IHJPAS. 36(2)2023 375 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract A cap of size ๐‘˜ and degree ๐‘Ÿ in a projective space, (briefly; (๐‘˜, ๐‘Ÿ)-cap) is a set of ๐‘˜ points with the property that each line in the space meet it in at most ๐‘Ÿ points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (๐‘˜, ๐‘Ÿ)-caps of degree ๐‘Ÿ < 12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (๐‘˜ + ๐‘–, ๐‘Ÿ + 1)-complete caps. These caps have been classified by giving the ๐‘ก๐‘–-distribution and ๐‘๐‘–-distribution. The Gap programming has been used to execute the designed algorithms and computations. Keywords: Cap, Complete (Incomplete) cap, Companion matrix, Projective space, ๐œ๐‘–- distribution, ๐‘๐‘–-distribution. 1. Introduction In finite projective space, one of the important objects which has been many mathematicians did research on was (๐‘˜, ๐‘Ÿ)-cap. The operator ๐‘˜ is the size of cap, and ๐‘Ÿ is the degree of cap. These operators were the central of research, theoretically and by computer computations, where the researcher attempted to find the upper bound and lower bound of the size ๐‘˜ for fixed degree ๐‘Ÿ. Also, the classification of the caps as projectively distinct was their aim, but this goal is so difficult in the space of dimension greater that two. Let ๐น11 = {0,1,2, 2 2, โ€ฆ , 29} be the Galois field of order eleven, and ๐ถ๐‘“ be the 4 ร— 4 matrix, ๐ถ๐‘“=( 0 1 0 0 0 0 1 0 0 0 28 2 0 1 1 22 ) which is called the companion matrix over ๐น11. The points of the finite doi.org/10.30526/36.2.3025 Article history: Received 19 September 2022, Accepted 29 November 2022, Published in April 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Extension of Cap by Size and Degree in the Space ๐‘ท๐‘ฎ(๐Ÿ‘, ๐Ÿ๐Ÿ) Jabbar Sharif Radhi Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. e.b.abdulkrareem@uomustansiriyah.edu.iq Emad Bakr Al-Zangana Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq. jabbarsharif13@gmail.com https://creativecommons.org/licenses/by/4.0/ mailto:e.b.abdulkrareem@uomustansiriyah.edu.iq mailto:jabbarsharif13@gmail.com IHJPAS. 36(2)2023 376 projective space ฮฃ11 = ๐‘ƒ๐บ(3,11) are constructing using ๐ถ๐‘“ in the formula ๐‘ƒ(๐‘–) โ‰” [1,0,0,0]๐ถ๐‘“ ๐‘–โˆ’1 , ๐‘– = 1,2, โ€ฆ ,1464, where 1464 = ๐œƒ(3,11) = 113 + 112 + 11 + 1 is the order of space. This matrix is cyclic of order ๐œƒ(3,11), so to refer to the spaceโ€™s points we can use numeral form ๐‘– โ‰” ๐‘ƒ(๐‘–), ๐‘– = 1, โ€ฆ ๐œƒ(3,11). The lines in the space are found using the following formula: Let ๐‘‹ = [๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3] and ๐‘Œ = [๐‘ฆ0, ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3] be two point in ฮฃ11 on a line ๐‘™. A coordinate vector of ๐‘™ is ๐ฟ = (๐‘™01, ๐‘™02, ๐‘™03, ๐‘™12, ๐‘™31, ๐‘™23), where ๐‘™๐‘–๐‘— = ๐‘ฅ๐‘– ๐‘ฆ๐‘— โˆ’ ๐‘ฅ๐‘— ๐‘ฆ๐‘–. Then ๐ฟ is determined by ๐‘™ up to a factor of proportion. We will write ๐‘™ = ๐ˆ(๐ฟ) to refer to ๐‘™. To find points ๐‘ = [๐‘ง0, ๐‘ง1, ๐‘ง2, ๐‘ง3] on ๐‘™, the following equation must be satisfied [1]: ๐‘ ร— ( 0 โˆ’๐‘™23 ๐‘™23 0 โˆ’๐‘™31 โˆ’๐‘™12 โˆ’๐‘™03 ๐‘™02 ๐‘™31 ๐‘™03 ๐‘™12 โˆ’๐‘™02 0 โˆ’๐‘™01 ๐‘™01 0 ) = 0. Definition 1.1:[2] A(๐‘˜, ๐‘Ÿ)-cap in ๐‘ƒ๐บ(๐‘› โ‰ฅ 3, ๐‘ž) is the set of ๐‘˜ points such that no ๐‘Ÿ + 1 points are collinear, but at most ๐‘Ÿ points of which lie in any line. Here ๐‘Ÿ is called degree of the (๐‘˜, ๐‘Ÿ)-cap. The (๐‘˜, ๐‘Ÿ)-cap is called complete cap if it is not contained in (๐‘˜ + 1, ๐‘Ÿ)-cap. Definition 1.2:[2] Let ๐พ be a cap of degree ๐‘Ÿ, an ๐‘–-secant of a ๐พ in ๐‘ƒ๐บ(๐‘›, ๐‘ž) is a line such that |๐‘˜ โˆฉ ๐œ‹| = ๐‘–. The number of ๐‘–-secants of ๐พ denoted by ๐œ๐‘–. Definition 1.3:[2] Let ๐‘„ be a point not on the (๐‘˜, ๐‘Ÿ)-cap, ๐พ. The number of ๐‘–-secant of ๐พ passing through ๐‘„ denoted by ๐œŽ๐‘– (๐‘„). The number ๐œŽ๐‘Ÿ (๐‘„) of ๐‘Ÿ-secants is called the index of ๐‘„ with respect to ๐พ. Definition 1.4:[2] The set of all points of index ๐‘– will be denoted by ๐ถ๐‘– and the cardinality of ๐ถ๐‘– denoted by ๐‘๐‘–. The sequence (๐‘ก0 , โ€ฆ , ๐‘ก๐‘Ÿ ) will represented the secant distribution and the sequences (๐‘0, โ€ฆ , ๐‘๐‘‘) refer to index distribution. Definition 1.5:[2] The group of projectivities of ๐‘ƒ๐บ(๐‘›. ๐‘ž) is called projective general linear group, and denoted ๐‘ƒ๐บ๐ฟ (๐‘› + 1, ๐‘ž). The elements of ๐‘ƒ๐บ๐ฟ(๐‘› + 1, ๐‘ž) are non-singular matrices of dimension ๐‘› + 1. The matrix ๐ถ๐‘“ is belong to ฮฃ11, so the ๐ป = โŒฉ๐ถ๐‘“ โŒช is cyclic subgroup of ๐‘ƒ๐บ๐ฟ(4,11) of order ๐œƒ(3,11), and for any integer ๐‘ก divided ๐œƒ(3,11), ๐ป๐‘ก = โŒฉ๐ถ๐‘“ ๐‘ก โŒช is cyclic subgroup of ๐ป of order ๐‘˜ such that ๐‘ก โˆ™ ๐‘˜ = ๐œƒ(3,11). [3] found caps using the action of fourteen subgroups ๐ป๐‘ก on the space ฮฃ11, where ๐‘ก = 2,3,4,6,8,12,24,61,122,183,244,366,488,732. These caps were just orbits come from action of the groups ๐ป๐‘ก on ฮฃ11, and these orbits denoted by ๐‘‚๐‘ก [๐‘ก, ๐‘˜]. Also, they classified these caps by secant distribution and index distribution. Their results are summarized as in Table 1. Let INCO:=Incomplete cap, and CO:=Complete cap. IHJPAS. 