IHJPAS. 36(2)2023 341 This work is licensed under a Creative Commons Attribution 4.0 International License Abstract The concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the end, we will present a very important equivalent of our concept with the rest of the concepts presented previously. Keywords: 2-Absorbing submodule, Quasi-2-Absorbing submodule, socal of module, Jacobson of module, cyclic and multiplication modules. 1. Introduction As a generalization of the 2-Absorbing Ideal, the 2-Absorbing Submodule notion was originally introduced in 2011 by Darani A. and Sohelinia F. Badawi A. first proposed the 2-Absorbing Ideal in 2007. In recent years, various generalizations of the 2-Absorbing submodule, including the Quasi-2-Absorbing submodule, have been introduced. In this article, we presented the Extend Nearly Pseudo Quasi-2-Absorbing submodule, a new generalization on previously studied concepts, particularly the 2-Absorbing submodule and Quasi-2-Absorbing submodule. It is worth noting that ฦฆ is a commutative ring with a ๐‘›onzero ๐‘–dentity and ั  be a unitary ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’. In the end, we presented the most important propositions in this research and studied all possible relationships with this concept within the best conditions that helped us reach the best solutions. 2. Preliminaries In the following, we mention some basic definitions and notations in module that will be used in this paper. doi.org/10.30526/36.2.3019 Article history: Received 16 September 2022, Accepted 6 November 2022, Published in April 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Extend Nearly Pseudo Quasi-2-Absorbing submodules(I) Omar A. Abdullah Department of Mathematics College of Computer Science and Mathematics Tikrit University / Iraq. omer.a.abdullah35383@st.tu.edu.iq Haibat K. Mohammadali Department of Mathematics College of Computer Science and Mathematics Tikrit University / Iraq. H.mohammadali@tu.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:omer.a.abdullah35383@st.tu.edu.iq mailto:H.mohammadali@tu.edu.iq mailto:H.mohammadali@tu.edu.iq IHJPAS. 36(2)2023 342 Definition 2.1[1]. A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of ๐‘Ž๐‘› ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called 2-Absorbing submodule if whenever ษ‘ษ“๐‘ฅ โˆˆ ๐‘‰ for ษ‘, ษ“ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  that either ษ‘๐‘ฅ โˆˆ ๐‘‰ or ษ“๐‘ฅ โˆˆ ๐‘‰ or ษ‘ษ“ โˆˆ [๐‘‰:ฦฆ ั ]. Where [๐‘‰:ฦฆ ั ] = {ษ‘ โˆˆ ฦฆ: ษ‘ั  โŠ† ๐‘‰}[2]. Definition 2.2[3]. ๐‘ ๐‘œ๐‘(ั ) is the ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› of all ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodules of ั and a ๐‘›๐‘œ๐‘›๐‘ง๐‘’๐‘Ÿ๐‘œ submodule ๐‘‰ of ั  is ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ in ั  if ๐‘‰ โˆฉ ๐บ โ‰  (0) for any ๐‘›๐‘œ๐‘›๐‘ง๐‘’๐‘Ÿ๐‘œ submodule ๐บ of ั . Definition 2.3[4]. A submodule ๐‘‰ of ๐‘Ž๐‘› ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called a ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodule of ั , if ๐‘‰ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั  and for all ๐ต โŠ† ั  with ๐‘‰ โŠ‚ ๐ต, then ๐ต = ั , ๐ฝ(ั ) is the intersection of all ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodules of ั . Definition 2.4[5]. A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of ๐‘Ž๐‘› ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called Nearly-2-Absorbing submodule if whenever ๐‘Ÿ๐‘ ๐‘š โˆˆ ๐‘‰, for ๐‘Ÿ, ๐‘  โˆˆ ฦฆ, ๐‘š โˆˆ ั , implies that either ๐‘Ÿ๐‘š โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘ ๐‘š โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘Ÿ๐‘ ั  โŠ† ๐‘‰ + ๐ฝ(ั ). Definition 2.5[6]. A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of ๐‘Ž๐‘› ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called Quasi-2-Absorbing submodule if whenever ๐‘Ÿ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ for ๐‘Ÿ, ๐‘ , ๐‘ก โˆˆ ฦฆ, ๐‘š โˆˆ ั , implies that either ๐‘Ÿ๐‘ก๐‘š โˆˆ ๐‘‰ or ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ or ๐‘Ÿ๐‘ ั  โŠ† ๐‘‰. Definition 2.6[7]. A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called Pseudo-2-Absorbing submodule if whenever ๐‘Ÿ๐‘ ๐‘š โˆˆ ๐‘‰ for ๐‘Ÿ, ๐‘  โˆˆ ฦฆ, ๐‘š โˆˆ ั , ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  that either ๐‘Ÿ๐‘š โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ๐‘ ๐‘š โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ๐‘Ÿ๐‘ ั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). And in the same paper [7] the concept of Pseudo Quasi- 2-Absorbing submodule is introduced, where a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called Pseudo Quasi-2-Absorbing submodule if for any ๐‘Ÿ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ for ๐‘Ÿ, ๐‘ , ๐‘ก โˆˆ ๐‘…, ๐‘š โˆˆ ั , ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  that either ๐‘Ÿ๐‘ ๐‘š โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ๐‘Ÿ๐‘ก๐‘š โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Definition 2.7[8]. A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is called Nearly Quasi-2-๐ดbsorbing submodule if whenever ๐‘Ÿ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ for ๐‘Ÿ, ๐‘ , ๐‘ก โˆˆ ฦฆ, ๐‘š โˆˆ ั , ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  that either ๐‘Ÿ๐‘ก๐‘š โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘ ๐‘ก๐‘š โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘Ÿ๐‘ ั  โŠ† ๐‘‰ + ๐ฝ(ั ). Definition 2.8[9]. An ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is a ๐‘ ๐‘’๐‘š๐‘–๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’, if every submodule of ั  is a direct summand. Definition 2.9[4]. An ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is cyclic if ั  = ฦฆ๐‘ฅ = โŒฉ๐‘ฅโŒช. Lemma 2.10[ 4, Ex(12). P 239]. 1) Let ๐‘‰ is a submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  with ๐‘‰ as a direct summand of ั , then ๐ฝ ( ั  ๐‘‰ ) = ๐ฝ(ั )+๐‘‰ ๐‘‰ . 2) An ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is a ๐‘ ๐‘’๐‘š๐‘–๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’ if and only if for each submodule ๐‘‰ of ั  ๐‘ ๐‘œ๐‘ ( ั  ๐‘‰ ) = ๐‘ ๐‘œ๐‘(ั )+๐‘‰ ๐‘‰ . Lemma 2.11[ 10, Ex12(5). P 242]. A submodule ๐‘‰ of ๐‘Ž๐‘› ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ and ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ if and only if ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰. Lemma 2.12[ 4, Lemma (2.3.15)]. โ€œLet ๐ฟ, ๐‘‰ and ๐ท are submodules of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  with ๐‘‰ โŠ† ๐ท, then (๐ฟ + ๐‘‰) โˆฉ ๐ท = (๐ฟ โˆฉ ๐ท) + ๐‘‰ = (๐ฟ โˆฉ ๐ท) + (๐‘‰ โˆฉ ๐ท).