IHJPAS. 36(2)2023 354 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract Let β„‹ be a module over a commutative ring 𝑅 with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule β„± of an 𝑅-module β„‹ is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of β„‹ if whenever 𝑒2Ο° ∈ β„±, for 𝑒 ∈ 𝑅, 𝜘 ∈ β„‹ implies that either π‘’πœ˜ ∈ β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2 ∈ [β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹):𝑅 β„‹], this concept is a generalization of 2_Absorbing submodule, semi 2- Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules and the converse of this relation is true under certain condition. Also, we introduced many characterizations of Strongly Pseudo Nearly Semei-2- Absorbing submodules in some types of modules. Keywords:2_Absorbing.submodules,.Pseudo_2_Absorbing.submodules,.Nearly_2_Absorbingsu bmodules, Nearly Semei-2-Absorbing submodules, STPNS-2-Absorbing submodules. 1. Introduction Throughout this paper, all rings are assumed commutative with identity and all R-modules are left unitary. According Darani and Soheiline in 2011, we introduce a concept 2-Absorbing submodule. Many researchers have generalized the concept of 2_Absorbing submodules in different way. Recently, in 2018 Reem and Shwkea introduced the concept of Nearly–2– Absorbing submodules as new generalization of 2_Absorbing submodules. Also, in 2019 Haibat and Omer introduced the concept Pseudo_2_Absorbing submodules as new generalization of 2_Absorbing submodules. In 1967 Goodearl made a generalization of the concept of 2_Absorbing which is semi-2-Absorbing submodule. Also, in 2019 Akram and Haibat, Haibat and Omer made a generalization of the concept of 2_Absorbing an illusion Nearly semi-2-Absorbing and Pseudo semi-2-Absorbing. Our goal in this paper was studied the concept Strongly Pseudo Nearly Semei- 2-Absorbing submodules as new generalization of 2_Absorbing submodule, strong form of both Nearly–2–Absorbing, Pseudo_2_Absorbing, Nearly Semi–2–Absorbing and Pseudo semi-2- Absorbing submodules are given Several properties and characterizations of this concepts in some doi.org/10.30526/36.2.3021 Article history: Received 17 September 2022, Accepted 6 November 2022, Published in April 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Strongly Pseudo Nearly Semei-2-Absorbing Submodule(𝐈) Mohmad E. Dahash Department of Mathematics College of Computer Science and Mathematics Tikrit University / Iraq. mohmad.e.dahash35391@st.tu.edu.iq Haibat K. Mohammadali Department of Mathematics College of Computer Science and Mathematics Tikrit University / Iraq. H.mohammadali@tu.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:mohmad.e.dahash35391@st.tu.edu.iq mailto:H.mohammadali@tu.edu.iq mailto:H.mohammadali@tu.edu.iq IHJPAS. 36(2)2023 355 types of modules. 2. Basic Properties In this section we introduce the basic properties of the concept Strongly Pseudo Nearly Semei- 2-Absorbing submodules. Definition 2.1 [1]. Let β„‹ be an 𝑅-module and β„± βŠ‚ β„‹ is called 2-absorbing if whenever π‘’π‘£β„Ž ∈ β„± , for u, 𝑣 ∈ 𝑅, β„Ž ∈ β„‹, then either π‘’β„Ž ∈ β„± or π‘£β„Ž ∈ β„± or 𝑒𝑣 ∈ [β„± ℋ𝑅 : ]. Definition 2.2 [2]. π‘ π‘œπ‘(β„‹) is the intersection of all essential submodule of β„‹and a nonzero submodule β„š of β„‹ is a essential in β„‹ if β„š ∩ β„‚ β‰  (0) for any nonzero submodule β„‚ of β„‹. Definition 2.3 [3]. 𝐽(β„‹) is the intersection of all maximal submodule of β„‹ and a proper submodule ℬ of an R._module β„‹ is called maximal submodule if whenever ℬ βŠ† β„’ βŠ† β„‹ for some submodule β„’ of β„‹ then either ℬ = β„’ or β„’ = β„‹. Definition 2.4 [4]. Let β„‹ be an 𝑅-module and β„± βŠ‚ β„‹ is called Nearly-2-Absorbing submodule if whenever π‘’π‘£π‘š ∈ β„± , for 𝑒, 𝑣 ∈ 𝑅, β„Ž ∈ β„‹, implies that either π‘’β„Ž ∈ β„± + 𝐽(β„‹) or π‘£β„Ž ∈ β„± + 𝐽(β„‹) or 𝑒𝑣 ∈ [β„± + 𝐽(β„‹)𝑅 : β„‹]. Definition 2.5 [5]. Let β„‹ be an 𝑅-module and β„± βŠ‚ β„‹ is called Pseudo-2-Absorbing submodule if whenever π‘’π‘£π‘š ∈ β„± , for 𝑒, 𝑣 ∈ 𝑅, β„Ž ∈ β„‹, implies that either π‘’β„Ž ∈ β„± + π‘†π‘œπ‘(β„‹) or π‘£β„Ž ∈ β„± + π‘†π‘œπ‘(β„‹) or 𝑒𝑣 ∈ [β„± + π‘†π‘œπ‘(β„‹)𝑅 : β„‹]. Definition 2.6 [2]. Let β„‹ be an 𝑅-module and β„± βŠ‚ β„‹ is called semi-2-absorbing if whenever 𝑒2𝑦 ∈ β„± , for𝑒 ∈ 𝑅, 𝑦 ∈ β„‹ implies that 𝑒𝑦 ∈ β„± or 𝑒2 ∈ [β„± :𝑅 β„‹ ]. Definition 2.7 [6]. Let β„‹ be an 𝑅-module and β„± βŠ‚ β„‹ is called Nearly semi-2 absorbing submodule if whenever a2y ∈ N, for a ∈ R, y ∈ M implies that ay ∈ β„± + J(β„‹) or a2 ∈ [β„± + J(β„‹) β„‹R : ]. Definition 2.8 [5]. A proper submodule β„± of an R-module β„‹ is called Pseudo semi-2 absorbing submodule if whenever a2y ∈ N, for a ∈ R, y ∈ M implies that ay ∈ β„± + soc(β„‹) or a2 ∈ [β„± + soc(β„‹) β„‹R : ]. Lemma 2.9 [ 7, Lemma. ( 2.3.15)]. Let β„’ , β„š and ℬ be submodule of an 𝑅_module β„‹ with β„š  ℬ . Then ( β„’ + β„š) ∩ ℬ = ( β„’ ∩ ℬ ) + β„š = ( β„’ ∩ ℬ ) + ( β„š ∩ ℬ ). Lemma 2.10 [ 7, Example .