36(2)2023 377 Table 1. Caps from subgroups โŒฉ๐‘‡๐‘ก โŒช action on ๐‘ƒ๐บ(3,11) โŒฉ๐‘‡๐‘ก โŒช (๐‘˜, ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐‘๐‘Ž๐‘) ๐‘‚๐‘ก [๐‘ก, ๐‘˜] Type 1 โŒฉ๐‘‡2โŒช (732,12) {2๐‘› + 1|๐‘› = 0, โ€ฆ ,731} INCO 2 โŒฉ๐‘‡3โŒช (488,7) {3๐‘› + 1|๐‘› = 0, โ€ฆ ,487} CO 3 โŒฉ๐‘‡4โŒช (366,6) {4๐‘› + 1|๐‘› = 0, โ€ฆ ,365} CO 4 โŒฉ๐‘‡6โŒช (244,4) {6๐‘› + 1|๐‘› = 0, โ€ฆ ,243} CO 5 โŒฉ๐‘‡8โŒช (183,4) {8๐‘› + 1|๐‘› = 0, โ€ฆ ,182} INCO 6 โŒฉ๐‘‡12โŒช (122,2) {12๐‘› + 1|๐‘› = 0, โ€ฆ ,121} CO 7 โŒฉ๐‘‡24โŒช (61,2) {24๐‘› + 1|๐‘› = 0, โ€ฆ ,60} INCO 8 โŒฉ๐‘‡61โŒช (24,12) {61๐‘› + 1|๐‘› = 0, โ€ฆ ,23} INCO 9 โŒฉ๐‘‡122โŒช (12,12) {122๐‘› + 1|๐‘› = 0, โ€ฆ ,11} INCO 10 โŒฉ๐‘‡183โŒช (8,4) {183๐‘› + 1|๐‘› = 0, โ€ฆ ,7} INCO 11 โŒฉ๐‘‡244โŒช (6,6) {244๐‘› + 1|๐‘› = 0, โ€ฆ ,5} INCO 12 โŒฉ๐‘‡366โŒช (4,4) {366๐‘› + 1|๐‘› = 0, โ€ฆ ,3} INCO 13 โŒฉ๐‘‡488โŒช (3,3) {488๐‘› + 1|๐‘› = 0, โ€ฆ ,2} INCO 14 โŒฉ๐‘‡732โŒช (2,2) {732๐‘› + 1|๐‘› = 0,1} INCO The goal of this paper is to do extensions of the size of the orbits ๐‘‚๐‘– [๐‘–, ๐‘ก] and compute the ๐œ๐‘–- distribution and ๐‘๐‘–-distribution to it. Concerning the recent works on the caps resulting from the action of groups on the space ๐‘ƒ๐บ(3, ๐‘ž), there are some papers appear recently for example, [4,5], where they just find caps which exactly the orbits of group actions. The same idea has been used on the plane [6], and on the line ๐‘ƒ๐บ(1,27) [7]. To do extension of the size of (complete, incomplete) (๐‘˜, ๐‘Ÿ)-caps, ๐‘‚๐‘ก [๐‘ก, ๐‘˜] in the projective space ๐‘ƒ๐บ(3,11), we follow the following steps: 1. Determine the line ๐ˆ(๐ฟ) that meets the orbit ๐‘‚๐‘– [๐‘–, ๐‘ก] in ๐‘Ÿ points. 2. Find the extension points to ๐‘‚๐‘– [๐‘–, ๐‘ก] which are the set ๐ฟ\๐‘‚๐‘– [๐‘–, ๐‘ก] = ๐ธ๐‘ฅ. 3. Adding the first point say ๐‘1 of ๐ธ๐‘ฅ to ๐‘‚๐‘– [๐‘–, ๐‘ก]. Let ๐‘„๐‘– ๐‘1 = ๐‘‚๐‘– [๐‘–, ๐‘ก]โ‹ƒ{๐‘1}. 4. Check the set ๐‘„๐‘– ๐‘1 is (complete, incomplete) cap. 5. Find the ๐œ๐‘–-distribution and ๐‘๐‘–-distribution of ๐‘„๐‘– ๐‘1 . 6. The incomplete caps ๐‘„๐‘– ๐‘1 are extended to complete caps. A system for computational discrete algebra, GAP [8] is used to implement the above steps. Let ๐‘Œ = {2,3,4,6,8,12,24,61,122,183,244,366,488,732} be the divisors of ๐œƒ(3,11). 2. Extension of Caps Theorem 2.1: Let ๐‘‚๐‘– [๐‘–, ๐‘ก] be the (๐‘–, ๐‘Ÿ)-caps as in Table 1, ๐‘–, ๐‘ก in ๐‘Œ and ๐‘Ÿ โ‰  12. Then there exist (๐‘—, ๐‘Ÿ + 1)-complete caps, ๐‘Ÿ = 2,3,4,6,7 and = 636,505,313,304,139,90,260,650, 267,218,118. Proof: To do an extension of the size of each (๐‘–, ๐‘Ÿ)-cap we first find a line that meets the cap in ๐‘Ÿ- points, and then choose the first point belong to ๐ฟ\๐‘‚๐‘– [๐‘–, ๐‘ก]. If the new cap is in complete, then we will add points of the index zero points to make it complete. 