โ€ Definition 2.13[11]. An ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is multiplicatiion, if every submodule ๐‘‰ of ั  is of the form ๐‘‰ = ๐ผั  for some ๐‘–๐‘‘๐‘’๐‘Ž๐‘™ ๐ผ of ฦฆ. Equivalently, ั  is a multiplicatiion ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ if every submodule ๐‘‰ of ั  of the form ๐‘‰ = [๐‘‰:ฦฆ ั ]ั . IHJPAS. 36(2)2023 343 Lemma 2.14[ 12, Prop. (2.3)]. Let ั  be a ๐‘šultiplication ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’. Then a submodule ๐‘‰ of ั  is a 2-Absorbing if and only if ๐‘‰ Quasi-2-Absorbing submodule of ั . 3. The Results In this part, we define Extend Nearly Pseudo Quasi-2-Absorbing submodule and characterize some of its fundamental properties using examples: Definition 3.1 A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is said to be Extend Nearly Pseudo Quasi-2-Absorbing ( for short EXNPQ2AB ) submodule of ั  if whenever ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, where ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั  implies that either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั )+๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). And an ๐‘–๐‘‘๐‘’๐‘Ž๐‘™ ๐ผ of a ring ฦฆ is called EXNPQ2AB ideal of ฦฆ, if ๐ผ is an EXNPQ2AB ฦฆ-๐‘ ๐‘ข๐‘๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ฦฆ. Remarks and Examples 3.2 1. Every 2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ั  is EXNPQ2AB submodule however, the opposite is not true. Proof. Let ๐‘‰ be a 2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  and ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, for ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั . That is ษ‘ษ“(๐‘ำฝ) โˆˆ ๐‘‰. But ๐‘‰ is 2-Absorbing submodule of ั , then either ษ‘(๐‘ำฝ) โˆˆ ๐‘‰ or ษ“(๐‘ำฝ) โˆˆ ๐‘‰ or ษ‘ษ“ั  โŠ† ๐‘‰. Thus, either ษ‘๐‘ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) for all ำฝ โˆˆ ั , then either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Hence, ๐‘‰ is EXNPQ2AB submodule of ั . For the opposite, think about the following illustration: Let ั  = ๐‘48 , ฦฆ = ๐‘ and the submodule ๐‘‰ = โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช is EXNPQ2AB submodule of ั , since ๐‘ ๐‘œ๐‘(๐‘48) = โŒฉ8ฬ…โŒช and ๐ฝ(๐‘48) = โŒฉ6ฬ…โŒช. That is for all ษ‘, ษ“, ๐‘ โˆˆ ๐‘ and ๐‘š โˆˆ ๐‘48 such that ษ‘ษ“๐‘๐‘š โˆˆ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช , implies that either ษ‘๐‘๐‘š โˆˆ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช + ๐‘ ๐‘œ๐‘(๐‘48) + ๐ฝ(๐‘48) = โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช or ษ“๐‘๐‘š โˆˆ โŒฉ8ฬ…โŒช + ๐‘ ๐‘œ๐‘(๐‘48) + ๐ฝ(๐‘48) = โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช or ษ‘ษ“๐‘š โˆˆ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช. But ๐‘‰ is not 2-Absorbing, since 2.4. 2ฬ… โˆˆ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช, for 4,2 โˆˆ ๐‘ and 2ฬ… โˆˆ ๐‘48, implies that 4. 2ฬ… = 8ฬ… โˆ‰ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช and 2. 2ฬ… = 4ฬ… โˆ‰ โŒฉ16ฬ…ฬ…ฬ…ฬ… โŒช and 2.4 = 8 โˆ‰ 16๐‘. 2. Every Quasi-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is EXNPQ2AB submodule however, the opposite is not true. Proof. Let ๐‘‰ be a Quasi-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  and ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, for ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั . Since ๐‘‰ is Quasi-2-Absorbing submodule of ั , then either ษ‘๐‘ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), hence either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Therefore ๐‘‰ is EXNPQ2AB submodule of ั . For the opposite, think about the following illustration: Let ั  = ๐‘48, ฦฆ = ๐‘ and the submodule ๐‘‰ = โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช is EXNPQ2AB submodule of ั , since ๐‘ ๐‘œ๐‘(๐‘48) = โŒฉ8ฬ…โŒช and ๐ฝ(๐‘48) = โŒฉ6ฬ…โŒช. That is for all ษ‘, ษ“, ๐‘ โˆˆ ๐‘ and ๐‘š โˆˆ ๐‘48 such that ษ‘ษ“๐‘๐‘š โˆˆ IHJPAS. 36(2)2023 344 โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช, implies that either ษ‘๐‘๐‘š โˆˆ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช + ๐‘ ๐‘œ๐‘(๐‘48) + ๐ฝ(๐‘48) = โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช or ษ“๐‘๐‘š โˆˆ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช + ๐‘ ๐‘œ๐‘(๐‘48) + ๐ฝ(๐‘48) = โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช or ษ‘ษ“๐‘š โˆˆ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ8ฬ…โŒช + โŒฉ6ฬ…โŒช = โŒฉ2ฬ…โŒช. But ๐‘‰ is not Quasi-2-Absorbing, since 2.3.2. 1ฬ… โˆˆ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช, for 3,2 โˆˆ ๐‘ and 1ฬ… โˆˆ ๐‘48, implies that 2.2. 1ฬ… = 4ฬ… โˆ‰ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช and 2.3. 1ฬ… = 6ฬ… โˆ‰ โŒฉ12ฬ…ฬ…ฬ…ฬ… โŒช. 3. Every Nearly-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is EXNPQ2AB submodule however, the opposite is not true. Proof. Let ๐‘‰ be a Nearly-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  and ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, for ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั . That is ษ‘ษ“(๐‘ำฝ) โˆˆ ๐‘‰. But ๐‘‰ is Nearly-2-Absorbing submodule of ั , then either ษ‘(๐‘ำฝ) โˆˆ ๐‘‰ + ๐ฝ(ั ) or ษ“(๐‘ำฝ) โˆˆ ๐‘‰ + ๐ฝ(ั ) or ษ‘ษ“ั  โŠ† ๐‘‰ + ๐ฝ(ั ). Thus either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) for all ำฝ โˆˆ ั , then either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Hence ๐‘‰ is EXNPQ2AB submodule of ั . For the opposite, think about the following illustration: Take a look at the ๐‘-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ๐‘60 and the submodule ๐‘‰ = โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช, we see that the only ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodules of ๐‘60 are ๐‘60 itself and the submodule โŒฉ2ฬ…โŒช, so that ๐‘ ๐‘œ๐‘(๐‘60) = ๐‘60 โˆฉ โŒฉ2ฬ…โŒช = โŒฉ2ฬ…โŒช. And the only ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodules โŒฉ2ฬ…โŒช, โŒฉ3ฬ…โŒช and โŒฉ5ฬ…โŒช. So that ๐ฝ(๐‘60) = โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช, hence โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช is EXNP-2-Absorbing submodule of ๐‘60, however Nearly-2-Absorbing submodule of ๐‘60, because 2.3. 