IHJPAS. 36(2)2023 367 This work is licensed under a Creative Commons Attribution 4.0 International License. Zena Hussein Maibed mrs_ zena.hussein@yahoo.com Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham University of Baghdad, Baghdad, Iraq. Abstract The goal of this article is to study a new explicit iterative processes method approach to zeroes for solving maximal monotone(M.M ) multivalued operators in Hilbert spaces, utilizing a finite family of different types of mappings as nonexpansive map,contraction map, resolvent operator and nearest point metric projection map. On the other hand, The results in this paper are develop and extend the main and important findings of previous studies. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, also,we examine the strong convergence to nearest projection map for these explicit iterative processes methods under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen, improve and extend key previous findings from the literature. Keywords: Projection Mapping, Iterative Method, Nonexpamsive Mapping, Monotone Operators ,s-convergence, Fixed Point. 1.Introduction Assume𝛨 is a true Hilbert space and M is the biggest monotone mapping. Many scholars have explored the challenge of finding zeroes, including [1] and [2]. The Proximal method Algorithm is a popular approach for solving 0 ∈ Mx. Rockafellar demonstrated w-convergence of the peri- point technique in 1976, but it did not s-converge [3]. The human-like iterative approach is properly arranged in the f- point process to solve numerous nonlinear issues [4]. However, Mann- likealgorithm processes in Hilbert space are only w- smoothed. [5] presented a viscosity,for resolving f- point of a nonlinear maps . The contour of Hilbert space identifies common solution s- convergence theorems. The f- point theory solutions have been demonstrated to be a successful and influential way for addressing a wide range of real-world problems that can be broken down into identical f- point problems.In order to get a rough resolution of f-point difficulties, many algorithm procedures must be devised [6- 18]. The purpose of this paper is to expand and improve the proximal methods of multivalued operators. One of the most important examples of f- point theory is the challenge of solving zero of (V.I) problem as doi.org/10.30526/36.2.3023 Article history: Received 18 September 2022, Accepted 12 December 2022, Published in April 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Convergence To Approximate Solutions of Multivalued Operators https://creativecommons.org/licenses/by/4.0/ about:blank http://en.uobaghdad.edu.iq/?page_id=15060 IHJPAS. 