IHJPAS. 36(2)2023 390 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract This paper deals with the mathematical method for extracting the Exponential Rayleighh (ER) distribution based on mixed between the cumulative distribution function of Exponential distribution and the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for 𝐸𝑅 distribution ( Mode, The Median, π‘Ÿπ‘‘β„Ž moment, The Variance, Coefficient of Skewness , Coefficient of Kurtosis, Moment Generating Function, Factorial moment generating function, Quantile Function, Characteristic Function ). Then, we present a structure of a new distribution based on a modified weighted version of Azzalini’s named Modified Weighted Exponential Rayleigh (MWER) distribution such that this new distribution is generalization of the ER distribution and provide some special models of the π‘€π‘ŠπΈπ‘… distribution, as well as derived different statistical properties for π‘€π‘ŠπΈπ‘… distribution. Keywords: Exponential Rayleigh (ER) distribution, Modified Weighted Exponential Rayleigh (MWER) distribution. 1.Introduction Statistical distributions are very important for parametric inferences and are usually applied to describe real world phenomena. Although they are useful in several scientific fields, it is observed that most common distributions, such as Exponential, Gamma, Weibull, Rayleigh and Lindley are not sufficiently flexible to accommodate various phenomena of nature for example, while exponential distribution is frequently defined as flexible, its hazard function is constant. For this cause, researchers have focused on the expansion of these common distributions in order to Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq doi.org/10.30526/36.2.3044 Article history: Received 18 September 2022, Accepted 12 December 2022, Published in April 2023. A Class of Exponential Rayleigh Distribution and New Modified Weighted Exponential Rayleigh Distribution with Statistical Properties Iden Hasan Hussein 2Department of Mathematic, College of Science for Women, University of Baghdad, Baghdad, Iraq Idenalkanani58@gmail.com Lamyaa Khalid Hussein 1Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq lamyaakhalid8242@gmail.com Huda Abdullah Rasheed 3Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq iraqalnoor1@gmail.com https://creativecommons.org/licenses/by/4.0/ mailto:Idenalkanani58@gmail.com mailto:lamyaakhalid8242@gmail.com mailto:iraqalnoor1@gmail.com IHJPAS. 36(2)2023 391 produce a more and more realistic and flexible models for data. In 1880, [1] introduced the Rayleigh distribution this distribution with one scale parameter is one of the most widely used distributions. Exponential and Rayleigh were an important distribution in statistics and operation research [2]. [3] mixed Exponential and Rayleigh distributions based on T-X families. [4]. presented the finite mixture of Exponential Rayleigh and Burr Type-XII distribution. [5] mixed multivariate Exponential distribution and the multivariate Rayleigh distribution to obtained Multivariate Rayleigh and Exponential Distributions. [6] introduced a new mixture distribution based on the tail of mixed between Exponential Rayleigh and Exponential Weibull distributions using an application (minimum). There are various methods of inputting the shape parameter of a probability distribution model and they may result in a variety of weighted distributions. The weighted distributions are widely used in reliability, survival, bio-medicine, environment, and many other fields of immense practical interest in mathematics, probability, statistics. These distributions naturally arise as a result of observations created by a random process and recorded with some weight functions [7]. The aim of this paper, two distributions have been introduced Exponential Rayleigh distribution this distribution can be obtained based on mixed between cumulative distribution function of Exponential distribution and the cumulative distribution function of Rayleigh distribution using an application (maximum) and present a new distribution named Modified Weighted Exponential Rayleigh distribution built on a modified weighted version of Azzalini’s (1985), this new distribution is a generalization of the Exponential Rayleigh distribution, as well as present the most important statistical properties of these two distributions, finally the conclusion of this paper is determined. 