5ฬ… โˆˆ ๐‘‰, for 2,3 โˆˆ ๐‘, 5ฬ… โˆˆ ๐‘60, implies that 2. 5ฬ… โˆ‰ ๐‘‰ + ๐ฝ(๐‘60) = โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช + โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช = โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช and 3. 5ฬ… โˆ‰ โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช and 2.3 โˆ‰ 30๐‘. 4. Every Nearly Quasi-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is EXNPQ2AB submodule however, the opposite is not true. Proof. Clear. For the opposite, think about the following illustration: See the submodule โŒฉ30ฬ…ฬ…ฬ…ฬ… โŒช as the ๐‘-module ๐‘60. 5. Every Pseudo-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is EXNPQ2AB submodule however, the opposite is not true. Proof. Let ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, for ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั . That is ษ‘ษ“(๐‘ำฝ) โˆˆ ๐‘‰. But ๐‘‰ is Pseudo-2-Absorbing submodule of ั , then either ษ‘(๐‘ำฝ) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ“(๐‘ำฝ) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ‘ษ“ั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Thus either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) for all ำฝ โˆˆ ั , then either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Hence ๐‘‰ is EXNPQ2AB submodule of ั . For the opposite, think about the following illustration: Let ั  = ๐‘48, ฦฆ = ๐‘ and the submodule ๐‘‰ = โŒฉ8ฬ…โŒช. Clear that ๐‘‰ is not Pseudo-2-Absorbing, but ๐‘‰ is EXNPQ2AB submodule of ั . 6. Every Pseudo Quasi-2-Absorbing submodule of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  is EXNPQ2AB submodule however, the opposite is not true. IHJPAS. 36(2)2023 345 Proof. Direct. For the converse, see the example in (5). 7. The intersection of two EXNPQ2AB submodules of an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  need not to be EXNPQ2AB submodule of ั , as the following example shows: Consider the ๐‘-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ๐‘ and the submodules 3๐‘ and 4๐‘ are EXNPQ2AB submodules of ๐‘, but 3๐‘ โˆฉ 4๐‘ = 12๐‘ is not EXNPQ2AB submodule of the ๐‘-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ๐‘, since if 2.3.2.1 โˆˆ 12๐‘, but 2.2.1 = 4 โˆ‰ 12๐‘ + ๐‘ ๐‘œ๐‘(๐‘) + ๐ฝ(๐‘) and 3.2.1 = 6 โˆ‰ 12๐‘ + ๐‘ ๐‘œ๐‘(๐‘) + ๐ฝ(๐‘) and 2.3.1 = 6 โˆ‰= 12๐‘ + ๐‘ ๐‘œ๐‘(๐‘) + ๐ฝ(๐‘) (since ๐‘ ๐‘œ๐‘(๐‘) = (0) and ๐ฝ(๐‘) = 0). Proposition 3.3 A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of ั  is EXNPQ2AB submodule of ั  if and only if for any ษ‘ , ษ“ โˆˆ ฦฆ and ๐‘ฅ โˆˆ ั  such that ษ‘ษ“๐‘ฅ โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Then [๐‘‰ :ฦฆ ษ‘ษ“๐‘ฅ ] โŠ† [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ ] โˆช [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ“๐‘ฅ]. Proof. (โŸน) Let ๐‘‰ be EXNPQ2AB submodule of ั  and ๐‘ก โˆˆ [๐‘‰ :ฦฆ ษ‘ษ“๐‘ฅ] , then ษ‘ษ“๐‘ก๐‘ฅ โˆˆ ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั  and ษ‘ษ“๐‘ฅ โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ), then either ษ‘๐‘ก๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘ก๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Thus either ๐‘ก โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ] or ๐‘ก โˆˆ[๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) :ฦฆ ษ“๐‘ฅ]. Hence, ๐‘ก โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ] โˆช [๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ษ“๐‘ฅ]. Then we get [๐‘‰ :ฦฆ ษ‘ษ“๐‘ฅ] โŠ† [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ ] โˆช [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ“๐‘ฅ]. (โŸธ) Let ษ‘ษ“๐‘๐‘ฅ โˆˆ ๐‘‰ for ษ‘, ษ“, ๐‘ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and let ษ‘ษ“๐‘ฅ โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ษ‘ษ“๐‘๐‘ฅ โˆˆ ๐‘‰, then ๐‘ โˆˆ [๐‘‰ :ฦฆ ษ‘ษ“๐‘ฅ ] โŠ† [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ] โˆช [ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ“๐‘ฅ]. It follows that either ๐‘ โˆˆ [ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ‘๐‘ฅ] or ๐‘ โˆˆ [ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ษ“๐‘ฅ]. That is either ษ‘๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ“๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). Therefore, ๐‘‰ EXNPQ2AB submodule of ั . Proposition 3.4 A ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule ๐‘‰ of ั  is EXNPQ2AB submodule of ั  if and only if ษ‘ษ“๐‘๐•ƒ โŠ† ๐‘‰, for ษ‘, ษ“, ๐‘ โˆˆ ฦฆ and ๐•ƒ is a submodule of ั , implies that either ษ‘๐‘๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Proof. (โŸน) Let ๐‘‰ be EXNPQ2AB submodule of ั  and ษ‘ษ“๐‘๐•ƒ โŠ† ๐‘‰ , for ษ‘, ษ“, ๐‘ โˆˆ ฦฆ and ๐•ƒ is a submodule of ั . Suppose that ษ‘ษ“๐•ƒ โŠˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) , ษ‘๐‘๐•ƒ โŠˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ษ“๐‘๐•ƒ โŠˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Then there is ๐‘’1, ๐‘’2, ๐‘’3 โˆˆ ๐•ƒ such that ษ‘ษ“๐‘’1 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) ,ษ‘๐‘๐‘’2 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ษ“๐‘๐‘’3 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) . Now, ษ‘ษ“๐‘๐‘’1 โˆˆ ๐‘‰ and since ๐‘‰ is EXNPQ2AB submodule of ั  with ษ‘ษ“๐‘’1 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), then either ษ“๐‘๐‘’1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ‘๐‘๐‘’1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). Also since ษ‘ษ“๐‘๐‘’2 โˆˆ ๐‘‰ and ษ‘๐‘๐‘’2 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), then either ษ“๐‘๐‘’2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ‘ษ“๐‘’2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). Again ษ‘ษ“๐‘๐‘’3 โˆˆ ๐‘‰ and since ๐‘‰ is EXNPQ2AB submodule of ั  with ษ“๐‘๐‘’3 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), then either ษ‘๐‘๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ‘ษ“๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). Now, ษ‘ษ“๐‘ ( ๐‘’1 + ๐‘’2 + ๐‘’3 ) โˆˆ ๐‘‰ and ๐‘‰ is EXNPQ2AB submodule of ั , implies that either ษ‘ษ“(๐‘’1 + ๐‘’2 + ๐‘’3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ‘๐‘(๐‘’1 + ๐‘’2 + ๐‘’3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ษ“๐‘(๐‘’1 + ๐‘’2 + ๐‘’3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). If ษ‘ษ“(๐‘’1 + ๐‘’2 + ๐‘’3) = ษ‘ษ“๐‘’1 + ษ‘ษ“๐‘’2 + ษ‘ษ“๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). But ษ‘ษ“๐‘’2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) and ษ‘ษ“๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) , then ษ‘ษ“๐‘’1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ), which is incongruent. If ษ‘๐‘(๐‘’1 + ๐‘’2 + +๐‘’3) = ษ‘๐‘๐‘’1 + ษ‘๐‘๐‘’2 + ษ‘๐‘๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). But ษ‘๐‘๐‘’1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) and ษ‘๐‘๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ), then IHJPAS. 