36(2)2023 368 { π‘Ž2𝑛+1 = π‘Žπ‘›π‘ + π›Ώπ‘›π‘Ž2𝑛 + 𝛾𝑛𝑅𝑒𝑠𝛽𝑛 𝑁 (π‘Ž2𝑛) + ℯ𝑛 𝑛 β‰₯ 0 π‘Ž2𝑛 = πœ†π‘›π‘ + πœŒπ‘›π‘Ž2π‘›βˆ’1 + π›Ώπ‘›π‘…π‘’π‘ πœ‡π‘› 𝑀 (π‘Ž2π‘›βˆ’1) + ℯ𝑛 β€² 𝑛 β‰₯ 0 For given u , a0 ∈ 𝛨, where (β„― n) and (ℯ𝑛 β€² ) are sequences of calculation mistakes , N and M are M.M operators and π‘Žπ‘› , 𝛿𝑛 , 𝛾𝑛are seq lies in (0,1) and 𝛽𝑛, πœ‡π‘› ∈ (0, ∞) . Here 𝑅𝑒𝑠𝛽 𝑁 = (𝐼 + 𝛽𝑁 )βˆ’1 , 𝛽 > 0 ( the Resovent operator of N) . Now, we will review some concepts and lemmas known . Let βˆ… β‰ C be a closed,convex in H and ProC denote the nearest mapping from H onto C,A mapping 𝐾is called nonexpansive if ‖𝐾𝑒 βˆ’ 𝐾𝑣 β€– ≀ ‖𝑒 βˆ’ 𝑣‖, βˆ€π‘’, 𝑣 ∈ 𝐻 and 𝛼 βˆ’inverse strongly monotone if there exist Ξ± > 0 such that βŒ©π‘†π‘’ βˆ’ 𝑆𝑣 , 𝑒 βˆ’ 𝑣βŒͺ β‰₯ 𝛼‖𝐾𝑒 βˆ’ 𝐾𝑣 β€– 2, βˆ€π‘’, 𝑣 ∈H . Lemma 1 . [16] Let {π‘Žπ‘›}𝑛=1 ∞ be a sequence in 𝑅+ satisfying the following relation : π‘Žπ‘›+1 ≀ (1 βˆ’ 𝛼𝑛)π‘Žπ‘› + 𝛼𝑛𝛿𝑛 , 𝑛 β‰₯ π‘›π‘œ Where{𝛼𝑛}𝑛=1 ∞ ⊏ (0,1) and{𝛿𝑛}𝑛=1 ∞ βŠ‚ 𝑅 satisfy the following condition : βˆ‘ 𝛼𝑛 ∞ 𝑛=1 = ∞ and lim π‘›β†’βˆž 𝑠𝑒𝑝𝛿𝑛 ≀ 0 or βˆ‘ 𝛼𝑛 ∞ 𝑛=1 𝛿𝑛 = ∞ . Then lim π‘›β†’βˆž 𝛼𝑛 = 0 . lemma 2 [18] Let π‘Ž ∈ 𝐻 be given . The nearest mapping is characterized by: (i) π‘ƒπ‘Ÿπ‘œπΆ π‘Ž ∈ 𝐢, βŒ©π‘Ž βˆ’ π‘ƒπ‘Ÿπ‘œπΆ π‘Ž, π‘ƒπ‘Ÿπ‘œπΆ π‘Ž βˆ’ 𝑐βŒͺ β‰₯ 0 , for all 𝑐 ∈ 𝐢 . (ii) π‘ƒπ‘Ÿπ‘œπΆ is firmly nonexpansive. Lemma 3 [19] Let{π‘Žπ‘›}𝑛=1 ∞ and {𝑏𝑛}𝑛=1 ∞ be bounded sequence in H and let{𝛽𝑛}𝑛=1 ∞ be a sequence in (0,1) with 0 ≀ lim π‘›β†’βˆž 𝑖𝑛𝑓𝛽𝑛 ≀ lim π‘›β†’βˆž 𝑠𝑒𝑝𝛽𝑛 ≀ 1. Suppose π‘Žπ‘›+1 = (1 βˆ’ 𝛽𝑛)𝑏𝑛 + π›½π‘›π‘Žπ‘› for all integers 𝑛 β‰₯ 0 and lim π‘›β†’βˆž sup (‖𝑏𝑛+1 βˆ’ 𝑏𝑛‖ βˆ’ β€–π‘Žπ‘›+1 βˆ’ π‘Žπ‘›β€–) ≀ 0 .Then lim π‘›β†’βˆž ‖𝑏𝑛 βˆ’ π‘Žπ‘›β€– = 0 . 2 .Main Results In this part, we introduced a new methods and we study the s- convergence, Theorem : 2.1 Let ℳ𝑖 : 𝛨 ⟢ 2 𝐻 be a M.M. operators such that 𝐹(π‘ƒπ‘Ÿπ‘œπ‘ ) β‹‚ ℳ𝑖 βˆ’10 β‰  βˆ…π‘™π‘–=1 .If the sequences {πœ‰π‘› 𝑖 } 𝑛=2 ∞ , {π˜™π‘›π‘– }𝑛=1 ∞ , {π˜šπ‘›}𝑛=1 ∞ π‘Žπ‘›π‘‘{π˜˜π‘›}𝑛=1 ∞ are seqs in (0,1)satisfy the following conditions : (i) βˆ‘ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | < ∞ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖 = 1,2, … π‘™βˆžπ‘›=1 . (ii) βˆ‘ |π˜™π‘›+1 𝑖 βˆ’ π˜™π‘› 𝑖 | < ∞ for all 𝑖 = 1,2, … π‘™βˆžπ‘›=1 . (iii) βˆ‘ |π˜˜π‘›+1 βˆ’ π˜˜π‘›| ∞ 𝑛=1 < ∞ . β€–π˜š(𝑛+1)𝑖 𝑓(π‘₯𝑛+1) βˆ’ π˜šπ‘›π‘– 𝑓(π‘₯𝑛)β€– ≀ π˜šπ‘›π‘– ‖𝑓(π‘₯𝑛+1) βˆ’ 𝑓(π‘₯𝑛)β€–and β€–(1 βˆ’ 𝘚(𝑛+1)𝑖 ) 𝑔(π‘₯𝑛+1) βˆ’ (1 βˆ’ π˜šπ‘›π‘– ) 𝑔(π‘₯𝑛)β€– ≀ (1 βˆ’ π˜šπ‘›π‘– ) β€– 𝑔(π‘₯𝑛+1) βˆ’ 𝑔(π‘₯𝑛)β€–.Then the sequences {π‘₯𝑛 } defined by π‘₯ ∈ 𝐢 and 𝑦𝑛 π‘–βˆ’1 = π˜šπ‘›π‘– 𝑓(π‘₯𝑛) + (1 βˆ’ π˜šπ‘›π‘– ) 𝑔(π‘₯𝑛) 𝑦𝑛 π‘š = π˜™π‘›1 𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1𝑙 𝑖=2 where 𝑓 , 𝑔: 𝐻 β†’ 𝑆 is nonexpansive π‘₯𝑛+1 = π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š, 𝑛, π‘š β‰₯ 0 Is s-converges to π‘ƒπ‘Ÿπ‘œπ›Ή π‘₯ . Proof : Let 𝑒 ∈ 𝑆. Then we have β€–π‘₯𝑛+1 βˆ’ 𝑒‖ = β€–π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š βˆ’ 𝑒‖ = β€–π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ή π‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š βˆ’ [(1 βˆ’ π˜˜π‘›)𝑒 + π˜˜π‘›π‘’]β€– ≀ π˜˜π‘›β€–π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ βˆ’ 𝑒‖ + (1 βˆ’ π˜˜π‘›)‖𝑦𝑛 π‘š βˆ’ 𝑒‖ ≀ π˜˜π‘›β€–π‘₯ βˆ’ 𝑒‖ + (1 βˆ’ π˜˜π‘›)‖𝑦𝑛 π‘š βˆ’ 𝑒‖ (2.1) ‖𝑦𝑛 π‘š βˆ’ 𝑒‖ = β€–π˜™π‘›1 𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1 𝑙 𝑖=2 βˆ’ 𝑒‖ IHJPAS. 