, ๐‘†๐‘ƒ โˆ’.scheme algorithm, ๐ถ๐‘… โˆ’ scheme algorithm Modified SP scheme algorithm Karahan scheme algorithm, and others. The convergence of these schemes has been studied. On the other hand, we also reviewed the convergence, valence, and stability theories of different types of near-plots in convex metric space. Keywords: Convergence, Fixed Point, Nonexpansive Map, Pseudocontractive Map and Iterative Methods. Introduction Fixed point theory is an important topic, and it has many applications in branches of mathematics various. In the year 1970, introduced Takahashi the idea of convexity in m-spaces and studied it as well as common f-point theorems for nonexpansive mappings. The convex m-space is a public, important, and, expansive space with a convex structure, where the Banach cone space is convex m-space. The principle of the Banach contraction states that they can approximate the contraction maps f-point by Picard proximal scheme. The seq โŸจ๐“๐‘› โŸฉ of this scheme can be defined as follows: Let โˆ… โ‰  โ„ณ be a closed-convex lies in โ„‹and ๐’ฅ: โ„ณ โ†’ โ„ณ be a mapping: ๐’ถ0 โˆˆ โ„ณ, ๐’ถ๐‘›+1 = ๐’ฅ๐’ถ๐‘› , ๐‘› โˆˆ ๐‘ (1) Picard's proximal scheme for nonexpansive mappings does not converge to a f-point. Hence, to doi.org/10.30526/36.3.3006 Article history: Received 10 September 2022, Accepted 1 November 2022, Published in July 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq A Review of the Some Fixed Point Theorems for Different Kinds of Maps Zena Hussein Maibed* Department of Mathematics, College of Education for Pure Science Ibn Al-Haytham, University of Baghdad, Baghdad, Iraq. mrs_ zena.hussein@yahoo.com Bayda Atiya Kalaf Department of Mathematics, College of Education for Pure Science Ibn Al-Haytham, University of Baghdad, Baghdad, Iraq. Hbama75@yahoo.com https://creativecommons.org/licenses/by/4.0/ about:blank http://en.uobaghdad.edu.iq/?page_id=15060 http://en.uobaghdad.edu.iq/?page_id=15060 about:blank mailto:mrs_ zena.hussein@yahoo.com http://en.uobaghdad.edu.iq/?page_id=15060 http://en.uobaghdad.edu.iq/?page_id=15060 mailto:Hbama75@yahoo.com mailto:Hbama75@yahoo.com mailto:Hbama75@yahoo.com IHJPAS. 36 (3) 2023 284 approximate the f-points of the non'expansion maps, a proximal scheme is introduced as: ๐’ถ0 ๐œ– โ„ณ , ๐’ถ๐‘›+1 = (1 โˆ’ ๐›ผ๐‘› )๐’ถ๐‘› + ๐›ผ๐‘›๐’ฅ๐’ถ๐‘› , ๐‘› โˆˆ ๐‘ (2) Because the iterative Mann proximal scheme [1], fails to converge to the f-points of the spurious systolic maps, and for spurious systolic maps introduced Ishikawa proximal scheme to f-points. The sequence โŒฉ๐“๐‘›โŒช of the Ishikawa proximal scheme[2], defined as: ๐’ถ0 โˆˆ โ„ณ , ๐’ถ๐‘›+1 = ( 1 โˆ’ ๐›ผ๐‘›)๐’ถ๐‘› + ๐›ผ๐‘› ๐’ฅ๐’ท๐‘› , ๐’ท๐‘› = ( 