(12) (c)]. It well – known that an 𝑅 _ module β„‹ is a semi simple if and only if for each submodule β„± of β„‹ , π‘ π‘œπ‘ ( β„‹ β„± ) = π‘ π‘œπ‘(β„‹)+β„± β„± . Lemma 2.11 [ 7, Example(12), P. 239]. Let β„± be a submodule of a semi simple 𝑅 _ module β„‹ then 𝐽 ( β„‹ β„± ) = 𝐽(β„‹)+β„± β„± . IHJPAS. 36(2)2023 356 Definition 2.12 [8]. An element π‘Ž ∈ 𝑅 is an idempotent element if π‘Ž2 = π‘Ž. π‘Ž = π‘Ž. And if every element π‘Ž of a ring 𝑅 is an idempotent, then 𝑅 is a Boolean ring. Lemma 2.13 [ 9, Theorem(2.2)] If 𝑅 is a Boolean ring, then 𝑅 is a regular ring. Definition 2.14 [10]. An 𝑅-module H is called regular module if every submodule of H is a pure. Lemma 2.15 [10]. If β„‹ is a regular R-module, then 𝐽( β„‹) = 0. Definition 2.16 [2] An R_module β„‹ is said to be a semi simple , if every submodule of β„‹ is a direct summand of β„‹, that is if β„± is a submodule of β„‹ , then β„‹ = ℱ⨁𝐾 for some submodule 𝐾 of β„‹. Lemma 2.17 [ 7, proposition . (9.14) (c)] If β„‹ is a semi-simple R-module, then J( β„‹) = 0. Lemma 2.18[ 5, remark (1.2)]. It is clear that every 2-Absorbing submodule of an 𝑅-module β„‹ is Pseudo 2-Absorbing submodule. Lemma 2.19 [ 4, proposition (2.8)]. Let 𝐴 be a Nearly 2-Absorbing submodule of an 𝑅-module β„‹ with 𝐽(β„‹) βŠ† 𝐴. Then 𝐴 is 2- Absorbing submodule. Lemma 2.20 [ 6, proposition (2.11)]. Let β„‹ be an 𝑅-module and 𝐴 is a proper submodule of β„‹ with π‘ π‘œπ‘(β„‹) βŠ† 𝐴. Then 𝐴 is Semi 2- Absorbing of β„‹ if and only if 𝐴 Nearly Semi 2-Absorbing of β„‹. 3. The Results In this section we introduce the definition of Strongly Pseudo Nearly Semi-2-Absorbing submodule. Example, characterizations, some basic properties of this concept are given: Definition 3.1 A proper submodule β„± of an 𝑅-module β„‹ is said to be Strongly Pseudo Nearly Semi-2- Absorbing submodule of β„‹ (for short STPNS) if whenever 𝑒2Ο° ∈ β„±, for 𝑒 ∈ 𝑅, 𝜘 ∈ β„‹ implies that either π‘’πœ˜ ∈ β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2 ∈ [β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹):𝑅 β„‹]. Remarks and Examples 3.2 1. Let β„‹ = 𝑍36 , 𝑅 = 𝑍 and the submodule β„± = 〈4Μ…βŒͺ is STPNS-2-Absorbing submodule of β„‹ since π‘ π‘œπ‘(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ ∩ 〈6Μ…βŒͺ ∩ 𝑍36 = 〈6Μ…βŒͺ and 𝐽(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒 ∈ 𝑍 and Ο° ∈ 𝑍36 such that 𝑒 2Ο° ∈ 〈4Μ…βŒͺ, implies that either 𝑒ϰ ∈ β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36)) = 〈2Μ…βŒͺ + (〈6Μ…βŒͺ ∩ 〈6Μ…βŒͺ) = 〈2Μ…βŒͺ 𝑒2 ∈ [β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36))𝑅 : 𝑍36] = 2𝑍. That is 2 2. 4Μ… ∈ 〈2Μ…βŒͺ, implies that 2. 4Μ… = 8Μ… ∈ 〈2Μ…βŒͺ or 22 = 4 ∈ [β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36))𝑅 : 𝑍36] = 2𝑍. 2. Every 2-Absorbing submodule is STPNS-2-Absorbing, but the converse is not true. Proof Assume that β„± is 2-Absorbing submodule of β„‹ and 𝑒2π‘š ∈ β„±, for 𝑒 ∈ 𝑅, π‘š ∈ β„‹, that is 𝑒 . 𝑒. π‘š ∈ β„±. Since β„± is 2-Absorbing submodule, then either π‘’π‘š ∈ β„± βŠ† β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) or 𝑒. 𝑒ℋ = IHJPAS. 36(2)2023 357 𝑒2β„‹ βŠ† β„± βŠ† β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹))implies that 𝑒2 ∈ [β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹))𝑅 : β„‹]. Hence β„± is STPNS-2-Absorbing submodule of β„‹. For the converse consider the following example: Let β„‹ = 𝑍36 , 𝑅 = 𝑍 and the submodule β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is STPNS_2_Absorbing submodule of β„‹ since π‘ π‘œπ‘(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ ∩ 〈6Μ…βŒͺ ∩ 𝑍36 = 〈6Μ…βŒͺ and 𝐽(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒 ∈ 𝑍 and Ο° ∈ 𝑍36 such that 𝑒 2Ο° ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that either 𝑒ϰ ∈ β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36)) = 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ ∩ 〈6Μ…βŒͺ) = 〈6Μ…βŒͺ 𝑒2 ∈ [β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36))𝑅 : 𝑍36] = 6𝑍. That is 2 2. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that 2. 3Μ… = 6Μ… ∈ β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36)) = 6Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ ∩ 〈6Μ…βŒͺ) = 〈6Μ…βŒͺ. But β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is not 2_Absorbing submodule of β„‹, since 2.3. 2Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, but 2. 2Μ… βˆ‰ 〈12Μ…Μ…Μ…Μ… βŒͺ and 3. 2Μ… βˆ‰ 〈12Μ…Μ…Μ…Μ… βŒͺ and 2.3 βˆ‰ [〈12Μ…Μ…Μ…Μ… βŒͺ 𝑍36𝑅 : ] = 12𝑍. 3. Every STPNS-2-Absorbing submodule is Nearly-2-Absorbing, but the converse is not true. Proof Suppose that β„± is STPNS-2-Absorbing submodule of β„‹and 𝑒2π‘š ∈ β„±, for 𝑒 ∈ 𝑅, π‘š ∈ β„‹. Since β„± is STPNS-2-Absorbing submodule, then π‘’π‘š ∈ β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) βŠ† β„± + 𝐽(β„‹). Hence β„± is Nearly-2-Absorbing submodule of β„‹. For the converse consider the following example: Let β„‹ = 𝑍48 , 𝑅 = 𝑍 and the submodule β„± = 〈24Μ…Μ…Μ…Μ… βŒͺ is Nearly-2-Absorbing submodule of 𝑀 since π‘ π‘œπ‘(𝑍48) = 〈2Μ…βŒͺ ∩ 〈4Μ…βŒͺ ∩ 〈8Μ…βŒͺ = 〈8Μ…βŒͺ and 𝐽(𝑍48) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒, 𝑣 ∈ 𝑍 and π‘š ∈ 𝑍48 such that π‘’π‘£π‘š ∈ 〈24Μ…Μ…Μ…Μ… βŒͺ, implies that either π‘’π‘š ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ or π‘£π‘š ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ. That is 2.4. 