36(2)2023 369 = β€–π˜™π‘›1 𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1𝑙 𝑖=2 βˆ’ [π˜™π‘›1 𝑒 + βˆ‘ π˜™π‘›π‘– 𝑒 π‘š 𝑖=1 ]β€– = β€–(π˜™π‘›1 )𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1 𝑙 𝑖=2 βˆ’ [π˜™π‘›1 𝑒 + βˆ‘ π˜™π‘›π‘– 𝑒 π‘š 𝑖=2 ] β€– ≀ (π˜™π‘›1 )‖𝑦𝑛 π‘œ βˆ’ 𝑒‖ + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=2 β€– 𝑦𝑛 π‘–βˆ’1 βˆ’ 𝑒‖ ≀ βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=1 β€– 𝑦𝑛 π‘–βˆ’1 βˆ’ 𝑒‖ ≀ β€– 𝑦𝑛 π‘–βˆ’1 βˆ’ 𝑒‖ = β€– π˜šπ‘›π‘– 𝑓(π‘₯𝑛) + (1 βˆ’ π˜šπ‘›π‘– ) 𝑔(π‘₯𝑛) βˆ’ 𝑒‖ ≀ β€–π˜šπ‘›π‘– 𝑓(π‘₯𝑛) βˆ’ 𝑒‖ + π‘˜(1 βˆ’ π˜šπ‘›π‘– )β€– 𝑔(π‘₯𝑛 ) βˆ’ 𝑒‖ ≀ π˜šπ‘›π‘– β€–π‘₯𝑛 βˆ’ 𝑒‖ + (1 βˆ’ π˜šπ‘›π‘– )β€– π‘₯𝑛 βˆ’ 𝑒‖ ≀ β€– π‘₯𝑛 βˆ’ 𝑝‖ (2.2) From (2.1) and (2.2) . we get β€–π‘₯𝑛+1 βˆ’ 𝑒‖ ≀ π˜˜π‘›β€–π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ βˆ’ 𝑒‖ + (1 βˆ’ π˜˜π‘›) β€– π‘₯𝑛 βˆ’ 𝑒‖ ≀ max{β€–π‘₯ βˆ’ 𝑒‖, β€– π‘₯𝑛 βˆ’ 𝑒‖ } . . ≀ max{β€–π‘₯ βˆ’ 𝑒‖, β€–π‘₯0 βˆ’ 𝑒‖} Hence ,{π‘₯𝑛 }𝑛=1 ∞ is bounded . So {𝑦𝑛 π‘š}𝑛=1 ∞ and {𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 𝑖 } 𝑛=1 ∞ is bounded . Now , ‖𝑦𝑛+1 𝑖 βˆ’ 𝑦𝑛 𝑖 β€– βˆ€ 𝑖 = 1,2, … 𝑙 . ‖𝑦𝑛+1 π‘š βˆ’ 𝑦𝑛 π‘šβ€– = β€–π˜™π‘›1+1 𝑦𝑛+1 0 + βˆ‘ π˜™π‘›π‘–+1 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1𝑙 𝑖=2 βˆ’ π˜™π‘›1 𝑦𝑛 π‘œ βˆ’ βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1𝑙 𝑖=2 β€– = β€– β€– π˜™π‘›1+1𝑦𝑛+1 0 βˆ’ π˜™π‘›1+1𝑦𝑛 0 + π˜™π‘›1+1𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘–+1 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 𝑙 𝑖=2 βˆ’ βˆ‘ π˜™π‘›π‘–+1 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1 𝑙 𝑖=2 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1 𝑙 𝑖=2 βˆ’ π˜™π‘›1 𝑦𝑛 0 βˆ’ βˆ‘ π˜™π‘›π‘–+1 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1 𝑙 𝑖=2 β€– β€– ≀ π˜™π‘›1+1‖𝑦𝑛+1 0 βˆ’ 𝑦𝑛 0β€– + |π˜™π‘›1+1 βˆ’ π˜™π‘›1 |(‖𝑦𝑛 0β€–) + βˆ‘ π˜™π‘›π‘–+1 𝑙 𝑖=2 ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– + βˆ‘ 𝑙 𝑖=2 |( π˜™π‘›π‘– βˆ’ π˜™ 𝑛𝑖+1)|‖𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– ≀ π˜™π‘›1+1‖𝑦𝑛+1 0 βˆ’ 𝑦𝑛 0β€– + (βˆ‘ 𝑙 𝑖=2 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)|‖𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– + |π˜™π‘›1+1 βˆ’ π˜™π‘›1 |(‖𝑦𝑛 0β€–)) + βˆ‘ π˜™π‘›π‘–+1 𝑙 𝑖=2 ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– ≀ π˜™π‘›1+1‖𝑦𝑛+1 0 βˆ’ 𝑦𝑛 0β€– + ((βˆ‘ 𝑙 𝑖=2 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)| + |π˜™π‘›0+1 βˆ’ π˜™π‘›0 |) 𝐾) + βˆ‘ π˜™π‘›π‘–+1 𝑙 𝑖=2 ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– IHJPAS. 36(2)2023 370 ≀ π˜™π‘›1+1K + ((βˆ‘ 𝑙 𝑖=1 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)| + |π˜™π‘›1+1 βˆ’ π˜™π‘›1 |) 𝐾) + βˆ‘ π˜™π‘›π‘–+1 𝑙 𝑖=2 ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– 𝐾 = π‘šπ‘Žπ‘₯{‖𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€–, ‖𝑦𝑛 0β€–, ‖𝑦𝑛+1 0 βˆ’ 𝑦𝑛 0β€–} Next , to find, ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– For πœ‰π‘›+1 𝑖 β‰₯ πœ‰π‘› 𝑖 , we have ‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– = ‖𝑅𝑒𝑠𝑖,𝑛 ( πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛+1 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 ) βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– ≀ β€– πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛+1 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– = β€– πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛+1 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑦𝑛 π‘–βˆ’1 β€– = β€– πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛+1 π‘–βˆ’1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 𝑦𝑛 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 + (1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ) 𝑦𝑛 π‘–βˆ’1β€– ≀ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– +|1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 | (‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 + 𝑦𝑛+1 π‘–βˆ’1 )β€–) ≀ ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– +|1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 | (‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 + 𝑦𝑛+1 π‘–βˆ’1 β€–) ≀ ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– +|1 βˆ’ πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 | 𝑆 where 𝑆 = sup {‖𝑅𝑒𝑠𝑖,𝑛+1𝑦𝑛+1 π‘–βˆ’1 + 𝑦𝑛+1 π‘–βˆ’1 β€–, 𝑛 β‰₯ 0} ≀ ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– +| πœ‰π‘›+1 𝑖 βˆ’πœ‰π‘› 𝑖 πœ‰π‘›+1 𝑖 | 𝑆 ≀ ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– + 𝑆 πœ‰π‘›+1 𝑖 |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | ≀ ‖𝑦𝑛+1 π‘–βˆ’1 βˆ’ 𝑦𝑛 π‘–βˆ’1β€– + 𝑠 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ π‘Ÿπ‘› 𝑖 | ≀ β€–π˜š(𝑛+1)𝑖 𝑓(π‘₯𝑛+1) + (1 βˆ’ 𝘚(𝑛+1)𝑖 ) 𝑔(π‘₯𝑛+1) βˆ’ π˜šπ‘›π‘– 𝑓(π‘₯𝑛) + (1 βˆ’ π˜šπ‘›π‘– ) 𝑔(π‘₯𝑛)β€– + 𝑆 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | ≀ β€–π˜š(𝑛+1)𝑖 𝑓(π‘₯𝑛+1) βˆ’ π˜šπ‘›π‘– 𝑓(π‘₯𝑛)β€– + β€–(1 βˆ’ 𝘚(𝑛+1)𝑖 ) 𝑔(π‘₯𝑛+1) βˆ’ (1 βˆ’ π˜šπ‘›π‘– ) 𝑔(π‘₯𝑛)β€– + 𝑆 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | ≀ π˜šπ‘›π‘– β€–(π‘₯𝑛+1) βˆ’ (π‘₯𝑛)β€– + (1 βˆ’ π˜šπ‘›π‘– )β€– (π‘₯𝑛+1) βˆ’ (π‘₯𝑛)β€– + 𝑆 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + 𝑆 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 | ‖𝑦𝑛+1 π‘š βˆ’ 𝑦𝑛 π‘šβ€– ≀ π˜™π‘›0+1K + ((βˆ‘ ( 𝑙 𝑖=1 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)| + |π˜™π‘›0+1 βˆ’ π˜™π‘›0 |)𝐾) + βˆ‘ π˜™π‘›π‘–+1 ( 𝑙 𝑖=1 β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + 𝑆 πœ‰ |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 |) ‖𝑦𝑛+1 π‘š βˆ’ 𝑦𝑛 π‘šβ€– ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + π˜™π‘›0+1K + ((βˆ‘ ( 𝑙 𝑖=1 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)| + |π˜™π‘›0+1 βˆ’ π˜™π‘›0 |)𝐾) + 𝑆 πœ‰ βˆ‘ π˜™π‘›π‘–+1 |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 |𝑙𝑖=1 (2.3) IHJPAS. 