2. Exponential Rayleigh Distribution A continuous non-negative random variable 𝑍 is called to have an Exponential distribution with parameter 𝛼, if its probability density function is given by [8]: 𝑓(𝑧; 𝛼)𝐸 = 𝛼 𝑒 βˆ’π›Όπ‘§ ; 𝑧 β‰₯ 0; 𝛼 > 0 …(1) zero otherwise. Where 𝛼 is a scale parameter. The cumulative distribution function is: 𝐹(𝑧; 𝛼)𝐸 = 1 βˆ’ 𝑒 βˆ’π›Όπ‘§ ; 𝑧 β‰₯ 0; 𝛼 > 0 …(2) A continuous non-negative random variable π‘Œ is called to have a Rayleigh distribution with parameter πœ†, if its probability density function is given by [9]: 𝑓(𝑦; πœ†)𝑅 = πœ†π‘¦ 𝑒 βˆ’ πœ† 2 𝑦2 ; 𝑦 β‰₯ 0; πœ† > 0 …(3) zero otherwise. Where πœ† is a scale parameter. The cumulative distribution function is: 𝐹(𝑦; πœ†)𝑅 = 1 βˆ’ 𝑒 βˆ’ πœ† 2 𝑦2 ; 𝑦 β‰₯ 0; πœ† > 0 …(4) The Exponential Rayleigh distribution introduced by Mohammed and Hussein in (2019) depends on mixed of the tail (survival) function of Exponential distribution and the tail (survival) function of Rayleigh distribution using an application (minimum) [6]. This distribution can be also generated in another way depending on mixed between the cumulative distribution function of IHJPAS. 36(2)2023 392 Exponential distribution as in equation (2) and cumulative distribution function of Rayleigh distributions as in equation (4) using an application (maximum) as follows: Let 𝑋 = π‘šπ‘Žπ‘₯(𝑍, π‘Œ) where 𝑍~𝐸(𝛼), π‘Œ~𝑅(πœ†) , 𝑍 and π‘Œ are two independent random variables then: 𝐹(π‘₯; 𝛼, πœ† )𝐸𝑅 = 1 βˆ’ π‘π‘Ÿ(π‘šπ‘Žπ‘₯(𝑍, π‘Œ) > π‘₯) 𝐹(π‘₯; 𝛼, πœ† )𝐸𝑅 = 1 βˆ’ [π‘π‘Ÿ(𝑍 > π‘₯). π‘π‘Ÿ(π‘Œ > π‘₯)] 𝐹(π‘₯; 𝛼, πœ† )𝐸𝑅 = 1 βˆ’ [( ∫ 𝛼 𝑒 βˆ’π›Όπ‘§ 𝑑𝑧 ∞ π‘₯ ). (∫ πœ†π‘¦ 𝑒 βˆ’ πœ† 2 𝑦2 𝑑𝑦 ∞ π‘₯ )] 𝐹(π‘₯; 𝛼, πœ† )𝐸𝑅 = 1 βˆ’ 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ; π‘₯ β‰₯ 0; 𝛼, πœ† > 0 …(5) Figure 1. plot of the cumulative distribution function of 𝐸𝑅 distribution for πœ† = 0.1 and different values of (𝛼 = 0.1,0.2,0.3,0.4,0.5, 0.6, 0.7 )[ MATLAB R2013a ]. The probability density function of Exponential Rayleigh 𝐸𝑅 distribution is given by: 𝑓(π‘₯; 𝛼, πœ† )𝐸𝑅 = (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ; π‘₯ β‰₯ 0; 𝛼, πœ† > 0 …(6) zero otherwise. Where 𝛼 π‘Žnd πœ† are scale parameters. Such that, β€’ 𝑓(π‘₯; 𝛼, πœ† )𝐸𝑅 > 0 β€’ ∫ 𝑓(π‘₯; 𝛼, πœ† )𝐸𝑅 ∞ 0 𝑑π‘₯ = ∫ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ = βˆ’ [ 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ] 0 ∞ = 1 Figure 2. plot of the probability density function of 𝐸𝑅 distribution for πœ† = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7 )[MATLABR2013a]. IHJPAS. 36(2)2023 393 β€’ The Survival function is given by: 𝑆(𝑑; 𝛼, πœ† )𝐸𝑅 = 𝑒 βˆ’ (𝛼𝑑 + πœ† 2 𝑑2) ; 𝑑 β‰₯ 0; 𝛼, πœ† > 0 …(7) Figure 3. plot of the survival function of 𝐸𝑅 distribution for πœ† = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. The Hazard rate function is obtained by: β„Ž(𝑑; 𝛼, πœ† )𝐸𝑅 = 𝛼 + πœ†π‘‘ ; 𝑑 β‰₯ 0; 𝛼, πœ† > 0 …(8) Figure 4. plot of hazard rate function of 𝐸𝑅 distribution for πœ† = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. The Reverse hazard rate function is given by: βˆ…(𝑑; 𝛼, πœ†)𝐸𝑅 = (𝛼+πœ†π‘‘) 𝑒 βˆ’ (𝛼𝑑 + πœ† 2 𝑑2) 1βˆ’ 𝑒 βˆ’ (𝛼𝑑 + πœ† 2 𝑑2) ; 𝑑 β‰₯ 0; 𝛼, πœ† > 0 …(9) Figure 5. plot of the reverse hazard rate function of 𝐸𝑅 distribution for πœ† = 0.1and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. 2.1 Some Statistical Properties of 𝑬𝑹 Distribution 2.1.1 The Mode We can give the mode of 𝐸𝑅 distribution as follows: t t T h e S u rv iv a l F u n c ti o n IHJPAS. 36(2)2023 394 πœ•π‘“(π‘₯; 𝛼, πœ†)𝐸𝑅 πœ•π‘₯ = βˆ’ (𝛼 + πœ†π‘₯)2 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) + πœ† 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) [βˆ’ (𝛼 + πœ†π‘₯)2 + πœ†] 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) = 0 …(10) It is clear that πœ•π‘“(π‘₯;𝛼,πœ†)𝐸𝑅 πœ•π‘₯ = [ βˆ’ {β„Ž(π‘₯; 𝛼, πœ†)𝐸𝑅 } 2 + β„Žβ€²(π‘₯; 𝛼, πœ†)𝐸𝑅 ] 𝑆(π‘₯; 𝛼, πœ†)𝐸𝑅 , Where β„Ž(π‘₯; 𝛼, πœ†)𝐸𝑅 is the hazard rate function given in equation (8), and 𝑆(π‘₯; 𝛼, πœ†)𝐸𝑅 is the Survival function was given in equation (7). Since 𝑆(π‘₯; 𝛼, πœ†)𝐸𝑅 β‰  0. Thus dividing the equation (10) by 𝑆(π‘₯; 𝛼, πœ†)𝐸𝑅 , we get: πœ†2π‘₯2 + 2 πœ†π›Όπ‘₯ + (𝛼2 βˆ’ πœ†) = 0 Based on the law of the constitution, we get: π‘₯ = βˆ’(2 πœ†π›Ό) βˆ“ √(2 πœ†π›Ό)2βˆ’ 4 πœ†2(𝛼2βˆ’πœ†) 2πœ†2 …(11) Since π‘₯ > 0, the negative value of π‘₯ is ignored. Suppose that π‘₯ = π‘₯0 that is a root of equation (11). This root based on the second derivative of the equation: If πœ•2𝑓(π‘₯;𝛼,πœ†)𝐸𝑅 πœ•π‘₯2 βƒ’π‘₯=π‘₯0 < 0 the root is the local maximum. If πœ•2𝑓(π‘₯;𝛼,πœ†)𝐸𝑅 πœ•π‘₯2 βƒ’π‘₯=π‘₯0 > 0 the root is the local minimum. If πœ•2𝑓(π‘₯;𝛼,πœ†)𝐸𝑅 πœ•π‘₯2 βƒ’π‘₯=π‘₯0 = 0 the point is inflection. 