3Μ… ∈ 〈24βŒͺ, implies that 2. 3Μ… = 6Μ… ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ and 4. 3Μ… = 12Μ…Μ…Μ…Μ… ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ. But β„± = 〈24Μ…Μ…Μ…Μ… βŒͺ is not STPNS-2-Absorbing submodule of β„‹, since 22. 6Μ… ∈ 〈24Μ…Μ…Μ…Μ… βŒͺ, but 2. 6Μ… βˆ‰ 〈24βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ and 2 2 βˆ‰ [〈24Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 24𝑍. 4. Every STPNS-2-Absorbing submodule is Pseudo-2-Absorbing, but the converse is not true. Proof Suppose that β„± is STPNS-2-Absorbing submodule of β„‹and 𝑒2π‘š ∈ β„±, for 𝑒 ∈ 𝑅, π‘š ∈ β„‹. Since β„± is STPNS-2-Absorbing submodule, then π‘’π‘š ∈ β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) βŠ† β„± + π‘ π‘œπ‘(β„‹). Hence β„± is pseudo-2-Absorbing submodule of β„‹. For the converse consider the following example: Let β„‹ = 𝑍48 , 𝑅 = 𝑍 and the submodule β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is pseudo-2-Absorbing submodule of 𝑀 since π‘ π‘œπ‘(𝑍48) = 〈2Μ…βŒͺ ∩ 〈4Μ…βŒͺ ∩ 〈8Μ…βŒͺ = 〈8Μ…βŒͺ and 𝐽(𝑍48) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒, 𝑣 ∈ 𝑍 and π‘š ∈ 𝑍48 such that π‘’π‘£π‘š ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that either π‘’π‘š ∈ β„± + (π‘ π‘œπ‘(𝑍48)) = 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈8Μ…βŒͺ) = 〈4Μ…βŒͺ or π‘£π‘š ∈ β„± + (π‘ π‘œπ‘(𝑍48)) = 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈8Μ…βŒͺ) = 〈4Μ…βŒͺor 𝑒𝑣 ∈ [β„± + (π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 4𝑍. That is 2.2. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that 2.2 ∈ [β„± + (π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 4𝑍 . But β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is not STPNS-2- Absorbing submodule of β„‹, since 22. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, but 2. 3Μ… βˆ‰ 〈12Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48)) = 〈12Μ…Μ…Μ…Μ… βŒͺ and 22 βˆ‰ [〈12Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 12𝑍. 5. Every semi-2-Absorbing submodule is STPNS-2-Absorbing, but the converse is not true. Proof Let β„± be a semi-2-Absorbing submodule of β„‹, and 𝑒2Ο° ∈ β„± for 𝑒 ∈ 𝑅, Ο° ∈ β„‹. Since β„± is a semi- 2-Absorbing, then either 𝑒ϰ ∈ β„± βŠ† β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† β„± βŠ† β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹). IHJPAS. 36(2)2023 358 That is either 𝑒ϰ ∈ β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2 ∈ [β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) :𝑅 β„‹]. Hence β„± is STPNS-2-absorbing submodule of β„‹. For the converse consider the following example: Let β„‹ = 𝑍36 , 𝑅 = 𝑍 and the submodule β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is STPNS_2_Absorbing submodule of β„‹ since π‘ π‘œπ‘(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ ∩ 〈6Μ…βŒͺ ∩ 𝑍36 = 〈6Μ…βŒͺ and 𝐽(𝑍36) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒 ∈ 𝑍 and Ο° ∈ 𝑍36 such that 𝑒 2Ο° ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that either 𝑒ϰ ∈ β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36)) = 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ ∩ 〈6Μ…βŒͺ) = 〈6Μ…βŒͺ or 𝑒2 ∈ [β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36))𝑅 : 𝑍36] = 6𝑍. That is 2 2. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, implies that 2. 3Μ… = 6Μ… ∈ β„± + (𝐽(𝑍36) ∩ π‘ π‘œπ‘(𝑍36)) = 6Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ ∩ 〈6Μ…βŒͺ) = 〈6Μ…βŒͺ. But β„± = 〈12Μ…Μ…Μ…Μ… βŒͺ is not semi-2_Absorbing submodule of β„‹, since 22. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, but 2. 3Μ… βˆ‰ 〈12Μ…Μ…Μ…Μ… βŒͺ and 22 βˆ‰ [〈12Μ…Μ…Μ…Μ… βŒͺ 𝑍36𝑅 : ] = 12𝑍. 6. Every STPNS-2-Absorbing submodule is Nearly semi-2-Absorbing but, the converse is not true. Proof Clear. For the converse consider the following example: Let β„‹ = 𝑍48 , 𝑅 = 𝑍 and the submodule β„± = 〈24Μ…Μ…Μ…Μ… βŒͺ is Nearly semi-2-Absorbing submodule of 𝑀 since π‘ π‘œπ‘(𝑍48) = 〈2Μ…βŒͺ ∩ 〈4Μ…βŒͺ ∩ 〈8Μ…βŒͺ = 〈8Μ…βŒͺ and 𝐽(𝑍48) = 〈2Μ…βŒͺ ∩ 〈3Μ…βŒͺ = 〈6Μ…βŒͺ that is for all 𝑒 ∈ 𝑍 and π‘š ∈ 𝑍48 such that 𝑒 2π‘š ∈ 〈24Μ…Μ…Μ…Μ… βŒͺ, implies that either π‘’π‘š ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ or 𝑒2 ∈ [〈24Μ…Μ…Μ…Μ… βŒͺ + 𝐽(𝑍48)𝑅 : 𝑍48] = 4𝑍. That is 2 2. 6Μ… ∈ 〈24Μ…Μ…Μ…Μ… βŒͺ, implies that 2. 6Μ… = 12Μ…Μ…Μ…Μ… ∈ β„± + (𝐽(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ + (〈6Μ…βŒͺ) = 〈6Μ…βŒͺ and 22 ∈ [〈24Μ…Μ…Μ…Μ… βŒͺ + 𝐽(𝑍48)𝑅 : 𝑍48] = 4𝑍. But β„± = 〈24Μ…Μ…Μ…Μ… βŒͺ is not STPNS-2- Absorbing submodule of β„‹, since 22. 