36(2)2023 371 Now,we have ‖𝑦𝑛+1 𝑖 βˆ’ 𝑦𝑛 𝑖 β€– ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛 β€– + 𝑆 πœ‰ βˆ‘ (|πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 |)𝑙𝑖=1 + π˜™π‘›0+1K + ((βˆ‘ ( 𝑙 𝑖=0 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)|)𝐾) Now, we estimate β€–π‘₯𝑛+2 βˆ’ π‘₯𝑛+1β€– . since π‘₯𝑛+1 = 𝛼𝑛 π‘₯ + (1 βˆ’ 𝛼𝑛)𝑦𝑛 π‘š = β€–π‘₯𝑛+2 βˆ’ π‘₯𝑛+1β€– = β€–π˜˜π‘›+1π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ + (1 βˆ’ π˜˜π‘›+1)𝑦𝑛+1 π‘š βˆ’ π˜˜π‘›π‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘šβ€– ≀ 1 βˆ’ π˜˜π‘› )‖𝑦𝑛+1 π‘š βˆ’ 𝑦𝑛 π‘šβ€– + |π˜˜π‘›+1 βˆ’ π˜˜π‘›|(β€–π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯β€– + ‖𝑦𝑛+1 π‘š β€–) ≀ (1 βˆ’ π˜˜π‘›)‖𝑦𝑛+1 π‘š βˆ’ 𝑦𝑛 π‘šβ€– + L|π˜˜π‘›+1 βˆ’ π˜˜π‘›+1| Where L =β€–π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯β€– + ‖𝑦𝑛+1 π‘š β€– .So, we get β€–π‘₯𝑛+2 βˆ’ π‘₯𝑛+1β€– ≀ (1 βˆ’ π˜˜π‘›)β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + π˜™π‘›0+1K + ((βˆ‘ ( 𝑙 𝑖=0 |( π˜™π‘›π‘– βˆ’ π˜™π‘›π‘–+1)|)𝐾) + 𝑆 πœ‰ βˆ‘ π˜™π‘›π‘–+1 |πœ‰π‘›+1 𝑖 βˆ’ πœ‰π‘› 𝑖 |𝑙𝑖=1 + L|π˜˜π‘›+1 βˆ’ π˜˜π‘›+1| So, β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ β†’ 0 π‘Žπ‘  𝑛 β†’ ∞ β€–π‘₯𝑛 βˆ’ 𝑦𝑛 π‘šβ€– ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + β€–π‘₯𝑛+1 βˆ’ 𝑦𝑛 π‘šβ€– ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + β€–π˜˜π‘› π‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š βˆ’ 𝑦𝑛 π‘šβ€– = β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + β€–π˜˜π‘›π‘₯ + 𝑦𝑛 π‘š βˆ’ π˜˜π‘›π‘¦π‘› π‘š βˆ’ 𝑦𝑛 π‘šβ€– = β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + β€–π˜˜π‘›π‘₯ βˆ’ π˜˜π‘›π‘¦π‘› π‘šβ€– ≀ β€–π‘₯𝑛+1 βˆ’ π‘₯𝑛‖ + π˜˜π‘› β€–π‘₯ βˆ’ 𝑦𝑛 π‘šβ€– We have β€–π‘₯𝑛 βˆ’ 𝑦𝑛 π‘š β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞ . Now , we show that ‖𝑦𝑛 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– β†’ 0 for all 𝑖 = 1,2, . . 𝑀 . In fact , Let {π‘₯π‘›π‘˜ } be a subsequence of {π‘₯𝑛} such that lim π‘›β†’βˆž 𝑠𝑒𝑝 ‖𝑦𝑛 π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1β€– = lim π‘˜β†’βˆž β€–π‘¦π‘›π‘˜ π‘–βˆ’1 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜ π‘¦π‘›π‘˜ π‘–βˆ’1β€– , And let {π‘₯π‘›π‘˜π‘™ } be a subsequence of {π‘₯π‘›π‘˜ } such that lim π‘˜β†’βˆž 𝑠𝑒𝑝 β€–π‘₯π‘›π‘˜ βˆ’ 𝑒‖ = limπ‘™β†’βˆž β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖ . Then we have β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖ = β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š + π‘¦π‘›π‘˜π‘™ π‘š βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + β€–π‘¦π‘›π‘˜π‘™ π‘š βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + β€–π˜™π‘›0 𝑦𝑛 π‘œ + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 𝑖 π‘š 𝑖=2 βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + β€–π˜™π‘›0 π‘¦π‘›π‘˜π‘™ π‘œ βˆ’ 𝑒‖ + β€–βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,π‘›π‘¦π‘›π‘˜π‘™ 𝑖 𝑙 𝑖=2 βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + π˜™π‘›0 β€–π‘¦π‘›π‘˜π‘™ π‘œ βˆ’ 𝑒‖ + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=2 ‖𝑅𝑒𝑠𝑖,π‘›π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + π˜™π‘›0 β€–π‘¦π‘›π‘˜π‘™ π‘œ βˆ’ 𝑒‖ + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=2 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ IHJPAS. 36(2)2023 372 ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + π˜™π‘›0 β€–π‘¦π‘›π‘˜π‘™ 1 βˆ’ 𝑒‖ + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + π˜™π‘›0 β€–π‘¦π‘›π‘˜π‘™ 1 βˆ’ 𝑒‖ + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=2 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ π‘š β€– + βˆ‘ π˜™π‘›π‘– 𝑙 𝑖=0 β€–π‘¦π‘›π‘˜π‘™ βˆ’ 𝑒‖ β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖=β€–π‘₯π‘›π‘˜π‘™ βˆ’ π‘¦π‘›π‘˜π‘™ 𝑀 β€– + β€–π‘¦π‘›π‘˜π‘™ βˆ’ 𝑒‖ Therefore lim π‘™β†’βˆž β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖ ≀ lim π‘™β†’βˆž β€–π‘¦π‘›π‘˜π‘™ π‘š βˆ’ 𝑒‖ β€–π‘¦π‘›π‘˜π‘™ π‘š βˆ’ 𝑒‖ 2 = β€–π˜™π‘›0 π‘¦π‘›π‘˜π‘™ 1 + βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑅𝑒𝑠𝑖,π‘›π‘¦π‘›π‘˜π‘™ 𝑖 𝑙 𝑖=2 βˆ’ 𝑒 β€– 2 = (1 βˆ’ βˆ‘ π›½π‘›π‘–π‘˜π‘™ π‘šπ‘™ 𝑖=1 ) β€–π‘¦π‘›π‘˜π‘™ 1 βˆ’ 𝑒‖ 2 + βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ‖𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ 2 βˆ’ (1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 β€– 2 ≀ (1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 + βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ 2 βˆ’ (1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 1 β€– 2 ≀ β€–π‘¦π‘›π‘˜π‘™ π‘–βˆ’1 βˆ’ 𝑒‖ 2 βˆ’ (1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 β€– 2 ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖ 2 βˆ’ (1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 1 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 β€– 2 Hence,(1 βˆ’ βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 ) βˆ‘ π˜™π‘›π‘–π‘˜π‘™ 𝑙 𝑖=1 β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 β€– 2 ≀ β€–π‘₯π‘›π‘˜π‘™ βˆ’ 𝑒‖ 2 βˆ’ β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑒‖ 2 β†’ 0 , as 𝑙 β†’ ∞ Therefore, we have β€–π‘¦π‘›π‘˜π‘™ 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,π‘›π‘˜π‘™ π‘¦π‘›π‘˜π‘™ 𝑖 β€– β†’ 0 . which implies that lim π‘›β†’βˆž 𝑠𝑒𝑝‖𝑦𝑛 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 𝑖 β€– = 0. Hence ‖𝑦𝑛 𝑖 βˆ’ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 𝑖 β€– β†’ 0 , for all i . As the same way, we obtain β€–π‘₯𝑛 βˆ’ 𝑅𝑒𝑠𝑖,𝑛π‘₯𝑛‖ β†’ 0.Next we show that lim π‘›β†’βˆž 𝑠𝑒𝑝 < π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(π‘₯) , π‘₯𝑛 