2.1.2 The Median The median of 𝐸𝑅 distribution is given by: 1 βˆ’ 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) = 1 2 πœ† π‘₯2 + 2 𝛼π‘₯ βˆ’ 2 ln 2 = 0 Based on the law of the constitution, we get: π‘₯ = βˆ’(2𝛼) βˆ“ √4𝛼2+ 8 πœ† 𝑙𝑛 2 2 πœ† …(12) Since π‘₯ > 0, the negative value of π‘₯ will be ignored. 2.1.3 The Moment about the Origin The π‘Ÿπ‘‘β„Ž moment about the origin can be obtained by: 𝐸(π‘‹π‘Ÿ )𝐸𝑅 = ∫ π‘₯ π‘Ÿ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ …(13) Let 𝐾(π‘Ÿ, 𝛼, πœ†) = π‘₯π‘Ÿ 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) …(14) By Maclaurin series: π‘’βˆ’π›Όπ‘₯ = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(15) Substituting equation (15) in equation (14), we get: 𝐾(π‘Ÿ, 𝛼, πœ†) = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 …(16) Substituting equation (16) in equation (13) we get: 𝐸(π‘‹π‘Ÿ )𝐸𝑅 = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼 π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ† π‘₯π‘Ÿ+𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯] …(17) Now, solve the first integral as follows: 𝐿1 = ∫ 𝛼 π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ = 𝛼 2 π‘Ÿ+π‘›βˆ’1 2 πœ† π‘Ÿ+𝑛+1 2 𝛀( π‘Ÿ+𝑛+1 2 ) …(18) Now, solve the second integral as follows: IHJPAS. 36(2)2023 395 𝐿2 = ∫ πœ† π‘₯ π‘Ÿ+𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ = 2 π‘Ÿ+𝑛 2 πœ† π‘Ÿ+𝑛 2 𝛀( π‘Ÿ+𝑛+2 2 ) …(19) Substituting equations (18) and (19) in equation (17) we get: 𝐸(π‘‹π‘Ÿ )𝐸𝑅 = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 2 π‘Ÿ+𝑛 2 πœ† π‘Ÿ+𝑛 2 [ 𝛼 √2πœ† 𝛀 ( π‘Ÿ+𝑛+1 2 ) + 𝛀 ( π‘Ÿ+𝑛+2 2 )] …(20) The Mean: Let π‘Ÿ = 1 in equation (20) we get the first moment which is called the mean, thus: 𝐸(𝑋)𝐸𝑅 = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 2 1+𝑛 2 πœ† 1+𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+2 2 ) + 𝛀 ( 𝑛+3 2 )] …(21) The Variance: The general form of 𝑣(𝑋) of 𝐸𝑅 distribution is given by: 𝑣(𝑋)𝐸𝑅 = 𝐸(𝑋 2)𝐸𝑅 βˆ’ [𝐸(𝑋)𝐸𝑅 ] 2 𝑣(𝑋)𝐸𝑅 = [βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 2 2+𝑛 2 πœ† 2+𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+3 2 ) + 𝛀 ( 𝑛+4 2 )]] – [βˆ‘ (βˆ’π›Ό)𝑛 𝑛! ∞ 𝑛=0 2 1+𝑛 2 πœ† 1+𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+2 2 ) + 𝛀 ( 𝑛+3 2 )]] 2 …(22) 2.1.4 Coefficient of Skewness The general form of the Coefficient of Skewness (𝐢. 𝑆) of 𝐸𝑅 distribution is given by: 𝐢. 𝑆𝐸𝑅 = 𝐸(𝑋3) 𝐸𝑅 [𝐸(𝑋2)𝐸𝑅] 3 2 = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! βˆžπ‘›=0 2 3+𝑛 2 πœ† 3+𝑛 2 [ 𝛼 √2πœ† 𝛀( 𝑛+4 2 )+ 𝛀( 𝑛+5 2 )] [βˆ‘ (βˆ’π›Ό)𝑛 𝑛! βˆžπ‘›=0 2 2+𝑛 2 πœ† 2+𝑛 2 [ 𝛼 √2πœ† 𝛀( 𝑛+3 2 )+ 𝛀( 𝑛+4 2 )]] 3 2 …(23) 2.1.5 Coefficient of Kurtosis The general form of the Coefficient of Kurtosis (𝐢. 𝐾) of 𝐸𝑅 distribution is given by: 𝐢. 𝐾𝐸𝑅 = 𝐸(𝑋4) 𝐸𝑅 [𝐸(𝑋2)𝐸𝑅] 2 βˆ’ 3 = βˆ‘ (βˆ’π›Ό)𝑛 𝑛! βˆžπ‘›=0 2 4+𝑛 2 πœ† 4+𝑛 2 [ 𝛼 √2πœ† 𝛀( 𝑛+5 2 )+ 𝛀( 𝑛+6 2 )] [βˆ‘ (βˆ’π›Ό)𝑛 𝑛! βˆžπ‘›=0 2 2+𝑛 2 πœ† 2+𝑛 2 [ 𝛼 √2πœ† 𝛀( 𝑛+3 2 )+ 𝛀( 𝑛+4 2 )]] 2 βˆ’ 3 …(24) 2.1.6 Moment Generating Function The moment generating function of 𝐸𝑅 distribution can be derived as follows: 𝑀𝑋 (𝑑)𝐸𝑅 = 𝐸(𝑒 π‘₯𝑑 ) = ∫ 𝑒 π‘₯𝑑 (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ 𝑀𝑋 (𝑑)𝐸𝑅 = ∫ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ ((π›Όβˆ’π‘‘) π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ …(25) Let π‘Š((𝛼 βˆ’ 𝑑), πœ†) = 𝑒 βˆ’ ((π›Όβˆ’π‘‘) π‘₯ + πœ† 2 π‘₯2) …(26) By Maclaurin series: π‘’βˆ’(π›Όβˆ’π‘‘)π‘₯ = βˆ‘ (βˆ’(π›Όβˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(27) Substituting equation (27) in equation (26) we get: IHJPAS. 