1. The line ๐ˆ(1,1,0,0,0,0) meet the cap ๐‘‚3[3,488] in 7 points, so we have five extension points can be adding to it in the following orders: 95,287,308,1167,1172. Let ๐‘„3 ๐‘1 = ๐‘‚3[3,488]โ‹ƒ{๐‘1}, ๐‘1 = 95. The ๐‘ก๐‘– -distribution is (๐‘ก1 , ๐‘ก 2, ๐‘ก3 , ๐‘ก4 , ๐‘ก5 , ๐‘ก6 , ๐‘ก 7 , ๐‘ก8) =(965,2909,997,6422,1022, 2917,989,5 ), so ๐‘‚3 ๐‘1 is (489,8)-cap and ๐‘๐‘– values are ๐‘0 = 955, ๐‘1 = 20. Since ๐‘0 โ‰  0, IHJPAS. 36(2)2023 378 then ๐‘‚3 ๐‘1 is incomplete. The (489,8)-cap will be complete when adding 147 points to it, and the points are 2,3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126,128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161,162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195,197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222. 2. The line ๐ˆ(25, 1,0,0,0,0) meet the cap ๐‘‚4[4,366] in 6 points, so we have six extension points can be adding to it in the following orders: 239,346,542,766,955,1058. Let ๐‘‚4 ๐‘1 = ๐‘‚4[4,366]โ‹ƒ{๐‘1}, ๐‘1=239. The ๐‘ก๐‘–-distribution is ( ๐œ0, ๐œ1 , ๐œ 2, ๐œ3 , ๐œ4 , ๐œ5 , ๐œ6 , ๐œ 7 )= (785,1460,5082,1506,5106 1482,800,5), so ๐‘‚4 ๐‘1 is (367,7)-cap and ๐‘๐‘– values are ๐‘0 = 1077, ๐‘1 = 20. Since ๐‘0 โ‰  0, then ๐‘‚4 ๐‘1 is incomplete. The (367,7)-cap will be complete when adding 138 points to it and the points are 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 110, 111, 112, 114,115, 116, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 135, 136, 138, 139, 140, 142, 143, 144,146, 147, 148, 150, 151, 152, 154, 155, 156, 158, 159, 160, 162, 163, 164, 166, 167, 168, 170, 171,172, 174, 175,176, 178, 179, 180, 182, 183, 184. 3. The line ๐ˆ(28, 26, 1,0,0,0) meet the cap ๐‘‚6[6,244] in 4 points, so we have eight extension points can be adding to it in the following orders: 16,338,422,716,776,891,988,455. Let ๐‘‚6 ๐‘1 = ๐‘‚6[6,244]โ‹ƒ{๐‘1}, ๐‘1 = 16. The ๐‘ก๐‘–-distribution is ( ๐‘ก0, ๐‘ก1, ๐‘ก 2, ๐‘ก3 , ๐‘ก4 , ๐‘ก5 )= (2958,1485,7270,1510,2985,18), so ๐‘‚6 ๐‘1 is (245,5)-cap and ๐‘๐‘– values are ๐‘0 = 1093, ๐‘1 = 126. Since ๐‘0 โ‰  0, then ๐‘‚6 ๐‘1 is incomplete. The (245,5)-cap will be complete when adding 68 points to it, and the points are 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38,39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83. 