6Μ… ∈ 〈24Μ…Μ…Μ…Μ… βŒͺ, but 2. 6Μ… βˆ‰ 〈24βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48)) = 〈24Μ…Μ…Μ…Μ… βŒͺ and 22 βˆ‰ [〈24Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 24𝑍. Proposition 3.3 Let β„± be a proper submodule of an 𝑅-module β„‹. Then β„± is a STPNS-2-Absorbing submodule of β„‹ if and only if Ξ™2β„’ βŠ† β„± for Ξ™ is an ideal of 𝑅 and β„’ is a submodule of β„‹ implies that either Ξ™β„’ βŠ† β„± + (J(β„‹) ∩ soc(β„‹)) or Ξ™2 βŠ† [β„± + (J(β„‹) ∩ soc(β„‹)):𝑅 β„‹]. Proof (⟹) Suppose that β„± is STPNS-2-Absorbing submodule of an 𝑅-module β„‹, and Ξ™2β„’ βŠ† β„±, for π›ͺ is an ideal of 𝑅 and β„’ is a submodule of β„‹ and 𝐼2 ⊈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹].To prove that Ξ™β„’ βŠ† β„± + J(β„‹) ∩ soc(β„‹). Let Ο° ∈ π›ͺβ„’, implies that Ο° = 𝑒1Ο°1 + 𝑒2Ο°2 + β‹― + 𝑒𝑛 ϰ𝑛 for 𝑒𝑖 ∈ π›ͺ, ϰ𝑖 ∈ 𝐿 for all 𝑖 = 1,2,3, … , 𝑛, thus 𝑒𝑖 2ϰ𝑖 ∈ Ξ™ 2β„’ βŠ† β„±, for 𝑒𝑖 2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹], but β„± is STPN-2-Absorbing of β„‹ and 𝑒𝑖 2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹], implies that 𝑒𝑖 ϰ𝑖 ∈ β„± + J(β„‹) ∩ soc(β„‹) for 𝑖 = 1,2,3, … , 𝑛. Hence Ο° ∈ β„± + J(β„‹) ∩ soc(β„‹) it follows that π›ͺβ„’ βŠ† β„± + J(β„‹) ∩ soc(β„‹). (⟸) Suppose that 𝑒2Ο° ∈ β„±for 𝑒 ∈ 𝑅, Ο° ∈ β„‹, implies that (𝑒2)(Ο°) βŠ† β„±, by hypothesis we have either (𝑒)(Ο°) βŠ† β„± + J(β„‹) ∩ soc(β„‹) or (𝑒2) βŠ† [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. That is 𝑒ϰ ∈ β„± + J(β„‹) ∩ soc(β„‹) or 𝑒2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Hence β„± is STPNS-2-Absorbing submodule of β„‹. As a direct consequence of Proposition 3.3 we have the following corollaries. Corollary 3.4 Let β„± be a proper submodule of an 𝑅-module β„‹. Then β„± is STPNS-2-Absorbing submodule of β„‹ if and only if u2β„’ βŠ† β„± for 𝑒 ∈ 𝑅 and β„’ is a submodule of β„‹ implies that either 𝑒ℒ βŠ† β„± + J(β„‹) ∩ soc(β„‹) or u2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. IHJPAS. 36(2)2023 359 Corollary 3.5 Let β„± be a proper submodule of an 𝑅-module β„‹. Then β„± is STPNS-2-Absorbing submodule of β„‹if and only if Ξ™2β„‹ βŠ† β„± for I is an ideal of 𝑅, implies that either Iβ„‹ βŠ† β„± + J(β„‹) ∩ soc(β„‹) or 𝐼2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Proposition 3.6 Let β„‹ be an 𝑅-module and β„± be a proper submodule of β„‹. Then β„± + J(β„‹) ∩ soc(β„‹) is STPNS-2-Absorbing submodule of β„‹ if and only if [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] βŠ† [β„± + J(β„‹) ∩ soc(β„‹):𝑅 π‘ŸΟ°] for each Ο° ∈ β„‹ or 𝑒 2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Proof (⟹) let πœ” ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] and 𝑒2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹], since πœ” ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°], then 𝑒2πœ”Ο° ∈ β„± + J(β„‹) ∩ soc(β„‹). But β„± + J(β„‹) ∩ soc(β„‹) is STPNS-2-Absorbing submodule of β„‹ and 𝑒2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹], then π‘’πœ”Ο° ∈ (β„± + J(β„‹) ∩ soc(β„‹)) + J(β„‹) ∩ soc(β„‹) = β„± + J(β„‹) ∩ soc(β„‹).That is πœ” ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ] .Thus [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] βŠ† [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ]. It is clear that [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ] βŠ† [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°]. Hence[β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] = [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ]. (⟸) Let 𝑒2Ο° ∈ β„± + J(β„‹) ∩ soc(β„‹), for 𝑒 ∈ 𝑅, Ο° ∈ β„‹, then by hypothesis [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] = [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ] or 𝑒 2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. If [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] = [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ] and 𝑒 2Ο° ∈ β„± + J(β„‹) ∩ soc(β„‹) then [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒 2Ο°] = 𝑅, it follows that [β„± + J(β„‹) ∩ soc(β„‹):𝑅 𝑒ϰ] = 𝑅, hence 𝑒ϰ ∈ β„± + J(β„‹) ∩ soc(β„‹) βŠ† β„± + J(β„‹) ∩ soc(β„‹) + J(β„‹) ∩ soc(β„‹), so 𝑒ϰ ∈ β„± + J(β„‹) ∩ soc(β„‹) + J(β„‹) ∩ soc(β„‹) or 𝑒2β„‹ βŠ† β„± + J(β„‹) ∩ soc(β„‹) + J(β„‹) ∩ soc(β„‹). That is β„± + J(β„‹) ∩ soc(β„‹) is STPN-2-Absorbing submodule of β„‹. Proposition 3.7 Let β„‹ be an 𝑅-module and β„± be a proper submodule of β„‹ with J(β„‹) ∩ soc(β„‹) βŠ† β„±. Then β„± is STPNS-2-Absorbing submodule of β„‹ if and only if [β„±:β„‹ 𝑒 2] βŠ† [β„±:β„‹ 𝑒] or 𝑒 2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Proof (⟹) Suppose that β„± is STPNS-2-Absorbing submodule of β„‹, let Ο° ∈ [β„±:𝑅 𝑒 2] and 𝑒2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Since Ο° ∈ [β„±:𝑅 𝑒 2], implies that 𝑒2Ο° ∈ β„±, but β„± is STPNS-2- Absorbing submodule of β„‹ and 𝑒2 βˆ‰ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹], implies that 𝑒ϰ ∈ β„± + J(β„‹) ∩ soc(β„‹). Since