36(2)2023 396 π‘Š((𝛼 βˆ’ 𝑑), πœ†) = βˆ‘ (βˆ’(π›Όβˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 …(28) Substituting equation (28) in equation (25) we get: 𝑀𝑋 (𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ† π‘₯𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯] …(29) Now, solve the first integral as follows: 𝐿1 = ∫ 𝛼 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ = 𝛼 2 π‘›βˆ’1 2 πœ† 𝑛+1 2 𝛀( 𝑛+1 2 ) …(30) Now, solve the second integral as follows: 𝐿2 = ∫ πœ† π‘₯ 𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ = 2 𝑛 2 πœ† 𝑛 2 𝛀( 𝑛+2 2 ) …(31) Substituting equations (30) and (31) in equation (29) yields: 𝑀𝑋 (𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(32) 2.1.7 Factorial Moment Generating Function The factorial moment generating function of 𝐸𝑅 distribution can be obtained as follows: 𝑀(𝑑)𝐸𝑅 = 𝐸(𝑑 π‘₯ ) = ∫ 𝑑π‘₯ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ 𝑀(𝑑)𝐸𝑅 = ∫ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ ((π›Όβˆ’ln (𝑑)) π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ …(33) Let 𝐴((𝛼 βˆ’ ln(𝑑)) , πœ†) = 𝑒 βˆ’ ((π›Όβˆ’π‘™π‘›(𝑑)) π‘₯ + πœ† 2 π‘₯2) …(34) By Maclaurin series: π‘’βˆ’(π›Όβˆ’ln (𝑑))π‘₯ = βˆ‘ (βˆ’(π›Όβˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(35) Substituting equation (35) in equation (34) we get: 𝐴((𝛼 βˆ’ ln(𝑑)), πœ†) = βˆ‘ (βˆ’(π›Όβˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 …(36) Substituting equation (36) in equation (33) we get: 𝑀(𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ† π‘₯𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯] …(37) Now, based on equations (30) and (31) we get: 𝑀(𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’ln(𝑑)))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(38) 2.1.8 Characteristic Function The Characteristic function of 𝐸𝑅 distribution can be derived as follows: βˆ…π‘‹ (𝑖𝑑)𝐸𝑅 = 𝐸(𝑒 𝑖𝑑π‘₯ ) = ∫ 𝑒𝑖𝑑π‘₯ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ βˆ…π‘‹ (𝑖𝑑)𝐸𝑅 = ∫ (𝛼 + πœ†π‘₯) 𝑒 βˆ’ ((π›Όβˆ’it) π‘₯ + πœ† 2 π‘₯2) ∞ 0 𝑑π‘₯ …(39) Let 𝑃((𝛼 βˆ’ it), πœ†) = 𝑒 βˆ’ ((π›Όβˆ’π‘–π‘‘) π‘₯ + πœ† 2 π‘₯2) …(40) By Maclaurin series: IHJPAS. 36(2)2023 397 π‘’βˆ’(π›Όβˆ’it)π‘₯ = βˆ‘ (βˆ’(π›Όβˆ’it))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(41) Substituting equation (41) in equation (40) gives: 𝑃((𝛼 βˆ’ it), πœ†) = βˆ‘ (βˆ’(π›Όβˆ’it))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 …(42) Substituting equation (42) in equation (39) gives: βˆ…π‘‹ (𝑖𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’it))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼 π‘₯ 𝑛 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ† π‘₯𝑛+1 𝑒 βˆ’ πœ† 2 π‘₯2 ∞ 0 𝑑π‘₯] …(43) Now, based on equations (30) and (31) we get: βˆ…π‘‹ (𝑖𝑑)𝐸𝑅 = βˆ‘ (βˆ’(π›Όβˆ’it))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 [ 𝛼 √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(44) 2.1.9 Quantile Function The quantile function of 𝐸𝑅 random variable is defined as a solution of 𝑝(π‘₯ ≀ π‘₯(π‘ž)) = 𝐹(π‘₯(π‘ž))𝐸𝑅 w.r.t. π‘₯(π‘ž), Therefore, via using the inverse transformation to equation (5), it can be found as: π‘₯(π‘ž) = 𝐹 βˆ’1(π‘ž) ; π‘₯(π‘ž) > 0; 0 < π‘ž < 1 π‘ž = 1 βˆ’ 𝑒 βˆ’ (𝛼π‘₯(π‘ž) + πœ† 2 π‘₯(π‘ž) 2 ) 𝑙𝑛 ( 1 βˆ’ π‘ž) = βˆ’(𝛼π‘₯(π‘ž) + πœ† 2 π‘₯(π‘ž) 2 ) πœ† π‘₯(π‘ž) 2 + 2𝛼π‘₯(π‘ž) + 2 𝑙𝑛 ( 1 βˆ’ π‘ž) = 0 Based on law of the constitution, we get: π‘₯(π‘ž) = βˆ’(2𝛼)βˆ“βˆš4𝛼2βˆ’8 πœ† 𝑙𝑛 (1βˆ’π‘ž) 2 πœ† …(45) Since π‘₯(π‘ž) > 0, the negative values of π‘₯(π‘ž) will be ignored. 3. Modified Weighted Exponential Rayleigh Distribution This section discusses adding a shape parameter to Exponential Rayleigh 𝐸𝑅 distribution and generating a Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution as follows: The general definition for extracting modified weighted non-negative models depending on a modified weighted version of Azzalini’s (1985) can be summarized by [10]: Let 𝑔(π‘₯) be a probability density function and οΏ½Μ…οΏ½(π‘₯) be corresponding reliability (survival) function such that the cumulative distribution function 𝐺(π‘₯) exist. Then the modified weighted model of distribution is given by: 𝑓(π‘₯)π‘€π‘Š = 𝑀 𝑔(π‘₯) οΏ½Μ…οΏ½(πœƒπ‘₯) Where, 𝑀 is the normalizing constant and πœƒ > 0 is the shape parameter. In our work this parameter πœƒ does not depend on the degree of the random variable X. Now, consider a probability density function of 𝐸𝑅 distribution as in equation (6) and the survival function as in equation (7), according to the previous definition for extracting modified weighted non-negative models, put 𝑀 = 1 + πœƒ extract the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution as follows: 𝑓(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = 𝑀(𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) 𝑒 βˆ’ (π›Όπœƒπ‘₯ + πœ†πœƒ 2 π‘₯2) 𝑓(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = (1 + πœƒ)(𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) 𝑓(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ; π‘₯ β‰₯ 0 …(46) zero otherwise . IHJPAS. 