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(π‘₯) > ≀ 0. Let {π‘₯π‘›π‘˜ } be a subsequence of {π‘₯𝑛} ⇀ π‘₯ βˆ— and π‘₯ βˆ— ∈ 𝑆 lim π‘›β†’βˆž 𝑠𝑒𝑝 < 𝑣 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) , π‘₯𝑛 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) > = lim π‘˜β†’βˆž < 𝑣 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) , π‘₯π‘›π‘˜ βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) > . = < 𝑣 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣), π‘₯ βˆ— βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) ≀ 0. IHJPAS. 36(2)2023 373 Finally , we show that β€–π‘₯𝑛 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)β€– β†’ 0 . From lemma, We have β€–π‘₯𝑛+1 βˆ’ π‘ƒπ‘Ÿπ‘œπ‘ (𝑣)β€– 2 = β€–π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή (𝑣)β€– 2 = β€–π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ή π‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š βˆ’ [(1 βˆ’ π˜˜π‘›)π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣) βˆ’ π˜˜π‘› π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)]β€– 2 ≀ β€–π˜˜π‘›(π‘ƒπ‘Ÿπ‘œπ‘ π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘œπ‘ (𝑣) + (1 βˆ’ π˜˜π‘›)(𝑦𝑛 π‘š βˆ’ π‘ƒπ‘Ÿπ‘œπ‘ (𝑣)) β€– 2 ≀ (1 βˆ’ π˜˜π‘›)‖𝑦𝑛 π‘š βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)β€– 2 + π˜˜π‘› β€– π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)β€– 2 ≀ (1 βˆ’ π˜˜π‘› )β€–π‘₯𝑛 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)β€– 2 + π˜˜π‘›β€– π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή(𝑣)β€– 2 That β€–π‘₯𝑛+1 βˆ’ π‘ƒπ‘Ÿπ‘œπ›Ή (𝑣)β€– β†’ 0 π‘Žπ‘  𝑛 β†’ ∞. This completes the proof . Corollary : 2.2 .If ℳ𝑖 are M.M. operators such that 𝐹(π‘ƒπ‘Ÿπ‘œπ‘ ) β‹‚ ℳ𝑖 βˆ’1 0 β‰  βˆ…π‘™π‘–=1 Under (i-ii) in theorem (3.1). Then {π‘₯𝑛} defined by π‘₯ ∈ 𝐢 and { 𝑦𝑛 π‘–βˆ’1 = π˜šπ‘›π‘– (π‘₯𝑛 ) + (1 βˆ’ π˜šπ‘›π‘– ) (π‘₯𝑛) 𝑦𝑛 π‘š = π˜™π‘›1 𝑦𝑛 0 + βˆ‘ π˜™π‘›π‘– 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1𝑙 𝑖=2 π‘₯𝑛+1 = π˜˜π‘›π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š, 𝑛, π‘š β‰₯ 0 Converges- s to π‘ƒπ‘Ÿπ‘œπ›Ήπ‘₯ . Corollary : 2.3 .If ℳ𝑖 are M.M. operators such that ℳ𝑖 βˆ’1 0 β‰  βˆ….Under (i-ii) in theorem (3.1). Then the sequences {π‘₯𝑛} defined by π‘₯ ∈ 𝐢 and { 𝑦𝑛 π‘–βˆ’1 = π˜šπ‘›π‘– (π‘₯𝑛 ) + (1 βˆ’ π˜šπ‘›π‘– ) (π‘₯𝑛) 𝑦𝑛 π‘š = π˜™π‘›1 𝑦𝑛 0 + βˆ‘ π˜™ 𝑅𝑒𝑠𝑖,𝑛𝑦𝑛 π‘–βˆ’1𝑙 𝑖=2 π‘₯𝑛+1 = π˜˜π‘› π‘₯ + (1 βˆ’ π˜˜π‘›)𝑦𝑛 π‘š, 𝑛, π‘š β‰₯ 0 s-converges to π‘₯ . 3. Conclusion In this article, a new iterative methods of approximation fixed point are presented. On the other hand, the s-convergence by using multivalued operators also proven. References 1. Bruck, E., A Strongly Convergent Iterative Solution for a Maximal Monotone Operator in Hilbert Space, J. Math. Anal. Appl. 1974,48,114 -126 . 2. Rockafellar, T., Monotone Operator and The Proximal Point Algorithm, SIAM J. Control Optim. 1976, 14,877 – 898. 