J(β„‹) ∩ soc(β„‹) βŠ† β„±, then β„± + J(β„‹) ∩ soc(β„‹) = β„±, implies that 𝑒ϰ ∈ β„±, hence Ο° ∈ [β„±:β„‹ 𝑒], thus [β„±:β„‹ 𝑒 2] βŠ† [β„±:β„‹ 𝑒]. Clear [β„±:β„‹ 𝑒] βŠ† [β„±:β„‹ 𝑒 2], hence [β„±:β„‹ 𝑒 2] = [β„±:β„‹ 𝑒]. (⟸) Let 𝑒2Ο° ∈ β„±for 𝑒 ∈ 𝑅, Ο° ∈ β„‹, then Ο° ∈ [β„±:β„‹ 𝑒 2] = [β„±:β„‹ 𝑒], by hypothesis, implies that Ο° ∈ [β„±:β„‹ 𝑒], then 𝑒ϰ ∈ β„± or 𝑒 2 ∈ [β„± + J(β„‹) ∩ soc(β„‹):𝑅 β„‹]. Hence β„± is STPNS-2-Absorbing submodule of β„‹. Remark 3.8 The intersection of two STPNS-2-Absorbing submodule of an 𝑅-module β„‹ need not to be STPNS- 2-Absorbing submodule of β„‹. The following example explains that: Consider the Z_module 𝑍48 and the submodules β„’=〈3Μ…βŒͺ and β„š=〈4Μ…βŒͺ are STPNS_2_Absorbing submodules of the Z_module 𝑍48 (because 〈3Μ…βŒͺ and 〈4Μ…βŒͺ are 2-Absorbing of 𝑍48 ), but β„’ ∩ β„š = 〈12Μ…Μ…Μ…Μ… βŒͺ is not STPNS_2_Absorbing, since 22. 3Μ… ∈ 〈12Μ…Μ…Μ…Μ… βŒͺ, but 2. 3Μ… βˆ‰ 〈12Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48)) = 〈12Μ…Μ…Μ…Μ… βŒͺ and 22 βˆ‰ [〈12Μ…Μ…Μ…Μ… βŒͺ + (𝐽(𝑍48) ∩ π‘ π‘œπ‘(𝑍48))𝑅 : 𝑍48] = 12𝑍. IHJPAS. 36(2)2023 360 The inverse of above remark satisfy under certain condition. Proposition 3.9 Let β„’ and β„± be a proper submodules of an 𝑅-module β„‹, with 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„’ or 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„± . If β„’ and β„± are STPNS-2-Absorbing submodules of β„‹, then β„’ ∩ β„± is STPNS-2- Absorbing submodule of β„‹. Proof Assume that 𝑒2Ο° ∈ β„’ ∩ β„± for 𝑒 ∈ 𝑅, Ο° ∈ β„‹, implies that 𝑒2Ο° ∈ β„’ and 𝑒2Ο° ∈ β„± . Since both β„’ and β„± are STPNS-2-Absorbing submodule of β„‹, then either 𝑒ϰ ∈ β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) and Ο° ∈ β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)Thus either 𝑒ϰ ∈ (β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) ∩ (β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) or 𝑒2β„‹ βŠ† (β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) ∩ (β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)). If 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„± , then β„± + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) = β„±, hence either 𝑒ϰ ∈ (β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) ∩ β„± or 𝑒2β„‹ βŠ† (β„’ + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) ∩ β„±. Thus by lemma 2.9we have either 𝑒ϰ ∈ (β„’ ∩ β„±) + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† (β„’ ∩ β„±) + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹). Therefore β„’ ∩ β„± is STPNS-2-Absorbing submodule of β„‹. In similar way β„’ ∩ β„± is STPNS-2-Absorbing submodule of β„‹ if 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„’. Proposition 3.10 Let β„± be STPNS_2_Absorbing submodule of an R_ module β„‹ and β„’ is a submodule of β„‹ with β„’ βŠ† β„±, then β„± β„’ is STPNS_2_Absorbing submodule of an R_ module β„‹ β„’ . Proof Let β„± be STPNS_2_Absorbing submodule of β„‹, and 𝑒2(𝑒 + β„’) = 𝑒2𝑒 + β„’ ∈ β„± β„’ for π‘’οƒŽ 𝑅 and 𝑒 + β„’ ∈ β„‹ β„’ , 𝑒 οƒŽ β„‹ , implies that 𝑒2𝑒 ∈ β„±. Since β„± is STPNS_2_Absorbing submodule of β„‹ , then either 𝑒𝑒 ∈ β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) or 𝑒2 ∈ [β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹))𝑅 : β„‹]. That is either 𝑒𝑒 ∈ β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) or 𝑒2β„‹ βŠ† β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)). It follows that either 𝑒(𝑒 + β„’) ∈ β„±+(𝐽(β„‹)βˆ©π‘ π‘œπ‘(β„‹)) β„’ or 𝑒2( β„‹ β„’ ) βŠ† β„±+(𝐽(β„‹)βˆ©π‘ π‘œπ‘(β„‹)) β„’ . That is either 𝑒(𝑒 + β„’) ∈ β„± β„’ + β„±+(𝐽(β„‹)βˆ©π‘ π‘œπ‘(β„‹)) β„’ βŠ† β„± β„’ + (𝐽 ( β„‹ β„’ ) ∩ π‘ π‘œπ‘ ( β„‹ β„’ ) or 𝑒2 ( β„‹ β„’ ) βŠ† β„±+(𝐽(β„‹)βˆ©π‘ π‘œπ‘(β„‹)) β„’ βŠ† β„± β„’ + (𝐽 ( β„‹ β„’ ) ∩ π‘ π‘œπ‘ ( β„‹ β„’ ). That is either 𝑒(𝑒 + β„’) βŠ† β„± β„’ + (𝐽 ( β„‹ β„’ ) ∩ π‘ π‘œπ‘ ( β„‹ β„’ ) or 𝑒2 ∈ [ β„± β„’ + (𝐽 ( β„‹ β„’ ) ∩ π‘ π‘œπ‘ ( β„‹ β„’ ))𝑅: β„‹ β„’ ]. Hence β„± β„’ is STPNS_ 2_ Absorbing submodule of an R_ module β„‹ β„’ . Proposition 3.11 Let β„‹ be an 𝑅_module , and β„± is a proper submodule of β„‹ with 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„± . Then β„± is STPNS_ 2_ Absorbing submodule of β„‹ if and only if [β„±β„‹ : I] is STPNS_ 2_ Absorbing submodule of β„‹ for each ideal I of R . Proof ( οƒž ) Let 𝑒2β„’ βŠ† [β„±β„‹ : I] for u οƒŽ R , β„’ is a submodule of β„‹ , then 𝑒 2(Iβ„’) βŠ† β„±. Since β„± is STPNS_ 2_ Absorbing submodule of β„‹ then by proposition (3.3) either 𝑒(Iβ„’) βŠ† β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) or 𝑒2 ∈ [β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹))𝑅: β„‹]. But 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) βŠ† β„±, implies that β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) = β„± .Thus either 𝑒(Iβ„’) βŠ† β„± or 𝑒2 ∈ [ℱ𝑅 : β„‹].That is either 𝑒ℒ βŠ† [β„±β„‹ : I] or 𝑒 2β„‹ βŠ† β„± βŠ† [β„±β„‹ : I] . It follows that either 𝑒ℒ βŠ† [β„±β„‹ : I] βŠ† [β„±β„‹ : I] + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† [β„±β„‹ : I] βŠ† [β„±β„‹ : I] + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹). That is either 𝑒ℒ βŠ† [β„±β„‹ : I] + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹) or 𝑒2 ∈ [[β„±β„‹ : I] + 𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)𝑅 : β„‹]. Hence [β„±β„‹ : I] is STPNS_ 2_ Absorbing submodule of β„‹ . ( οƒœ ) Suppose that [β„±β„‹ : I] is STPNS_ 2_ Absorbing submodule of β„‹ for every non_zero ideal I of R . Put I = R we get [β„±β„‹ : R] = β„± is STPNS_ 2_ Absorbing submodule of β„‹. IHJPAS. 