36(2)2023 346 ษ‘๐‘๐‘’2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) which is contradiction. If ษ“๐‘(๐‘’1 + ๐‘’2 + +๐‘’3) = ษ“๐‘๐‘’1 + ษ“๐‘๐‘’2 + ษ“๐‘๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). But ษ“๐‘๐‘’1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) and ษ“๐‘๐‘’2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ), then ษ“๐‘๐‘’3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) which is contradiction. Hence ษ‘๐‘๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“๐•ƒ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). (โŸธ) Let ษ‘ษ“๐‘๐‘› โˆˆ ๐‘‰ for ษ‘, ษ“, ๐‘ โˆˆ ฦฆ , ๐‘› โˆˆ ั , then ษ‘ษ“๐‘(๐‘›) โŠ† ๐‘‰ , hence by hypothesis either ษ‘๐‘(๐‘›) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘(๐‘›) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“(๐‘›) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ษ‘๐‘๐‘› โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘๐‘› โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“๐‘› โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Therefore ๐‘‰ is EXNPQ2AB submodule of ั . Proposition 3.5 Let ั  be ๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for every submodule ๐ด of ั  and for every ideals ๐ผ1, ๐ผ2, ๐ผ3 of ฦฆ such that ๐ผ1๐ผ2๐ผ3๐ด โŠ† ๐‘‰, implies that either ๐ผ1๐ผ2๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ1๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Proof. (โŸน) Let ๐ผ1๐ผ2๐ผ3๐ด โŠ† ๐‘‰, where ๐ผ1, ๐ผ2, ๐ผ3 are ideals of ฦฆ and ๐ด is a submodule of ั , with ๐ผ1๐ผ2๐ด โŠˆ [ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) :ฦฆ ั  ]. To demonstrate that ๐ผ1๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Suppose that ๐ผ1๐ผ3๐ด โŠˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐ผ2๐ผ3๐ด โŠˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), that is there exist ๐‘Ž1, ๐‘Ž2, ๐‘Ž3 โˆˆ ๐ด and a nonzero ๐‘Ÿ โˆˆ ๐ผ1, ๐‘  โˆˆ ๐ผ2 and ๐‘ก โˆˆ ๐ผ3 such that ๐‘Ÿ๐‘ ๐‘Ž1 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘Ÿ๐‘ก๐‘Ž2 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘ ๐‘ก๐‘Ž3 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Now, ๐‘Ÿ๐‘ ๐‘ก๐‘Ž1 โˆˆ ๐‘‰ and ๐‘Ÿ๐‘ ๐‘Ž1 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), implies that either ๐‘Ÿ๐‘ก๐‘Ž1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐‘ก๐‘Ž1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Also ๐‘Ÿ๐‘ ๐‘ก๐‘Ž2 โˆˆ ๐‘‰ and ๐‘Ÿ๐‘ก๐‘Ž2 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), implies that either ๐‘Ÿ๐‘ ๐‘Ž2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐‘ก๐‘Ž2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Again, ๐‘Ÿ๐‘ ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ and ๐‘ ๐‘ก๐‘Ž3 โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), implies that either ๐‘Ÿ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐‘ ๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Now, ๐‘Ÿ๐‘ ๐‘ก(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) โˆˆ ๐‘‰ and ๐‘‰ is EXNPQ2AB, then either ๐‘Ÿ๐‘ (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐‘ก(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐‘ก(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). If ๐‘Ÿ๐‘ (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) = ๐‘Ÿ๐‘ ๐‘Ž1 + ๐‘Ÿ๐‘ ๐‘Ž2 + ๐‘Ÿ๐‘ ๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘Ÿ๐‘ ๐‘Ž2, ๐‘Ÿ๐‘ ๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), hence ๐‘Ÿ๐‘ ๐‘Ž1 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) which is a contradiction. If ๐‘Ÿ๐‘ก(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) = ๐‘Ÿ๐‘ก๐‘Ž1 + ๐‘Ÿ๐‘ก๐‘Ž2 + ๐‘Ÿ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘Ÿ๐‘ก๐‘Ž1, ๐‘Ÿ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), hence ๐‘Ÿ๐‘ก๐‘Ž2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) which is a contradiction. If ๐‘ ๐‘ก(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) = ๐‘ ๐‘ก๐‘Ž1 + ๐‘ ๐‘ก๐‘Ž2 + ๐‘ ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘ ๐‘ก๐‘Ž1, ๐‘ ๐‘ก๐‘Ž2 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), hence ๐‘ ๐‘ก๐‘Ž3 โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) which is a contradiction. Thus either ๐ผ1๐ผ2๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ1๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). (โŸธ) Clear. Proposition 3.6 Let ั  be ๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for any ๐‘Ÿ, ๐‘  โˆˆ ฦฆ and ๐ผof ฦฆ and ๐‘ฅ โˆˆ ั  with ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰ implies that either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Proof. (โŸน) Let ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰ for ๐‘Ÿ, ๐‘  โˆˆ ฦฆ and ๐ผ is an ideal of ฦฆ and ๐‘ฅ โˆˆ ั , it follows that ๐ผ โŠ† [๐‘‰:ฦฆ ๐‘Ÿ๐‘ ๐‘ฅ]. If ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), hence ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), then we are done. Suppose that ๐‘Ÿ๐‘ ๐‘ฅ โˆ‰ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ), then by Proposition 3.3 [ ๐‘‰ :ฦฆ ๐‘Ÿ๐‘ ๐‘ฅ ] โŠ† [ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘Ÿ๐‘ฅ ] โˆช [ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘ ๐‘ฅ ]. But ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰, then ๐ผ โŠ† [๐‘‰:ฦฆ ๐‘Ÿ๐‘ ๐‘ฅ] โŠ† [ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘Ÿ๐‘ฅ ] โˆช [ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘ ๐‘ฅ ], hence ๐ผ โŠ† [ ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘Ÿ๐‘ฅ] โˆช [๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘ ๐‘ฅ], it follows that either ๐ผ โŠ† [๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ):ฦฆ ๐‘Ÿ๐‘ฅ] or ๐ผ โŠ† [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ๐‘ ๐‘ฅ], thus either ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). IHJPAS. 