36(2)2023 398 Where 𝛼, πœ† > 0 are scale parameters and πœƒ > 0 is the shape parameter. Such that, β€’ 𝑓(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… > 0 β€’ ∫ 𝑓(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… 𝑑π‘₯ ∞ 0 = ∫ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) 𝑑π‘₯ ∞ 0 = βˆ’ [ 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ] 0 ∞ = 1 Figure 6. plot of the probability density function of π‘€π‘ŠπΈπ‘… distribution for πœ† = πœƒ = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. The cumulative distribution function of π‘€π‘ŠπΈπ‘… can be obtained by: 𝐹(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = 1 βˆ’ 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ; π‘₯ β‰₯ 0; 𝛼, πœ†, πœƒ > 0 …(47) Figure 7. plot of the cumulative distribution function of π‘€π‘ŠπΈπ‘… distribution for πœ† = πœƒ = 0.1 and different values of (𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. The Survival function of π‘€π‘ŠπΈπ‘… is given by: 𝑆(𝑑; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = 𝑒 βˆ’ (𝛼(1+πœƒ)𝑑 + πœ†(1+πœƒ) 2 𝑑2) ; 𝑑 β‰₯ 0; 𝛼, πœ†, πœƒ > 0 …(48) IHJPAS. 36(2)2023 399 Figure 8. plot of the survival function of π‘€π‘ŠπΈπ‘… distribution for πœ† = πœƒ = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. The Hazard rate function of π‘€π‘ŠπΈπ‘… is given by: β„Ž(𝑑; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = 𝛼(1 + πœƒ) + πœ†(1 + πœƒ)𝑑 ; 𝑑 > 0; 𝛼, πœ†, πœƒ > 0 …(49) Figure 9. plot of hazard rate function of π‘€π‘ŠπΈπ‘… distribution for πœ† = πœƒ = 0.1 and different values of (𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) [ MATLAB R2013a ]. The Reverse hazard rate function of π‘€π‘ŠπΈπ‘… is given by: βˆ…(𝑑; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… = (𝛼(1+πœƒ)+πœ†(1+πœƒ)𝑑) 𝑒 βˆ’ (𝛼(1+πœƒ)𝑑 + πœ†(1+πœƒ) 2 𝑑2) 1βˆ’ 𝑒 βˆ’ (𝛼(1+πœƒ)𝑑 + πœ†(1+πœƒ) 2 𝑑2) ; 𝑑 β‰₯ 0; 𝛼, πœ†, πœƒ > 0 …(50) Figure 10. plot of the reverse hazard rate function of π‘€π‘ŠπΈπ‘… distribution for πœ† = πœƒ = 0.1 and different values of ( 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ) [ MATLAB R2013a ]. IHJPAS. 36(2)2023 400 3.1 Special Models In this section, we provide special models of the π‘€π‘ŠπΈπ‘… distribution: 1. When 𝛼 = πœƒ = 0 the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution reduces to give the probability density function of Rayleigh distribution [11]: 𝑓(π‘₯; πœ†)𝑅 = πœ†π‘₯ 𝑒 βˆ’ πœ† 2 π‘₯2 ; π‘₯ β‰₯ 0; πœ† > 0 zero otherwise. Where πœ† is scale parameter. 2. When πœ† = πœƒ = 0 the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution reduces to give the probability density function of Exponential distribution [7]: 𝑓(π‘₯; 𝛼)𝐸 = 𝛼 𝑒 βˆ’π›Όπ‘₯ ; π‘₯ β‰₯ 0; 𝛼 > 0 zero otherwise . Where 𝛼 is scale parameter. 3. When πœƒ = 0 the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution reduces to give the probability density function of Exponential Rayleigh 𝐸𝑅 distribution: 𝑓(π‘₯; 𝛼, πœ† )𝐸𝑅 = (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) ; π‘₯ β‰₯ 0; 𝛼, πœ† > 0 zero otherwise . Where 𝛼 π‘Žnd πœ† are scale parameters. 4. When πœ† = 0 the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution reduces to give the probability density function of New Weighted Exponential distribution [12]: 𝑓(π‘₯; 𝛼, πœƒ)π‘π‘ŠπΈ = 𝛼(1 + πœƒ) 𝑒 βˆ’ 𝛼(1+πœƒ)π‘₯ ; π‘₯ β‰₯ 0; 𝛼, πœƒ > 0 zero otherwise . Where 𝛼 is scale parameter and πœƒ is shape parameter. 5. When 𝛼 = 0 the probability density function of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution reduces to give the probability density function of new distribution named Modified Weighted Rayleigh distribution, this distribution is obtain depending on definition of modified weighted version of Azzalini’s (1985) as follows: Consider a probability density function of Rayleigh distribution as in equation (3) and the survival function: 𝑆(π‘₯; πœ†)𝑅 = 𝑒 βˆ’ πœ† 2 π‘₯2 depending on definition of modified weighted version of Azzalini’s (1985) and put 𝑀 = 1 + πœƒ , define the probability density function of Modified Weighted Rayleigh π‘€π‘Šπ‘… distribution as follows: IHJPAS. 