36(2)2023 361 4. The Relations of STPNS-2-Absorbing Submodules with 2-Absorbing Submodules And Other Form of Submodules In this section we introduce the relations Of STPNS-2-Absorbing submodules with 2-Absorbing submodules and other form of submodules. The converse of Remarks and Examples 3.2 (2) is true under certain conditions where given the following propositions. Proposition 4.1 Let β„‹ be an Ɍ_module over a Boolean ring 𝑅 with either 𝐽( β„‹) = 0 or π‘ π‘œπ‘( β„‹) = 0, and 𝐴 is a proper submodule of β„‹. Then 𝛒 is STPNS_2_Absorbing of β„‹ if and only if 𝛒 is 2_Absorbing submodule of β„‹. Proof (β‡’) Let ɑ𝑏𝑦 ∈ 𝐴 for Ι‘, 𝑏 ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝑅 is Boolean ring, then (ɑ𝑏)2𝑦 ∈ 𝐴 with (ɑ𝑏)2 = (π‘Žπ‘) βˆ‰ [𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹] and 𝑏𝑦 βˆ‰ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) or ɑ𝑦 ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)). Since 𝐽( β„‹) = 0, then 𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹) = 0 so 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) = 𝐴 if π‘ π‘œπ‘( β„‹) = 0, then ( β„‹) ∩ π‘ π‘œπ‘( β„‹) = 0 so 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) = 𝐴. In both case we get (ɑ𝑏)2 = (π‘Žπ‘) βˆ‰ [𝐴:Ɍ β„‹] and 𝑏𝑦 βˆ‰ 𝐴, to prove that ɑ𝑦 ∈ 𝐴. Since 𝛒 is a STPNS_ 2_Absorbing submodule of β„‹ and (ɑ𝑏)2 βˆ‰ [𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹], implies that (ɑ𝑏)𝑦 ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) that is Ι‘(𝑏𝑦) ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)). So 𝑅 is Boolean ring then Ι‘(𝑏𝑦) = Ι‘2(𝑏𝑦) ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)). Now by Lemma 2.13, we have π‘Ž = Ι‘2𝑏. Thus Ι‘2(𝑏𝑦) = π‘Žπ‘¦ ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)), so 𝐴 + 𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹) = 𝐴 it follows that π‘Žπ‘¦ ∈ 𝐴. Hence 𝛒 is 2_Absorbing submodule of β„‹. (⇐) Direct. Proposition 4.2 Let β„‹ be an Ɍ_module over a Boolean ring 𝑅, 𝐴 is a proper submodule of β„‹. Then 𝛒 is STPNS_2_Absorbing of β„‹ if and only if 𝛒 is 2_Absorbing submodule of β„‹. Proof (β‡’) Since 𝑅 is a Boolean ring, then by Lemma 2.13 and 2.15 𝐽( β„‹) = 0, so (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) = (0) ∩ π‘ π‘œπ‘( β„‹) = (0). Thus the proof follows as in proposition 4.1. (⇐) Direct. The converse of Remarks and Examples 3.2 (3) is true under certain conditions where given the following propositions. Proposition 4.3 Let β„‹ be an Ɍ_module, and 𝛒 βŠ‚ β„‹ with π‘ π‘œπ‘( β„‹) = β„‹. Then 𝛒 is Nearly_2_Absorbing if and only if 𝛒 STPNS_2_Absorbing submodule of β„‹. Proof (β‡’) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹, that is Ι‘. π‘Ž. 𝑦 ∈ 𝐴 with π‘Ž. π‘Ž βˆ‰ [𝐴 + 𝐽( β„‹):Ɍ β„‹]. Since 𝐴 is Nearly-2-Absorbing and π‘Ž. π‘Ž βˆ‰ [𝐴 + 𝐽( β„‹):Ɍ β„‹], then ɑ𝑦 ∈ 𝐴 + 𝐽( β„‹) . But 𝐽( β„‹) βŠ† β„‹, so 𝐽( β„‹) ∩ β„‹ = 𝐽( β„‹), that is π‘Žπ‘¦ ∈ 𝛒 + 𝐽( β„‹) ∩ β„‹. Since π‘ π‘œπ‘( β„‹) = β„‹ it follows that π‘Žπ‘¦ ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)). Thus 𝛒 is STPNS_2_Absorbing submodule of β„‹. (⇐) Direct. IHJPAS. 36(2)2023 362 The following corollary is a direct result of Proposition 4.3. Corollary 4.4 Let β„‹ be a semi-simple, and 𝛒 βŠ‚ β„‹ . Then 𝛒 is Nearly_2_Absorbing if and only if 𝛒 is STPNS_2_Absorbing submodule of β„‹. Proposition 4.5 Let β„‹ be an Ɍ_module over a Boolean ring 𝑅, and 𝛒 βŠ‚ β„‹ . Then the following are Valente: 1. 𝛒 is 2_Absorbing submodule of β„‹. 2. 𝛒 is STPNS_2_Absorbing submodule of β„‹. 3. 𝛒 is Nearly_2_Absorbing submodule of β„‹. Proof (1) ⇔ (2) See Proposition 4.2. (2) ⇔ (3) See Corollary 4.4. The converse of Remarks and Examples 3.2 (4) is true under certain conditions where given the following propositions. Proposition 4.6 Let β„‹ be an Ɍ_module, and 𝛒 βŠ‚ β„‹ with 𝐽( β„‹) = β„‹. Then 𝛒 is Pseudo_2_Absorbing if and only if 𝛒 is STPNS_2_Absorbing submodule of β„‹. Proof (β‡’) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹, that is Ι‘. π‘Ž. 𝑦 ∈ 𝐴 with π‘Ž. π‘Ž βˆ‰ [𝐴 + 𝐽( β„‹):Ɍ β„‹]. Since 𝐴 is Pseudo-2-Absorbing and π‘Ž. π‘Ž βˆ‰ [𝐴 + π‘ π‘œπ‘( β„‹):Ɍ β„‹], then ɑ𝑦 ∈ 𝐴 + π‘ π‘œπ‘( β„‹). But π‘ π‘œπ‘( β„‹) βŠ† β„‹, so β„‹ ∩ π‘ π‘œπ‘( β„‹) = π‘ π‘œπ‘(β„‹), that is either π‘Žπ‘¦ ∈ 𝛒 + β„‹ ∩ π‘ π‘œπ‘( β„‹). But 𝐽( β„‹) = β„‹, it follows that π‘Žπ‘¦ ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)). Thus 𝛒 is STPNS_2_Absorbing submodule of β„‹. (⇐) Direct. Proposition 4.7 Let β„‹ be an Ɍ_module, and 𝛒 βŠ‚ β„‹ with π‘ π‘œπ‘( β„‹) βŠ† 𝛒 and 𝐽( β„‹) βŠ† 𝛒 . Then the following are Valente: 1 𝛒 is 2_Absorbing submodule of β„‹. 