36(2)2023 347 (โŸธ) Let ๐‘Ÿ๐‘ ๐‘ก๐‘ฅ โˆˆ ๐‘‰ for ๐‘Ÿ, ๐‘ , ๐‘ก โˆˆ ฦฆ and ๐‘ฅ โˆˆ ั , that is ๐‘Ÿ๐‘ โŒฉ๐‘กโŒช๐‘ฅ โŠ† ๐‘‰. It follows by hypothesis either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ŸโŒฉ๐‘กโŒช๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ โŒฉ๐‘กโŒช๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Hence either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐‘ก๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐‘ก๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Therefore ๐‘‰ is EXNPQ2AB submodule of ั . From the Proposition 3.5 and Proposition 3.6 we get the following corollaries. Corollary 3.7 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for each ๐‘Ÿ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and every ideals ๐ผ, ๐ฝ of ฦฆ with ๐‘Ÿ๐ผ๐ฝ๐‘ฅ โŠ† ๐‘‰, implies that either ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ฝ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ๐ฝ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Corollary 3.8 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for every ideals ๐ผ1, ๐ผ2, ๐ผ3 of ฦฆ and ๐‘ฅ โˆˆ ั  such that ๐ผ1๐ผ2๐ผ3๐‘ฅ โŠ† ๐‘‰ implies that either ๐ผ1๐ผ2๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ1๐ผ3๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Corollary 3.9 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for any ๐‘Ÿ, ๐‘  โˆˆ ฦฆ and any ideal ๐ผ of ฦฆ and every submodule ๐ด of ั  with ๐‘Ÿ๐‘ ๐ผ๐ด โŠ† ๐‘‰ implies that either ๐‘Ÿ๐‘ ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ผ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐ผ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Corollary 3.10 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ be a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Then ๐‘‰ is EXNPQ2AB submodule of ั  if and only if for each ๐‘Ÿ โˆˆ ฦฆ and any ideals ๐ผ, ๐ฝ of ฦฆ and every submodule ๐ด of ั  with ๐‘Ÿ๐ผ๐ฝ๐ด โŠ† ๐‘‰ implies that either ๐‘Ÿ๐ผ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ฝ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ๐ฝ๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Proposition 3.11 Let ๐‘‰ be EXNPQ2AB submodule of an ฦฆ- ๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ั  and L is a submodule of ั  with L โŠ† ๐‘‰ , then ๐‘‰ ๐ฟ is EXNPQ2AB submodule of an ฦฆ-module ั  ๐ฟ . Proof. Let ๐‘‰ be EXNPQ2AB submodule of ั  and ษ‘๐ผ๐ฝ ( ๐‘’ + ๐ฟ ) = ษ‘๐ผ๐ฝ๐‘’ + ๐ฟ โŠ† ๐‘‰ ๐ฟ for ษ‘ โˆˆ ฦฆ, ๐ผ, ๐ฝ are ideals of ฦฆ and ๐‘’ + ๐ฟ โˆˆ ั  ๐ฟ , ๐‘’ โˆˆ ั  , implies that ษ‘๐ผ๐ฝ๐‘’ โŠ† ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then by Corollary 3.7 either ษ‘๐ผ๐‘’ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  ) + ๐ฝ(ั ) or ษ‘๐ฝ๐‘’ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  ) + ๐ฝ(ั ) or ๐ผ๐ฝ๐‘’ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  ) + ๐ฝ(ั ). It follows, either ษ‘๐ผ( ๐‘’ + ๐ฟ ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  )+๐ฝ(ั ) ๐ฟ โŠ† ๐‘‰ ๐ฟ + ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  )+๐ฝ(ั ) ๐ฟ โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ) or ษ‘๐ฝ( ๐‘’ + ๐ฟ ) โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ) or ๐ผ๐ฝ( ๐‘’ + ๐ฟ ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  )+๐ฝ(ั ) ๐ฟ โŠ† ๐‘‰ ๐ฟ + ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั  )+๐ฝ(ั ) ๐ฟ โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ), that is either ษ‘๐ผ( ๐‘’ + ๐ฟ ) โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ) or ษ‘๐ฝ( ๐‘’ + ๐ฟ ) โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ) or ๐ผ๐ฝ โŠ† ๐‘‰ ๐ฟ + ๐‘ ๐‘œ๐‘ ( ั  ๐ฟ ) + ๐ฝ( ั  ๐ฟ ). Hence by Corollary 3.7 ๐‘‰ ๐ฟ is EXNPQ2AB submodule of ั  ๐ฟ . IHJPAS. 36(2)2023 348 Proposition 3.12 Let ั  is a ๐‘ ๐‘’๐‘š๐‘– ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’ ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ ๐‘‰ and าข are submdules for ั  such that าข โŠ† ๐‘‰, and ๐‘‰ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . If าข and ๐‘‰ าข are EXNPQ2AB submodules of ั  and ั  าข respectively, then ๐‘‰ is EXNPQ2AB submodules of ั . Proof. Suppose าข and ๐‘‰ าข are EXNPQ2AB submodules for ั  and ั  าข respectively, and let ๐ผ1๐ผ2๐ผ3๐‘š โŠ† ๐‘‰, for ๐ผ1, ๐ผ2, ๐ผ3 are ideals of ษŒ, ๐‘š โˆˆ ั . So ๐ผ1๐ผ2๐ผ3(๐‘š + าข) = ๐ผ1๐ผ2๐ผ3๐‘š + าข โŠ† ๐‘‰ าข . If ๐ผ1๐ผ2๐ผ3๐‘š โŠ† าข and าข is EXNPQ2AB submodules of ั , implies that by Corollary 3.8 either ๐ผ1๐ผ2๐‘š โŠ† าข + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐ผ1๐ผ3๐‘š โŠ† าข + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐ผ2๐ผ3๐‘š โŠ† าข + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )), hence ๐‘‰ is EXNPQ2AB submodules for ั . So, we may assume that ๐ผ1๐ผ2๐ผ3๐‘š โŠˆ าข. It follows that ๐ผ1๐ผ2๐ผ3(๐‘š + าข) โŠ† ลŠ าข , but ๐‘‰ าข is EXNPQ2AB submodules of ั  าข , again by Corollary 3.8 either ๐ผ1๐ผ2(๐‘š + าข) โŠ† ๐‘‰ าข + (๐‘ ๐‘œ๐‘ ( ั  าข ) + ๐ฝ ( ั  าข )) or ๐ผ1๐ผ3(๐‘š + าข) โŠ† ๐‘‰ าข + (๐‘ ๐‘œ๐‘ ( ั  าข ) + ๐ฝ ( ั  าข )) or ๐ผ2๐ผ3(๐‘š + าข) โŠ† ๐‘‰ าข + (๐‘ ๐‘œ๐‘ ( ั  าข ) + ๐ฝ ( ั  าข )). Since ั  is a ๐‘ ๐‘’๐‘š๐‘– ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘’ then by Lemma 2.10 either ๐ผ1๐ผ2(๐‘š + าข) โŠ† ๐‘‰ าข + าข+๐‘ ๐‘œ๐‘(ั ) าข + าข+๐ฝ(ั ) าข or ๐ผ1๐ผ3(๐‘š + าข) โŠ† ๐‘‰ าข + าข+๐‘ ๐‘œ๐‘(ั ) าข + าข+๐ฝ(ั ) าข or ๐ผ2๐ผ3(๐‘š + าข) โŠ† ๐‘‰ าข + าข+๐‘ ๐‘œ๐‘(ั ) าข + าข+๐ฝ(ั ) าข . But าข โŠ† ๐‘‰, it follows that าข + ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) and าข + ๐ฝ(ั ) โŠ† ๐‘‰ + ๐ฝ(ั ), hence ๐‘‰ าข + าข+๐‘ ๐‘œ๐‘(ั ) าข + าข+๐ฝ(ั ) าข โŠ† ๐‘‰ าข + ๐‘‰+๐‘ ๐‘œ๐‘(ั ) าข + ๐‘‰+๐ฝ(ั ) าข = ๐‘‰+๐‘ ๐‘œ๐‘(ั )+๐ฝ(ั ) าข . Thus either ๐ผ1๐ผ2(๐‘š + าข) โŠ† ๐‘‰+(๐‘ ๐‘œ๐‘(ั )+๐ฝ(ั )) าข or ๐ผ1๐ผ3(๐‘š + าข) โŠ† ๐‘‰+(๐‘ ๐‘œ๐‘(ั )+๐ฝ(ั )) าข or ๐ผ1๐ผ3(๐‘š + าข) โŠ† ๐‘‰+(๐‘ ๐‘œ๐‘(ั )+๐ฝ(ั )) าข , it follows that either ๐ผ1๐ผ2๐‘š โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐ผ1๐ผ3๐‘š โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ))or ๐ผ2๐ผ3๐‘š โŠ† ๐‘‰ + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )). Hence by Corollary 3.8 ๐‘‰ is EXNPQ2AB submodules of ั . According to the following proposition, under specific circumstances, the intersection of two EXNPQ2AB submodules is an EXNPQ2AB submodule. Proposition 3.13 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ either ๐ธ or ๐‘‰ is ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั  and ๐ธ not contained in ๐‘‰. If ๐ธ and ๐‘‰ are EXNPQ2AB submodules of ั , then ๐‘‰ โˆฉ ๐ธ is EXNPQ2AB submodule of ั . Proof. Since ๐ธ not contained in ๐‘‰, then ๐‘‰ โˆฉ ๐ธ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ๐‘‰ and since ๐‘‰ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั , hence ๐‘‰ โˆฉ ๐ธ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั . Now, let ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐ธ โˆฉ ๐‘‰, for ๐‘Ÿ, ๐‘  โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and ๐ผ is an ideal of ฦฆ, it follows that ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐ธ and ๐‘Ÿ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰. But both ๐ธ and ๐‘‰ are EXNPQ2AB submodules of ั , then by Proposition 3.6 we have either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐ผ๐‘ฅ โŠ† ๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) and ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘ ๐ผ๐‘ฅ โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Thus either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ (๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐‘Ÿ๐ผ๐‘ฅ โŠ† (๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐‘ ๐ผ๐‘ฅ โŠ† (๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )). Since either ๐ธ or ๐‘‰ is ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั , then either ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ธ or ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰. Suppose that ๐ธ is ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั , so that by Lemma 2.11 ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ธ and since ๐ธ is ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodule of ั , then ๐ฝ(ั ) โŠ† ๐ธ. It followsโ€™ that ๐ธ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐ธ. Hence either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ ๐ธ โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐‘Ÿ๐ผ๐‘ฅ โŠ† ๐ธ โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐‘ ๐ผ๐‘ฅ โŠ† ๐ธ โˆฉ (๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )). Therefore by Lemma 2.12 we get either ๐‘Ÿ๐‘ ๐‘ฅ โˆˆ (๐ธ โˆฉ ๐‘‰) + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or IHJPAS. 36(2)2023 349 ๐‘Ÿ๐ผ๐‘ฅ โŠ† (๐ธ โˆฉ ๐‘‰) + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )) or ๐‘ ๐ผ๐‘ฅ โŠ† (๐ธ โˆฉ ๐‘‰) + (๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั )). Hence by Proposition 3.6 ๐‘‰ โˆฉ ๐ธ is EXNPQ2AB submodule of ั . Proposition 3.14 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐‘ ๐‘œ๐‘(ั ) is Quasi-2-Absorbing submodule of ั  . If ๐‘‰ โŠ‚ ั  such that ๐‘‰ โŠ† ๐‘ ๐‘œ๐‘(ั ) , then ๐‘‰ is EXNPQ2AB submodule of ั . Proof. Let ๐ผ1๐ผ2๐ผ3๐ด โŠ† ๐‘‰ , for ๐ผ1, ๐ผ2, ๐ผ3 are ideals of ฦฆ and ๐ด is a submodule of ั  . Since ๐‘‰ โŠ† ๐‘ ๐‘œ๐‘ (ั ), it follows that ๐ผ1๐ผ2๐ผ3๐ด โŠ† ๐‘ ๐‘œ๐‘ (ั ). But ๐‘ ๐‘œ๐‘(ั ) is Quasi-2-Absorbing subomdule of ั , then either ๐ผ1๐ผ3๐ด โŠ† ๐‘ ๐‘œ๐‘ (ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐ด โŠ† ๐‘ ๐‘œ๐‘ (ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ) or ๐ผ1๐ผ2๐ด โŠ† ๐‘ ๐‘œ๐‘ (ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘ (ั ) + ๐ฝ(ั ). That is either ๐ผ1๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ2๐ผ3๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐ผ1๐ผ2๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ).Therefore by Proposition 3.5 ๐‘‰ is EXNPQ2AB submodule of ั . Proposition 3.14 Let ั  be an ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐ฝ(ั ) is Quasi-2-Absorbing submodule of ั  . If ๐‘‰ โŠ‚ ั  such that ๐‘‰ โŠ† ๐ฝ(ั ) , then ๐‘‰ is EXNPQ2AB submodule of ั . Proof. Let ษ‘ษ“๐‘๐ด โŠ† ๐‘‰ , for ษ‘ , ษ“, ๐‘ โˆˆ ฦฆ and ๐ด is a submodule of ั  . Since ๐‘‰ โŠ† ๐ฝ(ั ), it follows that ษ‘ษ“๐ด โŠ† ๐ฝ(ั ). But ๐ฝ(ั ) is Quasi-2-Absorbing subomdule of ั  , then either ษ‘๐‘๐ด โŠ† ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘๐ด โŠ† ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“๐ด โŠ† ๐ฝ(ั ) โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ษ‘๐‘๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ“๐‘๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘ษ“๐ด โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Therefore by Proposition 3.4 ๐‘‰ is EXNPQ2AB submodule of ั . 4. The Relationship between the Concept of EXNPQ2AB Submodules and Other Concepts. The relationships between EXNPQ2AB submodules, 2-Absorbing submodules and other types of submodules are discussed in this section. Proposition 4.1 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ is an ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั  with ๐ฝ(ั ) โŠ† ๐‘‰. Then ๐‘‰ is 2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. (โ‡’) By Remarks and Examples 3.2(1). (โ‡) Let ั  = ฦฆ๐‘ค for some ๐‘ค โˆˆ ั  and assume that ๐‘‰ is EXNPQ2AB submodule of ั . Let ษ‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, โ„Ž โˆˆ ั , then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an element ๐‘ โˆˆ ฦฆ such that ษ‘๐‘โ„Ž = ษ‘๐‘๐‘๐‘ค โˆˆ ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then either ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ๐‘ค] = [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ั ] or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ๐‘‰ is ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั , then ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ and by hypotheses ๐ฝ(ั ) โŠ† ๐‘‰, we get ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) = ๐‘‰ and ๐‘‰ + ๐ฝ(ั ) = ๐‘‰, thus ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐‘‰. Hence either ๐‘Ž๐‘ โˆˆ [๐‘‰:ฦฆ ั ] or ๐‘โ„Ž โˆˆ ๐‘‰ or ษ‘โ„Ž โˆˆ ๐‘‰. Therefore ๐‘‰ is 2-Absorbing submodule of ั . The Proof of the Proposition 4.2 and 4.3 is staightforward. Proposition 4.2 Let ั  be a cyclic ฦฆ-module and ๐‘‰ is maximal submodule of ั  with ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰. Then ๐‘‰ is 2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . IHJPAS. 