36(2)2023 401 𝑓(π‘₯; πœ†, πœƒ)π‘€π‘Šπ‘… = π‘€πœ†π‘₯ 𝑒 βˆ’ πœ† 2 π‘₯2 𝑒 βˆ’ πœ†πœƒ 2 π‘₯2 𝑓(π‘₯; πœ†, πœƒ)π‘€π‘Šπ‘… = πœ†(1 + πœƒ)π‘₯ 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ; π‘₯ β‰₯ 0; πœ†, πœƒ > 0 zero otherwise . Where πœ† is a scale parameter and πœƒ is the shape parameter. Such that; β€’ 𝑓(π‘₯; πœ†, πœƒ)π‘€π‘Šπ‘… > 0 β€’ ∫ 𝑓(π‘₯; πœ†, πœƒ)π‘€π‘Šπ‘… 𝑑π‘₯ = ∫ πœ†(1 + πœƒ)π‘₯ 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯ ∞ 0 ∞ 0 = βˆ’ [ 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ] 0 ∞ = 1 Table 1. Special models of the Modified Weighted Exponential Rayleigh MWER distribution Distribution 𝑓(π‘₯) 𝐹(π‘₯) 𝑆(𝑑) β„Ž(𝑑) 𝑅 πœ†π‘₯𝑒 βˆ’ πœ† 2 π‘₯2 1 βˆ’ 𝑒 βˆ’ πœ† 2 π‘₯2 𝑒 βˆ’ πœ† 2 𝑑2 πœ†π‘‘ 𝐸 𝛼 π‘’βˆ’π›Όπ‘₯ 1 βˆ’ π‘’βˆ’π›Όπ‘₯ π‘’βˆ’π›Όπ‘‘ 𝛼 𝐸𝑅 (𝛼 + πœ†π‘₯) 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) 1 βˆ’ 𝑒 βˆ’ (𝛼π‘₯ + πœ† 2 π‘₯2) 𝑒 βˆ’ (𝛼𝑑 + πœ† 2 𝑑2) 𝛼 + πœ†π‘‘ π‘π‘ŠπΈ 𝛼(1 + πœƒ) π‘’βˆ’ 𝛼(1+πœƒ)π‘₯ 1 βˆ’ π‘’βˆ’ 𝛼(1+πœƒ)π‘₯ π‘’βˆ’ 𝛼(1+πœƒ)𝑑 𝛼(1 + πœƒ) π‘€π‘Šπ‘… πœ†(1 + πœƒ)π‘₯ 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 1 βˆ’ 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑒 βˆ’ πœ†(1+πœƒ) 2 𝑑2 πœ†(1 + πœƒ)𝑑 3.2 Some Statistical Properties of 𝑴𝑾𝑬𝑹 Distribution 3.2.1 The Mode The mode of π‘€π‘ŠπΈπ‘… distribution can be derived as follows: πœ•π‘“(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… πœ•π‘₯ = βˆ’ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯)2 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) + πœ† (1 + πœƒ) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) [βˆ’ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯)2 + πœ†(1 + πœƒ)] 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) = 0 …(51) It is clear that πœ•π‘“(π‘₯;𝛼,πœ†,πœƒ)π‘€π‘ŠπΈπ‘… πœ•π‘₯ = [ βˆ’ {β„Ž(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… } 2 + β„Žβ€²(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… ] 𝑆(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… Where β„Ž(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… is the hazard rate function was given in equation (49), and 𝑆(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… is the survival function was given in equation (48). Since 𝑆(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… β‰  0 Thus dividing the equation (51) by 𝑆(π‘₯; 𝛼, πœ†, πœƒ)π‘€π‘ŠπΈπ‘… yeilds: πœ†2(1 + πœƒ)2π‘₯2 + 2 πœ† 𝛼(1 + πœƒ)2π‘₯ + 𝛼2(1 + πœƒ)2 βˆ’ πœ†(1 + πœƒ) = 0 IHJPAS. 36(2)2023 402 Based on the law of the Constitution, we get: π‘₯ = βˆ’2 πœ† 𝛼(1+πœƒ)2 βˆ“ √4𝛼2πœ†2(1+πœƒ)4βˆ’ 4 πœ†2(1+πœƒ)2(𝛼2(1+πœƒ)2βˆ’πœ†(1+πœƒ)) 2πœ†2 (1+πœƒ)2 …(52) The value of π‘₯ is ignor when π‘₯ < 0, suppose that π‘₯ = π‘₯0 that is a root of equation (52), If πœ•2𝑓(π‘₯;𝛼,πœ†,πœƒ)π‘€π‘ŠπΈπ‘… πœ•π‘₯2 βƒ’π‘₯=π‘₯0 < 0 the root is the local maximum. If πœ•2𝑓(π‘₯;𝛼,πœ†,πœƒ)π‘€π‘ŠπΈπ‘… πœ•π‘₯2 βƒ’π‘₯=π‘₯0 > 0 the root is the local minimum. If πœ•2𝑓(π‘₯;𝛼,πœ†,πœƒ)π‘€π‘ŠπΈπ‘… πœ•π‘₯2 βƒ’π‘₯=π‘₯0 = 0 the point is inflection. 3.2.2 The Median The median of π‘€π‘ŠπΈπ‘… distribution can be obtained as follows: 1 βˆ’ 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) = 1 2 πœ†(1 + πœƒ) π‘₯2 + 2 𝛼(1 + πœƒ)π‘₯ βˆ’ 2 ln 2 = 0 Based on law of the Constitution, we get: π‘₯ = βˆ’2𝛼(1+πœƒ) βˆ“ √4𝛼2(1+πœƒ)2+ 8 πœ†(1+πœƒ) 𝑙𝑛 2 2 πœ†(1+πœƒ) …(53) The value of π‘₯ is ignor when π‘₯ < 0. 3.2.3 The Moment about the Origin The π‘Ÿπ‘‘β„Ž moment about the origin can be defined as: 𝐸(π‘‹π‘Ÿ )π‘€π‘ŠπΈπ‘… = ∫ π‘₯ π‘Ÿ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ …(54) Let 𝐷(π‘Ÿ, 𝛼, πœ†, πœƒ) = π‘₯π‘Ÿ 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) …(55) By Maclaurin series: π‘’βˆ’π›Ό(1+πœƒ)π‘₯ = βˆ‘ (βˆ’π›Ό(1+πœƒ))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(56) Substituting equation (56) in equation (55) we get: 𝐷(π‘Ÿ, 𝛼, πœ†, πœƒ) = βˆ‘ (βˆ’π›Ό(1+πœƒ))𝑛 𝑛! ∞ 𝑛=0 π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 …(57) Substituting equation (57) in equation (54) we get: 𝐸(π‘‹π‘Ÿ )π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’π›Ό(1+πœƒ)) 𝑛 𝑛! ∞ 𝑛=0 [ ∫ 𝛼(1 + πœƒ)π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯ ∞ 0 + ∫ πœ†(1 + ∞ 0 πœƒ)π‘₯π‘Ÿ+𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯] …(58) Now, solve the first integral as follows: 𝐿1 = ∫ 𝛼(1 + πœƒ)π‘₯ π‘Ÿ+𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯ ∞ 0 = 𝛼 2 π‘Ÿ+π‘›βˆ’1 2 πœ† π‘Ÿ+𝑛+1 2 (1+πœƒ) π‘Ÿ+π‘›βˆ’1 2 𝛀( π‘Ÿ+𝑛+1 2 ) …(59) Now, solve the second integral as follows: 𝐿2 = ∫ πœ†(1 + πœƒ) π‘₯ π‘Ÿ+𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯ ∞ 0 = 2 π‘Ÿ+𝑛 2 πœ† π‘Ÿ+𝑛 2 (1+ πœƒ) π‘Ÿ+𝑛 2 𝛀( π‘Ÿ+𝑛+2 2 ) …(60) IHJPAS. 