2. 𝛒 is Pseudo_2_Absorbing submodule of β„‹. 3. 𝛒 is STPNS_2_Absorbing submodule of β„‹. 4. 𝛒 is Nearly_2_Absorbing submodule of β„‹. Proof (1) β‡’ (2) Direct by Lemma 2.19. (2) β‡’ (3) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹, that is Ι‘. π‘Ž. 𝑦 ∈ 𝐴 with π‘Ž. π‘Ž βˆ‰ [𝐴 + π‘ π‘œπ‘( β„‹):Ɍ β„‹]. Since 𝐴 is Pseudo-2-Absorbing and π‘Ž. π‘Ž βˆ‰ [𝐴 + π‘ π‘œπ‘( β„‹):Ɍ β„‹], then ɑ𝑦 ∈ 𝐴 + π‘ π‘œπ‘( β„‹). But π‘ π‘œπ‘( β„‹) βŠ† 𝛒 then 𝛒 + π‘ π‘œπ‘( β„‹) = 𝛒. Thus either π‘Žπ‘¦ ∈ 𝐴 βŠ† 𝛒 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)) . That is 𝛒 is STPNS_2_Absorbing submodule of β„‹. (3) β‡’ (4) Direct by Remarks and Examples 3.2 (3). (4) β‡’ (1) Direct by Lemma 2.19. IHJPAS. 36(2)2023 363 The converse of Remarks and Examples 3.2 (5) is true under certain conditions where given the following propositions. Proposition 4.8 Let β„‹ be a semi-simple Ɍ_module, 𝐴 is a proper submodule of β„‹ . Then 𝛒 is STPNS_2_Absorbing of β„‹ if and only if 𝛒 is Semi 2_Absorbing submodule of β„‹. Proof (β‡’) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝐴 is STPNS_2_ Absorbing submodule of β„‹, then π‘Žπ‘¦ ∈ 𝛒 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)) or Ι‘2 ∈ [𝛒 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹]. Since β„‹ is semi-simple, then by Lemma 2.17 𝐽( β„‹) = 0, so (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) = (0) ∩ π‘ π‘œπ‘( β„‹) = (0). Thus either π‘Žπ‘¦ ∈ 𝐴 or Ι‘2 ∈ [𝛒 ∢Ɍ β„‹] . Hence 𝛒 is a Semi 2_Absorbing submodule of β„‹. (⇐) Direct. The converse of Remarks and Examples 3.2 (6) is true under certain conditions where given the following propositions. Proposition 4.9 Let β„‹ be an Ɍ_module, and 𝛒 βŠ‚ β„‹ with π‘ π‘œπ‘( β„‹) = β„‹. Then 𝛒 is Nearly Semi _2_Absorbing if and only if 𝛒 STPNS_2_Absorbing submodule of β„‹. Proof (β‡’) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝐴 is Nearly Semi _2_ Absorbing submodule of β„‹, then π‘Žπ‘¦ ∈ 𝛒 + 𝐽(β„‹) or Ι‘2 ∈ [𝛒 + 𝐽(β„‹):Ɍ β„‹]. But 𝐽( β„‹) βŠ† β„‹, so 𝐽( β„‹) ∩ β„‹ = 𝐽( β„‹), that is either π‘Žπ‘¦ ∈ 𝐴 + 𝐽( β„‹) ∩ β„‹ or Ι‘2 ∈ [𝐴 + 𝐽( β„‹) ∩ β„‹ ∢Ɍ β„‹]. Since π‘ π‘œπ‘( β„‹) = β„‹ it follows that either π‘Žπ‘¦ ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) or Ι‘2 ∈ [𝛒 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹]. Thus 𝛒 is STPNS_2_Absorbing submodule of β„‹. (⇐) Direct. Proposition 4.10 Let β„‹ be an Ɍ_module over a Boolean ring 𝑅 , and 𝛒 is a proper submodule of β„‹ with 𝐽(β„‹) βŠ† 𝐴 . Then the following are statement: 1 𝛒 is STPNS_2_Absorbing submodule of β„‹. 2. 𝛒 is Nearly Semi _2_Absorbing submodule of β„‹. 3. 𝛒 is Semi 2_Absorbing submodule of β„‹. 4. 𝛒 is 2_Absorbing submodule of β„‹. Proof (1) β‡’ (2) Direct by Remarks and Examples 3.2 (6). (2) β‡’ (3) Direct by Lemma 2.20. (3) β‡’ (4) Let ɑ𝑏𝑦 ∈ 𝐴 for Ι‘, 𝑏 ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝑅 is Boolean ring, then (ɑ𝑏)2𝑦 ∈ 𝐴 with (ɑ𝑏)2 = (π‘Žπ‘) βˆ‰ [𝐴:Ɍ β„‹] and 𝑏𝑦 βˆ‰ 𝐴, to prove that ɑ𝑦 ∈ 𝐴. Since 𝛒 is a Semi_ 2_Absorbing submodule of β„‹ and (ɑ𝑏)2 βˆ‰ [𝐴:Ɍ β„‹], implies that (ɑ𝑏)𝑦 ∈ 𝐴 that is Ι‘(𝑏𝑦) ∈ 𝐴.So 𝑅 is Boolean ring then Ι‘(𝑏𝑦) = Ι‘2(𝑏𝑦) ∈ 𝐴. Now by Lemma 2.13 we have π‘Ž = Ι‘2𝑏. Thus Ι‘2(𝑏𝑦) = π‘Žπ‘¦ ∈ 𝐴. Hence 𝛒 is 2_Absorbing submodule of β„‹. (4) β‡’ (1) Direct by Remarks and Examples 3.2 (2). The following proposition we establish the relation between STPNS_2_Absorbing submodules and Pseudo semi 2_Absorbing submodules. IHJPAS. 36(2)2023 364 Proposition 4.11 Let β„‹ be an 𝑅-module and 𝐴 βŠ‚ β„‹. If 𝐴 is STPNS_2_Absorbing submodule of an 𝑅-module β„‹ then 𝐴 is Pseudo semi 2_Absorbing submodule. Proof Suppose that β„± is STPNS-2-Absorbing submodule of β„‹, and let 𝑒2π‘š ∈ β„±, for 𝑒 ∈ 𝑅, π‘š ∈ β„‹. Since β„± is STPNS-2-Absorbing submodule, then either π‘’π‘š ∈ β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) βŠ† β„± + π‘ π‘œπ‘(β„‹) or 𝑒2β„‹ βŠ† β„± + (𝐽(β„‹) ∩ π‘ π‘œπ‘(β„‹)) βŠ† β„± + π‘ π‘œπ‘(β„‹). Hence β„± is Pseudo semi-2- Absorbing submodule of β„‹. The converse of Proposition 4.11 is true under certain conditions where given the following propositions. Proposition 4.12 Let β„‹ be an Ɍ_module, and 𝛒 βŠ‚ β„‹ with 𝐽( β„‹) = β„‹. Then 𝛒 is Pseudo Semi _2_Absorbing if and only if 𝛒 is STPNS_2_Absorbing submodule of β„‹. Proof (β‡’) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝐴 is Pseudo Semi _2_ Absorbing submodule of β„‹, then π‘Žπ‘¦ ∈ 𝛒 + π‘ π‘œπ‘(β„‹) or Ι‘2 ∈ [𝛒 + π‘ π‘œπ‘(β„‹):Ɍ β„‹]. But π‘ π‘œπ‘( β„‹) βŠ† β„‹ then π‘ π‘œπ‘( β„‹) ∩ β„‹ = π‘ π‘œπ‘( β„‹) that is either π‘Žπ‘¦ ∈ 𝛒 + π‘ π‘œπ‘( β„‹) ∩ β„‹ or Ι‘2 ∈ [𝛒 + π‘ π‘œπ‘( β„‹) ∩ β„‹:Ɍ β„‹]. Since 𝐽( β„‹) = β„‹, it follows that either π‘Žπ‘¦ ∈ 𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)) or Ι‘2 ∈ [𝐴 + (𝐽( β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹]. Thus 𝛒 is STPNS_2_Absorbing submodule of β„‹. (⇐) Direct by Proposition 4.11. Proposition 4.13 Let β„‹ be an Ɍ_module over a Boolean ring 𝑅, and 𝛒 a proper submodule of β„‹ with π‘ π‘œπ‘( β„‹) βŠ† 𝐽( β„‹) and 𝐽( β„‹) βŠ† 𝐴 . Then the following are statement: 1. 