4. The line ๐ˆ(27, 26, 1,0,0,0) meet the cap ๐‘‚8[8,183] in 4 points, so we have eight extension points can be adding to it in the following orders: 318,860,1032,1158,1176,1252,1287,1444. Let ๐‘‚8 ๐‘1 = ๐‘‚8[8,183]โ‹ƒ{๐‘1}, ๐‘1=318. The ๐‘ก๐‘–-distribution is ( ๐‘ก0, ๐‘ก1 , ๐‘ก2, ๐‘ก3 , ๐‘ก4, ๐‘ก5)= (3683,4394,5487,1553,1100,9), so ๐‘‚8 ๐‘1 is (184,5)-cap and ๐‘๐‘– values are ๐‘0 = 1217, ๐‘1 = 63. Since ๐‘0 โ‰  0, then ๐‘‚8 ๐‘1 is incomplete. The (184,5)-cap will be complete when adding 120 points to it, and the points are 2,3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127,128, 130, 131, 132, 133, 134, 135, 136, 138. IHJPAS. 36(2)2023 379 5. The line ๐ˆ(1,0,1,0,0,0) meet the cap ๐‘‚12[12,122] in 2 points, so we have ten extension points can be adding to it in the following orders:2,58,120,144,315,1252,452,506,788, 1108,1426. Let ๐‘‚12 ๐‘1 =๐‘‚12[12,122]โ‹ƒ{๐‘1}, ๐‘1 = 2. The ๐‘ก๐‘–-distribution is (๐‘ก0, ๐‘ก1, ๐‘ก2, ๐‘ก3) =(7315,1518,7338,55), so ๐‘‚12 ๐‘1 is (123,3)-cap and ๐‘๐‘– values are ๐‘0 = 846, ๐‘1 = 495. Since ๐‘0 โ‰  0, then ๐‘‚12 ๐‘1 is incomplete. The (123,3)- cap will be complete when adding 16 points to it, and the points are 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19. 6. The line ๐ˆ(1,0,1,0,0,0) meet the cap ๐‘‚24[24,61] in 2 points, so we have ten extension points can be adding to it in the following orders: 2,58,120,144,315,1252,452,506,788,1108, 1426. Let ๐‘‚24 ๐‘1 =๐‘‚24[24,161]โ‹ƒ{๐‘1}, ๐‘1 = 2. The ๐‘ก๐‘–-distribution is (๐‘ก0, ๐‘ก1, ๐‘ก2, ๐‘ก3) = (9859,4500,1855,12), so ๐‘‚24 ๐‘1 is (25,3)-cap and ๐‘๐‘– values are ๐‘0 = 1294, ๐‘1 = 108. Since ๐‘0 โ‰  0, then ๐‘‚24 ๐‘1 is incomplete. The (25,3)-cap will be complete when adding 65 points to it, and the points are 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 64, 65, 66,67,68,69. 7. The line ๐ˆ(22, 23, 1,0,0,0) meet the cap ๐‘‚183[183,8] in 4 points, so we have eight extension points can be adding to it in the following orders: 123,245,611,855,315,977,1221,1343. Let ๐‘‚183 ๐‘1 =๐‘‚183[183,8]โ‹ƒ{๐‘1}, ๐‘1 = 123. The ๐‘ก๐‘–-distribution of this orbit is (๐‘ก0 , ๐‘ก1, ๐‘ก2, ๐‘ก4, ๐‘ก5) = (15056, 1148, 20,1,1), so ๐‘‚183 ๐‘1 is (9,5)-cap and ๐‘๐‘– values are ๐‘0 = 1448, ๐‘1 = 7. Since ๐‘0 โ‰  0, then ๐‘‚183 ๐‘1 is incomplete. The (9,5)-cap will be complete when adding 251 points to it, and the points are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254. 8. The line ๐ˆ(22, 23, 1,0,0,0) meet the cap ๐‘‚244[244,6] in 6 points, so we have six extension points can be adding to it in the following orders:123,367,611,855,1099,1343. Let ๐‘„244 ๐‘1 = ๐‘‚244[244,6]โ‹ƒ{๐‘1}, ๐‘1=123. The ๐‘ก๐‘– -distribution of this orbit is (๐‘ก0 , ๐‘ก1, ๐‘ก7) = (15301, 924, 1), so ๐‘‚183 ๐‘1 is (7,7)-cap and ๐‘๐‘– values are ๐‘0 = 1452, ๐‘1 = 5. Since ๐‘0 โ‰  0, then ๐‘‚244 ๐‘1 is incomplete The (7,7)-cap will be complete when adding 515 points to it And the points are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, IHJPAS. 