36(2)2023 350 Proposition 4.3 Let ั  be a cyclic ฦฆ-module and ๐‘‰ is a proper submodule of ั  with ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) โŠ† ๐‘‰. Then ๐‘‰ is 2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proposition 4.4 Let ั  be ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ is an essential submodule of ั  with ๐ฝ(ั ) โŠ† ๐‘‰. Then ๐‘‰ is Quasi-2- Absorbing if and only if ๐‘‰ is EXNPQ-2-Absorbing. Proof. (โ‡’) By Remarks and Examples 3.2(2). (โ‡) Let ษ‘๐‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘, ๐‘ โˆˆ ฦฆ and โ„Ž โˆˆ ั , hence either ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ๐‘‰ is ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั , then ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ and by hypotheses ๐ฝ(ั ) โŠ† ๐‘‰, we get ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) = ๐‘‰ and ๐‘‰ + ๐ฝ(ั ) = ๐‘‰, thus ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐‘‰. Hence either ษ‘๐‘โ„Ž โˆˆ ๐‘‰ or ๐‘๐‘โ„Ž โˆˆ ๐‘‰ or ษ‘๐‘โ„Ž โˆˆ ๐‘‰. Therefor ๐‘‰ is Quasi-2- Absorbing of ั . Proposition 4.5 Let ั  be ฦฆ-module and ๐‘‰ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั  with ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) โŠ† ๐‘‰. Then ๐‘‰ is Quasi-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. Direct. Proposition 4.6 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐‘‰ is a ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั  and ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ฝ(ั ). Then ๐‘‰ is Nearly-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. (โ‡’) By Remarks and Examples 3.2(3). (โ‡) Let ั  = ฦฆ๐‘ค for some ๐‘ค โˆˆ ั  and assume that ๐‘‰ is EXNPQ2AB submodule of ั . Let ษ‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, โ„Ž โˆˆ ั , then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an element ๐‘ โˆˆ ฦฆ such that ษ‘๐‘โ„Ž = ษ‘๐‘๐‘๐‘ค โˆˆ ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then either ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ๐‘ค] = [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ั ] or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). But ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ฝ(ั ), thus ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐ฝ(ั ). Hence either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐ฝ(ั ):ฦฆ ั ] or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ) or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ). Therefore ๐‘‰ is Nearly-2-Absorbing submodule of ั . Proposition 4.7 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐‘‰ โŠ‚ ั  and ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰. Then ๐‘‰ is Nearly-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั .Proof. (โ‡’) Clear. (โ‡) Let ั  = ฦฆ๐‘ค for some ๐‘ค โˆˆ ั  and assume that ๐‘‰ is EXNPQ2AB submodule of ั . Let ษ‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, โ„Ž โˆˆ ั , then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an element ๐‘ โˆˆ ฦฆ such that ษ‘๐‘โ„Ž = ษ‘๐‘๐‘๐‘ค โˆˆ ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then either ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ๐‘ค] = [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ั ] or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰, then ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) = ๐‘‰, so ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐‘‰ + ๐ฝ(ั ). Hence either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐ฝ(ั ):ฦฆ ั ] or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ) or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ). Therefore ๐‘‰ is Nearly-2-Absorbing submodule of ั . The Proof of the Proposition 4.8 and 4.9 is staightforward. IHJPAS. 36(2)2023 351 Proposition 4.8 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐‘‰ is ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ of ั  and ๐‘ ๐‘œ๐‘(ั ) = (0). Then ๐‘‰ is Nearly-2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proposition 4.9 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ is an ๐‘’๐‘ ๐‘ ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ submodule of ั . Then ๐‘‰ is Nearly-2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proposition 4.10 Let ั  be ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’, ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ฝ(ั ) and ๐‘‰ โŠ‚ ั . Then ๐‘‰ is Nearly Quasi-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. (โ‡’) By Remarks and Examples 3.2(4). (โ‡) Let ษ‘๐‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘, ๐‘ โˆˆ ฦฆ, โ„Ž โˆˆ ั . Since ๐‘‰ is EXNPQ2AB, then either ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐ฝ(ั ), then ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐ฝ(ั ), thus either ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ) or ษ‘๐‘โ„Ž โˆˆ ๐‘‰ + ๐ฝ(ั ). Hence ๐‘‰ is Nearly Quasi-2-Absorbing of ั . Proposition 4.11 Let ั  be ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’, ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰ and ๐‘‰ โŠ‚ ั . Then ๐‘‰ is Nearly Quasi-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. Direct. Proposition 4.12 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ is an ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodule of ั . Then ๐‘‰ is Pseudo-2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. (โ‡’) By Remarks and Examples 3.2(5). (โ‡) Let ั  = ฦฆ๐‘ค for some ๐‘ค โˆˆ ั  and assume that ๐‘‰ is EXNPQ2AB submodule of ั . Let ษ‘๐‘โ„Ž โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, โ„Ž โˆˆ ั , then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an element ๐‘ โˆˆ ฦฆ such that ษ‘๐‘โ„Ž = ษ‘๐‘๐‘๐‘ค โˆˆ ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then either ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘๐‘ค โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ๐‘ค] = [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ั ] or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). Since ๐‘‰ is an ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ submodule of ั , then ๐ฝ(ั ) โŠ† ๐‘‰, hence ๐‘‰ + ๐ฝ(ั ) = ๐‘‰, so ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Hence either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ):ฦฆ ั ] or ๐‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ‘โ„Ž โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Therefore, ๐‘‰ is Pseudo-2-Absorbing submodule of ั . Proposition 4.13 Let ั  be a cyclic ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ with ๐‘‰ is ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ of ั  and ๐ฝ(ั ) = (0). Then ๐‘‰ is Pseudo-2- Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . Proof. Direct. Proposition 4.14 Let ั  be ฦฆ-module and ๐‘‰ is a maximal submodule of ั . Then, ๐‘‰ is Pseudo Quasi-2-Absorbing if and only if ๐‘‰ is EXNPQ2AB submodule of ั . IHJPAS. 