𝛒 is 2_Absorbing submodule of β„‹. 2. 𝛒 is Pseudo_2_Absorbing submodule of β„‹. 3. 𝛒 is Pseudo Semi _2_Absorbing submodule of β„‹. 4. 𝛒 is STPNS_2_Absorbing submodule of β„‹. 5. 𝛒 is Nearly_2_Absorbing submodule of β„‹. 6. 𝛒 is Nearly Semi _2_Absorbing submodule of β„‹. 7. 𝛒 is Semi 2_Absorbing submodule of β„‹. Proof (1) β‡’ (2) Direct by Lemma 2.18. (2) β‡’ (3) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹, that is Ι‘. π‘Ž. 𝑦 ∈ 𝐴 with π‘Ž. π‘Ž βˆ‰ [𝐴 + π‘ π‘œπ‘( β„‹):Ɍ β„‹]. Since 𝐴 is Pseudo-2-Absorbing and π‘Ž. π‘Ž βˆ‰ [𝐴 + π‘ π‘œπ‘( β„‹):Ɍ β„‹], then ɑ𝑦 ∈ 𝐴 + π‘ π‘œπ‘( β„‹). But π‘ π‘œπ‘( β„‹) βŠ† 𝐽( β„‹) then (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)) = π‘ π‘œπ‘( β„‹). Thus we have either π‘Žπ‘¦ ∈ 𝛒 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)). That is 𝛒 is STPNS-2-Absorbing submodule of β„‹. (3) β‡’ (4) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝐴 is Pseudo Semi_2_Absorbing submodule of β„‹, then π‘Žπ‘¦ ∈ 𝛒 + π‘ π‘œπ‘(β„‹) or Ι‘2 ∈ [𝛒 + π‘ π‘œπ‘(β„‹):Ɍ β„‹]. But π‘ π‘œπ‘( β„‹) βŠ† 𝐽( β„‹), then π‘ π‘œπ‘( β„‹) ∩ 𝐽( β„‹) = π‘ π‘œπ‘( β„‹), so either π‘Žπ‘¦ ∈ 𝐴 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)) or Ι‘2 ∈ [𝐴 + (𝐽(β„‹) ∩ π‘ π‘œπ‘( β„‹)):Ɍ β„‹] . That is 𝛒 is STPNS_2_Absorbing submodule of β„‹. (4) β‡’ (5) Direct by Remarks and Examples 3.2 (3). (5) β‡’ (6) Let Ι‘2𝑦 ∈ 𝐴 for Ι‘ ∈ Ɍ, 𝑦 ∈ β„‹, that is Ι‘. π‘Ž. 𝑦 ∈ 𝐴. Since 𝐴 is Nearly-2-Absorbing, then either π‘Ž. π‘Ž ∈ [𝐴 + 𝐽( β„‹):Ɍ β„‹] or ɑ𝑦 ∈ 𝐴 + 𝐽( β„‹). Hence 𝛒 is Nearly Semi-2-Absorbing submodule of β„‹. (6) β‡’ (7) Direct by Lemma 2.20 IHJPAS. 36(2)2023 365 (7) β‡’ (1) Let ɑ𝑏𝑦 ∈ 𝐴 for Ι‘, 𝑏 ∈ Ɍ, 𝑦 ∈ β„‹. Since 𝑅 is Boolean ring, then (ɑ𝑏)2𝑦 ∈ 𝐴 with (ɑ𝑏)2 = (π‘Žπ‘) βˆ‰ [𝐴:Ɍ β„‹] and 𝑏𝑦 βˆ‰ 𝐴, to prove that ɑ𝑦 ∈ 𝐴. Since 𝛒 is a Semi-2-Absorbing submodule of β„‹ and (ɑ𝑏)2 βˆ‰ [𝐴:Ɍ β„‹], implies that (ɑ𝑏)𝑦 ∈ 𝐴 that is Ι‘(𝑏𝑦) ∈ 𝐴.So 𝑅 is Boolean ring then Ι‘(𝑏𝑦) = Ι‘2(𝑏𝑦) ∈ 𝐴. Now by Lemma 2.13 we have π‘Ž = Ι‘2𝑏. Thus Ι‘2(𝑏𝑦) = π‘Žπ‘¦ ∈ 𝐴. Hence 𝛒 is 2-Absorbing submodule of β„‹. 5. Conclusion We will present the most important propositions in this research: . Let β„‹ be an Ɍ-module over a Boolean ring 𝑅, and 𝛒 βŠ‚ β„‹. Then the following are statement: 1. 𝛒 is 2-Absorbing submodule of β„‹. 2. 𝛒 is STPNS-2-Absorbing submodule of β„‹. 3. 𝛒 is Nearly-2-Absorbing submodule of β„‹. . Let β„‹ be an Ɍ-module, and 𝛒 βŠ‚ β„‹ with π‘ π‘œπ‘( β„‹) βŠ† 𝛒 and 𝐽( β„‹) βŠ† 𝛒 . Then the following are statement: 1 𝛒 is 2-Absorbing submodule of β„‹. 2. 𝛒 is Pseudo-2-Absorbing submodule of β„‹. 3. 𝛒 is STPNS-2-Absorbing submodule of β„‹. 4. 𝛒 is Nearly-2-Absorbing submodule of β„‹. . Let β„‹ be an Ɍ-module over a Boolean ring 𝑅 , and 𝛒 is a proper submodule of β„‹ with 𝐽(β„‹) βŠ† 𝐴 . Then the following are statement: 1 𝛒 is STPNS-2-Absorbing submodule of β„‹. 2. 𝛒 is Nearly Semi -2-Absorbing submodule of β„‹. 3. 𝛒 is Semi 2_Absorbing submodule of β„‹. 4. 𝛒 is 2-Absorbing submodule of β„‹. . Let β„‹ be an Ɍ-module over a Boolean ring 𝑅, and 𝛒 a proper submodule of β„‹ with π‘ π‘œπ‘( β„‹) βŠ† 𝐽( β„‹) and 𝐽( β„‹) βŠ† 𝐴 . Then the following are Valente: 1. 𝛒 is 2-Absorbing submodule of β„‹. 2. 𝛒 is Pseudo-2-Absorbing submodule of β„‹. 3. 𝛒 is Pseudo Semi -2-Absorbing submodule of β„‹. 4. 𝛒 is STPNS-2-Absorbing submodule of β„‹. 5. 𝛒 is Nearly-2-Absorbing submodule of β„‹. 6. 𝛒 is Nearly Semi -2-Absorbing submodule of β„‹. 7. 𝛒 is Semi 2-Absorbing submodule of β„‹. References 1. Darani, A.Y ; Soheilniai. F. 2-Absorbing and Weakly 2-AbsorbingSubmodules, Tahi Journal. Math, 2011,(9), 577-584. 2.Goodearl, K. R. Ring Theory; Marcel Dekker, Inc. New York and Basel. 1976 , 206. 3.Dauns, J. Prime Modules. Journal Re. Angew, Math, 1978,(2),156-181. 4. Reem, T. Shwkea, M. Nearly 2-Absorbing Submodules and Related Concept, Tikrit Journal for Pure Sci, 2018, (2),(3), 215-221. IHJPAS. 36(2)2023 366 5. Haibat, K. Omar, A. Pseudo 2-Absorbing and Pseudo Semi 2-Absorbing Submodules, AIP Conference Proceedings, 2019, 2096,020006(2019),1-9. 6. Haibat, K. Akram, S. Nearly Semi-2-Absorbing Submodules, Italian Journal of Pure and App. Math, 2019, (41),620-627. 7. Kash, F. Modules and Rings. London Math. Soc. Monographs New York , Academic Press , 1982, (370) . 8. Fraleigh, J. B. A First Course in Abstract Algebra, (New York: Addison- Wesley Publishing Company), 2003. 9. Wardayani, A. ;Kharismawati, I.; Sihwaningrum, I. Regular Rings and Their Properties, IOP Conference Series, 2020, 1494, 012020,1-4. 10. Mahmood, S. Y. Regular Modules, M. Sc. Thesis, university of Baghdad,1993.