36(2)2023 380 131, 132, 133, 134, 135, 136,137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 2224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506,507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518. 9. The line ๐ˆ(22, 23, 1,0,0,0) meet the cap ๐‘‚366[366,4] in 4 points, so we have eight extension points can be adding to it in the following orders: 123,245,489,611,855,977,1221,1343. Let ๐‘‚366 ๐‘1 = ๐‘‚366[366,4]โ‹ƒ{๐‘1}, ๐‘1=123. The ๐‘ก๐‘–-distribution is (๐‘ก0 , ๐‘ก1, ๐‘ก5) =(15565, 660, 1), so ๐‘‚366 ๐‘1 is (5,5)- cap and ๐‘๐‘– values are ๐‘0 = 1452, ๐‘1 = 7. Since ๐‘0 โ‰  0, then ๐‘‚366 ๐‘1 is incomplete. The (5,5) will be complete when adding 262 points to it, and the points are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,255, 256, 257, 258, 259, 260, 261, 262, 263, 264. 10. The line ๐ˆ(22, 23, 1,0,0,0) meet the cap ๐‘‚488[488,3] in 3 points, so we have nine extension points can be adding to it in the following orders 123,245,376,611, 733,855, 1099,1221,1343. Let ๐‘‚488 ๐‘1 = ๐‘‚488[488,3]โ‹ƒ{๐‘1}, ๐‘1=123. The ๐‘ก๐‘–-distribution of this orbit is (๐‘ก0 , ๐‘ก1, ๐‘ก4)= (15697, 528, 1), so ๐‘‚488 ๐‘1 is (4,4)-cap and๐‘๐‘– values are ๐‘0 = 1452, ๐‘1 = 8. Since ๐‘0 โ‰  0, then ๐‘‚488 ๐‘1 is incomplete. The(4,4)-cap will be complete when adding 214 points to it from the index points ๐‘0 , and the IHJPAS. 36(2)2023 381 points are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216. 11. The line ๐ˆ(22, 23, 1,0,0,0) meet the cap ๐‘‚732[732,2] in 2 points, so we have ten extension points can be adding to it in the following orders: 123,245,367,489,611,855,977,1099, 1221,1343. Let ๐‘‚732 ๐‘1 =๐‘‚732[732,2]โ‹ƒ{๐‘1}, ๐‘1=123. The ๐‘ก๐‘–-distribution of this orbit is (๐‘ก0 , ๐‘ก1, ๐‘ก3) =(15829, 396, 1), so ๐‘‚732 ๐‘1 is (3,3)-cap and ๐‘๐‘– values are ๐‘0 = 1452, ๐‘1 = 9. Since ๐‘0 โ‰  0, then ๐‘‚732 ๐‘1 is incomplete. The(3,3)-cap will be complete when adding 115 points to it, and the points are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 3233, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,116. 