36(2)2023 352 Proof. (โ‡’) By Remarks and Examples 3.2(6). (โ‡) Clear. Finally, we will present a Proposition that equals all the previous concepts. Proposition 4.15 Let ั  be a multiplicatiion ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’ and ๐‘‰ is ๐‘Ž ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ submodule of ั  with ๐ฝ(ั ) = ๐‘‰ and ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰. Consequently, the following claims are equal: 1. ๐‘‰ is a 2-Absorbing submodule of ั . 2. Quasi-2-Absorbing submodule of ั . 3. Nearly Quasi-2-Absorbing submodule of ั . 4. Nearly-2-Absorbing submodule of ั . 5. EXNPQ-2-Absorbing submodule of ั . 6. Pseudo-2-Absorbing submodule of ั . 7. Pseudo Quasi-2-Absorbing submodule of ั . Proof. (๐Ÿ โ‡” ๐Ÿ) By Lemma 2.14. (๐Ÿ โ‡’ ๐Ÿ‘) Clear. (๐Ÿ‘ โ‡’ ๐Ÿ’) Let ษ‘๐‘๐‘ฅ โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and assume that ๐‘‰ is Nearly Quasi-2-Absorbing submodule of ั . That is ษ‘๐‘(๐‘ฅ) โŠ† ๐‘‰, since ั  is a ๐‘šultiplication ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’, then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an ideal ๐ผ of ฦฆ such that (๐‘ฅ) = ๐ผั , hence ษ‘๐‘๐ผั  โŠ† ๐‘‰. Since ๐‘‰ is Nearly Quasi-2-Absorbing submodule of ั , then either ษ‘๐ผั  โŠ† ๐‘‰ + ๐ฝ(ั ) or ๐‘๐ผั  โŠ† ๐‘‰ + ๐ฝ(ั ) or ษ‘๐‘ั  โŠ† ๐‘‰ + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐ฝ(ั ):ฦฆ ั ] or ษ‘๐‘ฅ โˆˆ ๐‘‰ + ๐ฝ(ั ) or ๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐ฝ(ั ). Therefore ๐‘‰ is Nearly-2- Absorbing submodule of ั . (๐Ÿ’ โ‡’ ๐Ÿ“) By Remarks and Examples 3.2(3). (๐Ÿ“ โ‡’ ๐Ÿ”) Let ษ‘๐‘๐‘ฅ โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and assume that ๐‘‰ is EXNPQ2AB submodule of ั . That is ษ‘๐‘(๐‘ฅ) โŠ† ๐‘‰, since ั  is a ๐‘šultiplicatiIon ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’, then ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an ideal ๐ผ of ฦฆ such that (๐‘ฅ) = ๐ผั , hence ษ‘๐‘๐ผั  โŠ† ๐‘‰. Since ๐‘‰ is EXNPQ2AB submodule of ั , then either ษ‘๐ผั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐ผั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ษ‘๐‘ั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ):ฦฆ ั ] or ษ‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) or ๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ). But ๐ฝ(ั ) โŠ† ๐‘‰, then ๐‘‰ + ๐ฝ(ั ) = ๐‘‰ and ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) + ๐ฝ(ั ) = ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Thus either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) โˆถฦฆ ั ] or ๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Therefore ๐‘‰ is Pseudo-2- Absorbing submodule of ั . (๐Ÿ” โ‡’ ๐Ÿ•) Let ษ‘ษ“๐‘ำฝ โˆˆ ๐‘‰, for ษ‘,ษ“, ๐‘ โˆˆ ฦฆ, ำฝ โˆˆ ั . That is ษ‘ษ“(๐‘ำฝ) โˆˆ ๐‘‰. But ๐‘‰ is Pseudo-2-Absorbing submodule of ั , then either ษ‘(๐‘ำฝ) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ“(๐‘ำฝ) โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ‘ษ“ั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). Thus either ษ‘๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ“๐‘ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ษ‘ษ“ำฝ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) for all ำฝ โˆˆ ั . Hence ๐‘‰ is Pseudo Quasi-2-Absorbing submodule of ั . (๐Ÿ• โ‡’ ๐Ÿ) Let ษ‘๐‘๐‘ฅ โˆˆ ๐‘‰ for ษ‘, ๐‘ โˆˆ ฦฆ, ๐‘ฅ โˆˆ ั  and assume that ๐‘‰ is Pseudo Quasi-2-Absorbing submodule of ั . That is ษ‘๐‘(๐‘ฅ) โŠ† ๐‘‰, since ั  is a ๐‘šultiplication ฦฆ-๐‘š๐‘œ๐‘‘๐‘ข๐‘™๐‘’, then tโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก an ideal ๐ผ of ฦฆ such that (๐‘ฅ) = ๐ผั , hence ษ‘๐‘๐ผั  โŠ† ๐‘‰. Since ๐‘‰ is Pseudo Quasi-2-Absorbing submodule of ั , then either ษ‘๐ผั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั )or ๐‘๐ผั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั )or ษ‘๐‘ั  โŠ† ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). That is either ๐‘Ž๐‘ โˆˆ [๐‘‰ + ๐‘ ๐‘œ๐‘(ั ):ฦฆ ั ] or ษ‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) or ๐‘๐‘ฅ โˆˆ ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ). But ๐‘ ๐‘œ๐‘(ั ) โŠ† ๐‘‰, hence ๐‘‰ + ๐‘ ๐‘œ๐‘(ั ) = ๐‘‰. Thus either ๐‘Ž๐‘ โˆˆ [๐‘‰:ฦฆ ั ] or ๐‘๐‘ฅ โˆˆ ๐‘‰ or ษ‘๐‘ฅ โˆˆ ๐‘‰. Therefore, ๐‘‰ is 2- Absorbing submodule of ั . IHJPAS. 36(2)2023 353 5. Conclusion The term EXNPQ2AB submodules is a novel generalization of (2-Absorbing, Quasi-2-Absorbing, Nearly-2-Absorbing, Nearly Quasi-2-Absorbing, Pseudo-2-Absorbing and Pseudo Quasi-2- Absorbing) submodules that we introduce in this article. Using examples, we also discuss the opposite generalization introduced in several different characterizations. There are given connections between this generalization and other types of modules. References 1. Darani, A.Y; Soheilniai. F. 2-Absorbing and Weakly 2-AbsorbingSubmodules, Tahi Journal. Math, 2011,(9), 577-584. 2. Lu, C. P. Prime Submodules of Modules, Comm. Math, University Spatula, 1981, (33), 61-69. 3. Goodearl, K. R., (1976), Ring Theory, Marcel Dekker, Inc. New York and Basel., 1976, 206. 4. Kash, F. Modules and Rings. London Math. Soc. Monographs New York , Academic Press , 1982, 370. 5. Reem, T; Shwkea, M. Nearly 2-Absorbing Submodules and Related Concept, Tikrit Journal for Pure Sci, 2018, 2(3), 215-221. 6. Osama A. Naji; Mohammed M. Al-Ashker and Arwa E. Ashour. On n-2-Absorbing Submodules, M. Sc. Thesis,The Islamic University -Gaza. , 2016, 42. 7. Haibat K. Mohammedali and Omar A.Abdalla. Pseudo-2-Absorbing and Pseudo Semi-2- Absorbing Submodules, AIP Conference Proceedings, 2019, 2096,020006, 1-9. 8. Haibat, K. M and Khalaf, H .A. Nearly Quasi2-Absorbing Submodules, Tikrit Journal. for Pure. Sci, 2018, 23(9), 99-102. 9. Anderson, E. W and Fuller, K. R. Rings and Categories of Modules , springer Verlag, New York. 1992. 10. Payman, M. H. Hollow Modules and Semi Hollow Modules. M. Sc. Thesis, University of Baghbad. 2005. 11. El-Bast, Z. A ; Smith, P. F. Multiplication Modules, Comm. In Algebra, 1988, 16(4), 755-779. 12. Faranak. F. Quasi 2-absorbing Submodules, KYUNGPOOK Mathematical Junral, 2019, 59(2), 209-214.