1 โˆ’ ๐›ฝ๐‘›)๐’ถ๐‘› + ๐›ฝ๐‘› โ„๐’ถ๐‘› , ๐‘› โˆˆ ๐‘ (3) Noor,in 2000[3] introduced proximal scheme as: ๐“Œ0 โˆˆ โ„ณ ,๐“Œ๐‘›+1 = ( 1 โˆ’ ๐›ผ๐‘›)๐“Œ๐‘› + ๐›ผ๐‘› โ„๐“Š๐‘› , ๐“Š๐‘› = ( 1 โˆ’ ๐›ฝ๐‘›)๐“Œ๐‘› + ๐›ฝ๐‘› ๐’ฅ๐“‹๐‘› , ๐“‹๐‘› = ( 1 โˆ’ ๐›พ๐‘›)๐“Œ๐‘› + ๐›พ๐‘› โ„๐“Œ๐‘› , ๐‘› โˆˆ ๐‘ (4) In[4],Agrawal introduced for nearly non'expansive maps,two steps as: ๐“0 โˆˆ โ„ณ, ๐“๐‘›+1 = (1 โˆ’ ๐›ผ๐‘›)๐’ฅ๐“๐‘› + ๐›ผ๐‘›๐’ฅ๐‘ก๐‘› , ๐‘ก๐‘› = (1 โˆ’ ๐›ฝ๐‘›)๐“๐‘› + ๐›ฝ๐‘›๐’ฅ๐“๐‘› , ๐‘› โˆˆ N (5) ๐‘บ๐‘ท โˆ’iteration [5]: ๐“0 โˆˆ โ„ณ , ๐“๐‘›+1 = ๐›ผ๐‘› ๐’ฅ๐‘ฆ๐‘› +( 1 โˆ’ ๐›ผ๐‘›)๐‘ฆ๐‘› , ๐‘ฆ๐‘› = ๐›ฝ๐‘›๐’ฅ๐‘ง๐‘› + (1 โˆ’ ๐›ฝ๐‘›)๐‘ง๐‘›, ๐‘ง๐‘› = ๐›พ๐‘›๐’ฅ๐“๐‘› + (1 โˆ’ ๐›พ๐‘› )๐“๐‘› ๐‘› โˆˆ ๐‘ (6) ๐‚๐‘ โˆ’iteration [6]: ๐“Œ0 โˆˆ โ„ณ , ๐“Œn+1 = ( 1 โˆ’ ฮฑn)๐“Šn + ฮฑn ๐’ฅ๐“Šn , ๐“Šn = ( 1 โˆ’ ฮฒn)๐’ฅ๐“Œn + ฮฒn ๐’ฅ๐“‹n, vn = ( 1 โˆ’ ฮณn)๐“Œn + ฮณn ๐’ฅ๐“Œn , ๐‘› โˆˆ N (7) Modified ๐’๐ iteration [7]: ๐“0 โˆˆ โ„ณ , (8) ๐“n+1 = ๐’ฅ๐“Žn , ๐“Žn = ( 1 โˆ’ ฮฑn)๐“n + ฮฑn ๐’ฅ๐“n , ๐“n = ( 1 โˆ’ ฮฒn)๐“n + ฮฒn ๐’ฅ๐“n ๐Šarahan iteration [8]: ๐“Œ0 โˆˆ โ„ณ , ๐“Œn+1 = ( 1 โˆ’ ฮฑn)๐’ฅ๐“Œn + ฮฑn ๐’ฅ๐“Šn , ๐“Šn = ( 1 โˆ’ ฮฒn)๐“Œn + ฮฒn ๐’ฅ๐“‹n , , ๐“‹n = ( 1 โˆ’ ฮณn)๐“Œn + ฮณn ๐’ฅ๐“Œn , n โˆˆ N (9) Finally, [9] studied the existence of a f- point for type of contraction-maps and the convergence of a common f-point for Noor iteration in complete convex metric spaces(Com Con M-S). Then a lot of studies were carried out on this topic,see[10-18]. IHJPAS. 36 (3) 2023 285 Preliminaries In this part,we introduce some concepts which is need in this work,see[8,11and12]. 1. A mapping๐’ฅ is called non'expansive if: โ€–๐’ฅ๐’ถ โˆ’ ๐’นโ€– โ‰คโ€– ๐’ถ โˆ’ ๐’น โ€– for all ๐’ถ, ๐’น โˆˆ โ„ณ 2. A mapping ๐’ฅ is called quasi'nonexpansive if: ๐น(๐’ฅ) โ‰  โˆ… and โ€–๐’ฅ๐’ถ โˆ’ ๐’ฅ๐’ท โ€– โ‰ค โ€–๐’ถ โˆ’ ๐’ทโ€– for all ๐’ถ, ๐’ท โˆˆ โ„ณ and ๐‘ฆ โˆˆ ๐น(๐’ฅ). 3. It is easy to see that if ๐’ฅ is non'expansive with ๐น(๐’ฅ) โ‰  โˆ…, then it is quasi'nonexpansive. 4. A mapping ๐’ฅ is said to be e pseudocontractive if the inequality โ€–๐’ถ โˆ’ ๐’ทโ€– โ‰ค โ€–๐’ถ โˆ’ ๐’ท + ๐‘ก[(๐ผ โˆ’ ๐’ฅ)๐’ถ โˆ’ (๐ผ โˆ’ ๐’ฅ)๐’ท ]โ€– Hold for each ๐’ถ, ๐’ท โˆˆ โ„ณ and all ๐‘ก > 0. Some proximal scheme are used to approximate a f- point of Zamfirescu maps are the most general contractive maps satisfying the condition: โˆ€๐’ถ, ๐’ท ๐‘™๐‘–๐‘’๐‘  ๐‘–๐‘› โ„ณ at least one of the conditions is true: (๐‘–) ๐’น (๐’ฅ๐’ถ, ๐’ฅ๐’ท) โ‰ค ๐’ซ๐’น (๐’ถ, ๐’ท), (๐‘–๐‘–) ๐’น(๐’ฅ๐’ถ, ๐’ฅ๐’ท) โ‰ค ๐’ฌ [๐’น (๐’ถ, ๐’ฅ๐’ถ) + ๐’น(๐’ท, ๐’ฅ๐’ท)], (๐‘–๐‘–๐‘–) ๐’น (๐’ฅ๐’ถ, ๐’ฅ๐’ท) โ‰ค โ„› [๐’น (๐’ถ, ๐’ฅ๐’ท) + ๐’น (๐’ท, ๐’ฅ๐’ถ)]. Where 0 โ‰ค ๐’ซโ‰ค 1, 0 โ‰ค ๐’ฌ , and โ„› โ‰ค 1/2 Definition :Let แถ‚ , แถƒ : โ„‹ โ†’ โ„‹ be a two mappings. A point ๐’ถ โˆˆ โ„‹ is called f- point of แถ‚ if แถ‚ (๐’ถ) = ๐’ถ, a common f-point of a pair (แถ‚ , แถƒ) if แถ‚ (๐’ถ) = แถƒ(๐’ถ) = ๐’ถ an a coincidence point of (แถ‚ , แถƒ) ๐‘–๐‘“ แถ‚ (๐’ถ) = แถƒ(๐’ถ). Remarks :Amapping- Zamfirescu is equivalent to the condition: ๐‘‘ (๐‘‡๐’ถ, ๐‘‡๐’ท) โ‰ค โ„ฏ ๐‘š๐‘Ž๐‘ฅ {๐‘‘ (๐’ถ, ๐’ท) , {๐’น (๐’ถ, T๐’ถ)+ ๐’น(๐’ท,T๐’ท)} 2 , {๐’น (๐’ถ, ๐‘‡๐’ท) + ๐’น (๐’ท, ๐‘‡๐’ถ)} 2 } โˆ€๐’ถ, ๐’ท โˆˆ โ„‹, 0 < โ„ฏ < 1. Definition[12]: A mapping โ„› : โ„‹ ร— โ„‹ ร— [0,1] โ†’ โ„‹ is called convex structure on m-space,if for each (๐’ถ, ๐’ท, ๐œ† ) โˆˆ โ„‹ ร— โ„‹ ร— [0,1] and ๐‘ข โˆˆ โ„‹, ๐’น(๐‘ข, โ„›(๐’ถ, ๐’ท, ๐œ† )) โ‰ค ๐œ†๐’น(๐‘ข, ๐’ถ) + (1 โˆ’ ๐œ† )๐’น(๐‘ข, ๐’ท). Definition [13]: Letแถƒ : โ„‹ โ†’ โ„‹ be a mappings, {๐’ฆ๐‘›}๐‘›=0 โˆž โŠ‚ โ„‹,and ๐œ€๐‘› = ๐‘‘(๐’ฆ๐‘›+1, แถ‚ (แถƒ, ๐’ฆ๐‘› )), ๐‘› = 0,1,2, โ€ฆ .Then ๐’ฆ๐‘›+1 = แถ‚ (แถƒ, ๐’ฆ๐‘› ) is said to be ๐‘‡-stable or stable with respect to แถƒ if and only if IHJPAS. 36 (3) 2023 286 lim ๐‘›โ†’โˆž ๐œ€๐‘› = 0 implies lim ๐‘›โ†’โˆž ๐’ฆ๐‘› = ๐’ซ. Definition [14]: Let{ ๐’ถn }0 โˆž, { ๐’ทn }0 โˆž โˆˆ ๐‘… and converge to ๐’ถ and ๐’ท a,respectively, and ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž |๐’ถ๐‘›โˆ’๐’ถ| |๐’ท๐‘›โˆ’๐’ท| = ๐“ˆ, if ๐“ˆ = 0 , then { ๐’ถn }0 โˆž โ‡ข ๐’ถ faster than{ ๐’ท๐‘› }0 โˆž โ‡ข ๐’ทand if 0 ห‚๐“ˆห‚โˆž , then it can be said that ๐’ถ๐‘› and { ๐’ท๐‘› }0 โˆž have the same rate of convergence. Lemma : [15]. If 0 โ‰ค ๐’ฌ < 1 and {๐’ฉn}n โˆž=0 is a positive R-sequence such that lim nโ†’โˆž ๐’ฉn = 0, then for any positive R-sequence {๐’ฝn}n โˆž=0 satisfying ๐’ฝ๐‘›+1 โ‰ค ๐’ฌ๐’ฝn + ๐’ฉn , n = 0, 1, 2, . . . โŸน lim nโ†’โˆž ๐’ฝn = 0. There are many studies on the iterations in other spaces see[18-21] Previous Results One of the most important previous results on this topic Theorem: In any metric space if ๐’ฅ satify the condition ๐’น(๐’ถ, ๐’ฅ๐’ท) + ๐’น(๐’ท, ๐’ฅ๐’ท) โ‰ค ๐‘ž๐’น(๐’ถ, ๐’ท), (1) for all ๐’ถ, ๐’ท โˆˆ โ„ณ, where 2 โ‰ค q < 4. Then,๐’ฅhas at least one fixed point. Theorem: Let ๐’ฅ be a mappingsatisfy the condition ๐’น(๐’ฅ๐’ถ, ๐’ฅ๐’ท) + ๐’น(๐’ถ, ๐’ฅ๐’ท) + ๐’น(๐’ท, ๐’ฅ๐’ท) โ‰ค ๐‘Ÿ๐’น(๐’ถ, ๐’ท) โˆ€ ๐’ถ, ๐’ท โˆˆ โ„ณ (2) Then, ๐’ฅ has at least one f-point. Theorem: Consider a Com Con M-S. Suppose that แถ‚ , แถƒ are mappings of โ„ณ, and there exist แถ, แถ€, แธ‰, m as: 2แถ€ โ€“ |แธ‰| โ‰ค m < 2(แถ + แถ€ + แธ‰) โ€“ |แธ‰|, แถ๐’น(แถƒ(x), แถ‚ (x)) + แถ€๐’น(แถƒ(y), แถ‚(y)) + แธ‰๐’น(แถ‚ (x), แถ‚(y) ) โ‰ค md(แถƒ(x), แถƒ(y)) then f has at least one f-point. In appreciably, a f-point iteration is useful for applications if it satisfies the following requirements: (a) study data dependence results. (b) it converges to f- point. (c) it is ๐” -stable. IHJPAS. 