3. Conclusion All the extension caps ๐‘‚3 ๐‘1 , ๐‘‚4 ๐‘1 , ๐‘‚6 ๐‘1 , ๐‘‚8 ๐‘1 ๐‘‚12 ๐‘1 , ๐‘‚24 ๐‘1 , ๐‘‚183 ๐‘1 , ๐‘‚244 ๐‘1 ,๐‘‚366 ๐‘1 , ๐‘‚488 ๐‘1 , ๐‘‚732 ๐‘1 are incomplete caps, and can be completed by adding some points of index zero. The details are summarized inTable 2. Let # denoted to the number of adding points to the incomplete cap to be complete. Table 2. Details about the extension complete caps. ๐‘‚๐‘– ๐‘1 ๐œ๐‘– -distribution ๐‘๐‘– - distribution # 1 ๐‘‚3 ๐‘1 (๐œ1, ๐œ2 , ๐œ3 , ๐œ4 , ๐œ5 , ๐œ6, ๐œ7, ๐œ8) (๐‘0 , ๐‘1) 147 (965,2909,997,6422,1022,2917,989,5) (955,20) 2 ๐‘‚4 ๐‘1 (๐œ0, ๐œ1, ๐œ2 , ๐œ3 , ๐œ4 , ๐œ5 , ๐œ6, ๐œ7) (๐‘0 , ๐‘1) 138 (785,1460,5028,1506,5106, 1482,800,5) (1077,20) 3 ๐‘‚6 ๐‘1 (๐œ0, ๐œ1, ๐œ2 , ๐œ3 , ๐œ4 , ๐œ5) (๐‘0 , ๐‘1) 68 (2958,1485,7270,1510 , 2985,18) (1093,126) 4 ๐‘‚8 ๐‘1 (๐œ0 , ๐œ1 , ๐œ2, ๐œ3 , ๐œ4 , ๐œ5) (๐‘0 , ๐‘1) 120 ( 3683,4394,5489, 1553,1100,9) (1217,63) 5 ๐‘‚12 ๐‘1 (๐œ0, ๐œ1, ๐œ2 , ๐œ3 ) (๐‘0 , ๐‘1) 16 IHJPAS. 36(2)2023 382 (7315,1518,7338,55) (846,495) 6 ๐‘‚24 ๐‘1 (๐œ0, ๐œ1, ๐œ2 , ๐œ3) (๐‘0 , ๐‘1) 65 (9859,4500,1855,12) (1294,108) 7 ๐‘‚183 ๐‘1 (๐œ0 , ๐œ1 , ๐œ2, ๐œ4 , ๐œ5) (๐‘0 , ๐‘1) 251 (15056,1148,20,1,1) (1448,7) 8 ๐‘‚244 ๐‘1 (๐œ0, ๐œ1, ๐œ7) (๐‘0 , ๐‘1) 515 (15301,924,1) (1452,5) 9 ๐‘‚366 ๐‘1 (๐œ0, ๐œ1, ๐œ5) (๐‘0 , ๐‘1) 262 (15565,660,1) (1452,7) 10 ๐‘‚488 ๐‘1 (๐œ0, ๐œ1, ๐œ4) (๐‘0 , ๐‘1) 214 (15697,528,1) (1452,8) 11 ๐‘‚732. ๐‘1 (๐œ0, ๐œ1, ๐œ3) (๐‘0 , ๐‘1) 115 (15829,396,1) (1452,9) Acknowledgment The authors would like to thanks the University of Mustansiriyah, department of Mathematics in the College of Science for their motivation and support. References 1. Hirschfeld, J.W.P, Finite projective spaces of three dimensions, New York: Ox-ford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1985. 2. Hirschfeld, J.W.P, Projective geometries over finite fields. 2nd edn., New York: Ox-ford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1998. 3. Radhi, J.Sh.; Al-Zangana, E.B.. Complete (๐‘˜, ๐‘Ÿ)-caps from orbits in ๐‘ƒ๐บ(3,11). Iraqi Journal of Science (IJS), To appear. 2022, 64(1). 4. Al-seraji, N.A.; Al-Rikabi, A.J.; Al-Zangana, E.B.. Caps by groups action on the ๐‘ƒ๐บ(3,8). Iraqi Journal of Science (IJS), 2022, 63(4),1755-1764. 5. Al-Zangana, E.B.;Kasm Yahya, N.Y.. Subgroups and orbits by companion matrix in three dimensional projective space. Baghdad Sci. J., 2022, 19(4), 805-810. 6. Al-Zangana, E.B.; Joudah, S.A.. Action of group on the projective plane over field ๐บ๐น(41). J. phys. Conf. Ser., 2018, 1033(1):012059. 7. Al-Seraji, N.A.; Alnussairy, E.A.; Jafar, Z.S. The group action on the finite projective planes on order 53,61,64. Journal of discrete Mathematical Sciences and Cryptography, 2020, 23(8), 1573-1582. 8. The GAP Group. GAP. Reference manual. Version 4.11.1 released on 02 March 2021. [Online]. https://www.gap-system.org.