3. Rockafellar.T., Monotone Operators and Proximal Point Algorithm, SIAM J. Control Optim., 1976,14 ,887-897. 4. Fattorini,O. , Infinite-dimensional Optimaization and Control Theory, Cambridge University Press, Cambrige, 1999. 5. Moudafi. A., Viscosity Approximation Methods for Fixed-Point Proplems, J. Math. Anal. Appl. 2000, 241, 46-55,. 6. Hugh. R.; Malik, P.; Kumar, V. On a New Faster Implicit Fixed Point Iterative Scheme inConvex Metric Space . J. Funct. Spaces 2015. 7. Khan,R.; Kumar, V.;Nawal, S.; Chugh, R., Random Iterative Algorithms and Almost SureStability in Banach Space, Filomat,2017, 31, 3611-3626. 8. Kumar, V.; Hussain, N.; Malik, P.; Chugh, R.Jungck-Type Implicit Iterative Algorithms with Numerical Example , Filomat, 2017,31, 2303-2320. 9. Zena ,M ; Alaa, A, On The Convergence of New Iteration Schemes by Resolvent ZA-Jungck mapping,Journal of Interdisciplinary Mathematics, to appear, 2022. 10. Maibed , H. ; Hussein, S. , Approximation Fixed Point Theorems Via Generalized Like Contraction Mappings, AIP Conference Proceedings 2022, 2398, 060081. https://aip.scitation.org/author/Maibed%2C+Zena+Hussein https://aip.scitation.org/author/Hussein%2C+Saad+Shakeir IHJPAS. 36(2)2023 374 11. Dadashi, V.;Postolache, M. Forward-Backward Splitting Algorithms for Fixed Point Problems and Zeros of the Sum of Monotone Operators, Arab. J. Math. 2019, 1-11. 12. Maibed, Z. ; Thajil, A, Zenali Iteration Method For Approximating Fixed Point of ZA – Quasi Contractive mappings, Haitham Journal for Pure and Applied Science, Oct 20, 2021. 13. Jamil ,Z. ; Abed, B., On A Modified SP-Iterative Scheme for Approximating Fixed Point of A Contraction Mapping, Iraqi Journal of Scienceno. 2015, 56, 4B, 3230-3239,June. 14.Boikanyo. A. and Morosanu G., A Contraction Proximal Point Algorithm with Two Monotone Operators, Nonlinear Anal. (TMA), 2019, 75, 5686-5692. 15.Cholamjiak, P.;Suparat, K., P. Nattawut, Weak and strong convergence theorems for the Inclusion Problems and Fixed Point of Nonexpansive Mappings, Mathematics , (MDPI), 2019, 7(167). 15.Jong ,K. ; Truong ,M.New Iterative Methods for Finding a Common Zero of a Finite Familiy of Monotone Operators in Hilbert Space, Bull. Korean Math. Soc. 2017, 54 ,4, 1347-1359, 16.Xu.K., Viscosity Approximations Method for Nonexpansive Mappings, J. Math. Anal. Appl. 2004, 298, 1, 279-291. 17.Chang ,S. On Chidume's open Equestions and Approximate Solutions of Multivalued Strongly Accretive Mapping Equations in Banach Space, J. Math. Anal. Appl 1997, 216, 1, 94-111. 18. Xu, G.,Weak and Strong Convergence Theorems for Strict Pseudo-Contraction in Hilbert Space , J. Math. Anal. Appl. 2017,329, 336-346. 19.Suzuki, T.,Strong Convergence of Krasnoselskii and Mann's Type Sequences for One- Parameter Nonexpansive Semigroups without Bochner Integrals, J. Math. Anal. Appl. 2005, 305, 227-239.