36 (3) 2023 287 Theorem: Consider each of proximal processes Noor, Karhan and ModifiedSP.scheme converge to ๐’ท โˆˆ ๐” where ๐” contraction map.Then the ModifiedSP.iteration converges faster than Noor and Karhan scheme. Theorem: Consider each of proximal processes Mann, Ishikawa and Modified ๐‘†๐‘ƒ-scheme converge to ๐’ท โˆˆ ๐” where ๐” contraction map.Then the ModifiedSP.iteration converges faster than Mann, Ishikawa scheme . Theorem:In a Com Con M-S consider the Mann proximal processes , converge to ๐’ท โˆˆ ๐” where ๐” contraction map.Then the Mann scheme is T - stable scheme . Theorem:In a Com Con M-S consider the Ishikawa proximal processes , converge to ๐’ท โˆˆ ๐” where ๐” contraction map.Then the Ishikawa scheme is T - stable scheme Theorem:In a H-S consider the Ishikawa and Mann proximal processes such that converge it to ๐’ท โˆˆ ๐” where ๐” quasi ฮด -contraction map.Then the Ishikawa schemeโ‡ข ๐’ถ iff Mann scheme โŸถ ๐’ถ. Theorem:In a H-S consider the Ishikawa and Modified๐’ฎ๐’ซ.proximal processes such that converge it to ๐’ท โˆˆ ๐” where ๐” quasi ฮด -contraction map.Then Modified๐’ฎ๐’ซ. iteration schemeโŸถ ๐’ถ iff Mann scheme โ‡ข ๐’ถ. Theorem:In a H-S consider the CR and Mann proximal processes such that converge it to ๐’ท โˆˆ ๐” where ๐” quasi ฮด -contraction map.Then the CR a schemeโ‡ข ๐’ถ iff Mann scheme โ‡ข ๐’ถ. Theorem:In a H-S consider the Noor and Mann proximal processes such that converge it to ๐’ท โˆˆ ๐” where ๐” quasi ฮด -contraction map.Then the Noor a schemeโŸถ ๐’ถ iff Mann schemeโŸถ ๐’ถ. Conclusion A generalized review of contractionary mapping and non-expansion maps has been reviewed and some theories are recalled about the existence and uniqueness of the common fixed point and congruent fixed point of such maps under some conditions. Moreover, we also inferred the convergence and acceleration range of some schemes of different types such as one-step schemes, two-step schemes, and three-step schemes in convex metric space. References 1. W. Mann, "Mean Value Methods in Iteration," Proc. Am. Math. Soc,1953, 4, 506โ€“510. 2. S. Ishikawa, "Fixed Points By a New Iteration Method," . Proc. Am. Math. Soc, 1974, 44, 147โ€“ 150. 3. M. Noor, " New Approximation Schemes for General Variational Inequalities," . J. Math. Anal. Appl,2000, 217โ€“229. 4. D. Agrawal, "Iterative Construction of Fixed Points of Nearly Asymptotically," . J. Nonlinear Convex Anal, 2007,8, 61โ€“79. 5. O. Popescu," Picard Iteration Converges Faster Than Mann Iteration For a Class of Quasi- Contractive Operators ", Mathematical Communications, 2007, 12, 195-202. IHJPAS. 36 (3) 2023 288 6. R .Change, V. Kumar, and S. Kumar."Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces ", American Journal of Computational Mathematics, 2012, 2, 345- 357, (). 7. N. Kadioglu, and I. Yildirim, " Approximation Fixed Points of Nonexpansive Mapping By a Faster Iteration Process". http:// arxiv.org/abs/1402, 2014. 8. R. Agarwal, , D. ORegan and R. Sahu, " Fixed Point Theory for Lipschitzian-Type Mappings with Applications". Springer,Heidelberg ,2009. 9. M. Moosaei, " Fixed Point Theorems in Convex Metric Spaces,โ€ Fixed Point Theory and Applications ", Springer Open Journal, 2012, 164,1-6 . 10. C. Chidume, , M.Osilike, " Fixed Point Iterations for Strictly Hemicontractive Maps in Uniformly Smooth Banach Spaces. Numer. Funct. Anal. Optim. 1994, 15, 779-790. 11. T. Zamfirescu, โ€œFixed Point Theorems in Metric Spaces,โ€ Archiv der Mathematik, 1972, 23, 292โ€“298. 12. M. Osilike, " Stability Results for Fixed Point Iteration Procedures , " Journal of the Nigerian Mathematical Society, 1995, 14,15,. 17โ€“29. 13. A. Harder and T.Hicks, " Stability Results for Fixed Point Iteration Procedures ", Math. Japonica, 1988, 33 (5), 693-706. 14. V. Berinde, " Picard Iteration Converges Faster Than Mann Iteration for a Class of Quasi- contractive operators," Fixed PointTheory and Applications, no. 2, pp. 94โ€“105, (2004). 15. A. R. Khan, V. Kumar, and N. Hussain, "Analytical and Numerical Treatment of Jungck-Type Iterative Schemes, " Applied Mathematics and Computation, 2014, 231, pp. 521โ€“535. 16. Z Z. Jamil and M. B. Abed," On Modified SP-Iterative Scheme for Approximating Fixed Point of Contraction Mapping", Iraqi Journal of Science 2015, 56, 4B, pp: 3230-323. 17. M. Olatinwo , "Stability Results for Some Fixed Point Iterative Processes in Convex Metric Space, "Annals of Faculty Engineering Hunedora-International Journal of Engineering, 2011, l.9, 3, pp103-106,. 18. S.Rathee andM.Swami, "Convergence Rate of Various Iterations with SM-Iteration for Continuous Functi Savita Ratheel. " J. Math. Comput. Sci, 2020, 10, 6, pp. 3074-3089, (). 19. Z.Maibed andA. Thajil, "Zenali Iteration Method For Approximating Fixed Point of ZA - Quasi Contractive mappings"., Haitham Journal for Pure and Applied Science, Oct 20 2021. 20. J. Daengsaen and A. Khemphet, "On the Rate of Convergence of P-Iteration, SP-Iteration, and D-Iteration Methods for Continuous Nondecreasing Functions on Closed Intervals, " Hindawi Abstr. Appl. Anal., 2018, pp. 6. 21. K. Ullah and A. Muhammad, "New Three-step Iteration Process and Fixed Point Approximation in Banach Spaces," Linear Topol. Algebra.07, No. 02, pp. 87โ€“100, (2018). 22. Z.Maibed and. A.Thajil, "Equivalence of Some Iterations for Class of Quasi Contractive Mappings", J. Phys.: Conf. Ser,1879 022115, 2021.