36(2)2023 403 Substituting equations (59) and (60) in equation (58) we get: 𝐸(π‘‹π‘Ÿ )π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 π‘Ÿ+𝑛 2 πœ† π‘Ÿ+𝑛 2 (1+ πœƒ) π‘Ÿ+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( π‘Ÿ+𝑛+1 2 ) + 𝛀 ( π‘Ÿ+𝑛+2 2 )] …(61) The Mean: Let π‘Ÿ = 1 in equation (61) we get the first moment which is called the mean, thus: 𝐸(𝑋)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 1+𝑛 2 πœ† 1+𝑛 2 (1+ πœƒ) 1+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+2 2 ) + 𝛀 ( 𝑛+3 2 )] …(62) The Variance: The general form of 𝑣(𝑋) of π‘€π‘ŠπΈπ‘… distribution is defined as: 𝑣(𝑋)π‘€π‘ŠπΈπ‘… = [βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 2+𝑛 2 πœ† 2+𝑛 2 (1+ πœƒ) 2+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+3 2 ) + 𝛀 ( 𝑛+4 2 )]] βˆ’ [βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 1+𝑛 2 πœ† 1+𝑛 2 (1+ πœƒ) 1+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+2 2 ) + 𝛀 ( 𝑛+3 2 )] ] 2 …(63) 3.2.4 Coefficient of Skewness The general form of the Coefficient of Skewness (𝐢. 𝑆) of π‘€π‘ŠπΈπ‘… distribution can be obtained by: 𝐢. π‘†π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! βˆžπ‘›=0 2 3+𝑛 2 πœ† 3+𝑛 2 (1+ πœƒ) 3+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀( 𝑛+4 2 )+ 𝛀( 𝑛+5 2 )] [βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 2+𝑛 2 πœ† 2+𝑛 2 (1+ πœƒ) 2+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀( 𝑛+3 2 )+ 𝛀( 𝑛+4 2 )]] 3 2 …(64) 3.2.5 Coefficient of Kurtosis The general form of the Coefficient of Kurtosis (𝐢. 𝐾) of π‘€π‘ŠπΈπ‘… distribution is given by: 𝐢. πΎπ‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 4+𝑛 2 πœ† 4+𝑛 2 (1+ πœƒ) 4+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀( 𝑛+5 2 )+ 𝛀( 𝑛+6 2 )] [βˆ‘ (βˆ’π›Ό(1+ πœƒ))𝑛 𝑛! ∞ 𝑛=0 2 2+𝑛 2 πœ† 2+𝑛 2 (1+ πœƒ) 2+𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀( 𝑛+3 2 )+ 𝛀( 𝑛+4 2 )]] 2 βˆ’ 3 …(65) 3.2.6 Moment Generating Function The moment generating function of π‘€π‘ŠπΈπ‘… distribution can be found as follows: 𝑀𝑋 (𝑑)π‘€π‘ŠπΈπ‘… = ∫ 𝑒 π‘₯𝑑 (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2)∞ 0 𝑑π‘₯ 𝑀𝑋 (𝑑)π‘€π‘ŠπΈπ‘… = ∫ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’π‘‘) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ …(66) Let 𝑇((𝛼(1 + πœƒ) βˆ’ 𝑑), πœ†) = 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’π‘‘) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) …(67) By Maclaurin series: π‘’βˆ’(𝛼(1+πœƒ)βˆ’π‘‘)π‘₯ = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(68) Substituting equation (68) in equation (67) we get: 𝑇((𝛼(1 + πœƒ) βˆ’ 𝑑), πœ†) = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 …(69) Substituting equation (69) in equation (66) we get: IHJPAS. 36(2)2023 404 𝑀𝑋 (𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼(1 + πœƒ) π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ†(1 + ∞ 0 πœƒ) π‘₯𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯] …(70) Now, solve the first integral as follows: 𝐿1 = ∫ 𝛼(1 + πœƒ) π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ∞ 0 𝑑π‘₯ = 𝛼 2 π‘›βˆ’1 2 πœ† 𝑛+1 2 (1+πœƒ) π‘›βˆ’1 2 𝛀( 𝑛+1 2 ) …(71) Now, solve the second integral as follows: 𝐿2 = ∫ πœ†(1 + πœƒ) π‘₯ 𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ∞ 0 𝑑π‘₯ = 2 𝑛 2 πœ† 𝑛 2 (1+πœƒ) 𝑛 2 𝛀( 𝑛+2 2 ) …(72) Substituting equations (71) and (72) in equation (70) yields: 𝑀𝑋 (𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’π‘‘))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 (1+πœƒ) 𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(73) 3.2.7 Factorial Moment Generating Function The factorial moment generating function of π‘€π‘ŠπΈπ‘… distribution can be obtained as follows: 𝑀(𝑑)π‘€π‘ŠπΈπ‘… = 𝐸(𝑑 π‘₯ ) = ∫ 𝑑π‘₯ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ 𝑀(𝑑)π‘€π‘ŠπΈπ‘… = ∫ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’ln (𝑑)) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ …(74) Let π‘ˆ((𝛼(1 + πœƒ) βˆ’ ln(𝑑)) , πœ†) = 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’π‘™π‘›(𝑑)) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) …(75) By Maclaurin series: π‘’βˆ’(𝛼(1+πœƒ)βˆ’ln (𝑑))π‘₯ = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(76) Substituting equation (76) in equation (75) we get: π‘ˆ((𝛼(1 + πœƒ) βˆ’ ln(𝑑)), πœ†) = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 …(77) Substituting equation (77) in equation (74) we get: 𝑀(𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’ln (𝑑)))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼(1 + πœƒ) π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ†(1 + ∞ 0 πœƒ) π‘₯𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯] … (78) Now, based on equations (71) and (72) we get: 𝑀(𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’ln(𝑑)))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 (1+πœƒ) 𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(79) 3.2.8 Characteristic Function The characteristic function of π‘€π‘ŠπΈπ‘… distribution can be found as follows: βˆ…π‘‹ (𝑖𝑑)π‘€π‘ŠπΈπ‘… = 𝐸(𝑒 𝑖𝑑π‘₯ ) = ∫ 𝑒𝑖𝑑π‘₯ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ βˆ…π‘‹ (𝑖𝑑)π‘€π‘ŠπΈπ‘… = ∫ (𝛼(1 + πœƒ) + πœ†(1 + πœƒ)π‘₯) 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’it) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) ∞ 0 𝑑π‘₯ …(80) Let 𝐢((𝛼(1 + πœƒ) βˆ’ it), πœ†) = 𝑒 βˆ’ ((𝛼(1+πœƒ)βˆ’π‘–π‘‘) π‘₯ + πœ†(1+πœƒ) 2 π‘₯2) …(81) IHJPAS. 36(2)2023 405 By Maclaurin series: π‘’βˆ’(𝛼(1+πœƒ)βˆ’it)π‘₯ = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’it))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 …(82) Substituting equation (82) in equation (8 1) gives: 𝐢((𝛼(1 + πœƒ) βˆ’ it), πœ†) = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’it))𝑛 𝑛! ∞ 𝑛=0 π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 …(83) Substituting equation (83) in equation (80) gives: βˆ…π‘‹ (𝑖𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’it))𝑛 𝑛! ∞ 𝑛=0 [∫ 𝛼(1 + πœƒ) π‘₯ 𝑛 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 ∞ 0 𝑑π‘₯ + ∫ πœ†(1 + ∞ 0 πœƒ) π‘₯𝑛+1 𝑒 βˆ’ πœ†(1+πœƒ) 2 π‘₯2 𝑑π‘₯] …(84) Now, based on equations (71) and (72) we get: βˆ…π‘‹ (𝑖𝑑)π‘€π‘ŠπΈπ‘… = βˆ‘ (βˆ’(𝛼(1+πœƒ)βˆ’it))𝑛 𝑛! ∞ 𝑛=0 2 𝑛 2 πœ† 𝑛 2 (1+πœƒ) 𝑛 2 [ 𝛼 βˆšπœƒ √2πœ† 𝛀 ( 𝑛+1 2 ) + 𝛀 ( 𝑛+2 2 )] …(85) 3.2.9 Quantile Function The quantile function of π‘€π‘ŠπΈπ‘… random variable is defined as a solution of 𝑝(π‘₯ ≀ π‘₯(π‘ž)) = 𝐹(π‘₯(π‘ž))π‘€π‘ŠπΈπ‘… w.r.t. π‘₯(π‘ž), Therefore, via using the inverse transformation to equation (47), it can be found as: π‘₯(π‘ž) = 𝐹 βˆ’1(π‘ž) ; π‘₯(π‘ž) > 0; 0 < π‘ž < 1 π‘ž = 1 βˆ’ 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯(π‘ž) + πœ†(1+πœƒ) 2 π‘₯(π‘ž) 2 ) 1 βˆ’ π‘ž = 𝑒 βˆ’ (𝛼(1+πœƒ)π‘₯(π‘ž) + πœ†(1+πœƒ) 2 π‘₯(π‘ž) 2 ) 𝑙𝑛 ( 1 βˆ’ π‘ž) = βˆ’(𝛼(1 + πœƒ)π‘₯(π‘ž) + πœ†(1 + πœƒ) 2 π‘₯(π‘ž) 2 ) πœ† (1 + πœƒ)π‘₯(π‘ž) 2 + 2𝛼(1 + πœƒ)π‘₯(π‘ž) + 2 𝑙𝑛 ( 1 βˆ’ π‘ž) = 0 Based on law of the constitution, we get: π‘₯(π‘ž) = βˆ’2𝛼(1+πœƒ)βˆ“βˆš4𝛼2(1+πœƒ)2βˆ’ 8 πœ† (1+πœƒ) 𝑙𝑛 (1βˆ’π‘ž) 2 πœ† (1+πœƒ) …(86) The values of π‘₯(π‘ž) will be ignored when π‘₯(π‘ž) < 0. 4.Conclusions In this paper, introduce Exponential Rayleigh 𝐸𝑅 distribution depending on mixed between cumulative distribution function of Exponential and Rayleigh distribution, as well as introduce a new class depending on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution, such that the Exponential Rayleigh 𝐸𝑅 distribution is special case of Modified Weighted Exponential Rayleigh π‘€π‘ŠπΈπ‘… distribution and provide some special models of the π‘€π‘ŠπΈπ‘… distribution. Different statistical properties such as the mode, the median, the π‘Ÿπ‘‘β„Ž moment about the origin, the moment generating function, factorial moment generating function, the characteristic function and quantile function are discuses and study for these two distributions. IHJPAS. 36(2)2023 406 References 1. Rayleigh, J. W. S. On the Resultant of a Large Number of Vibrations of the Some Pitch and of Arbitrary Phase, Philosophical Magazine Series, 1880,10, 60, 73 – 78. 2. Rahiem, N, A.; J., S. H.; Kalaf B. A. Estimate the Scale Parameter of Exponential Distribution Via Modified Two Stage Shrinkage Technique. Journal of College of Education, 2010, (6). 3. Fatima, K. ;Ahmad, S. Statistical Properties of Exponential Rayleigh Distribution and its Applications to Medical Science and Engineering, International Conference on Recent Innovations in Science, Agriculture, Engineering and Management 2017, 491 – 506. 4. Tahir, M; Aslam, M. Hussain, Z. ; Abbas, N. On the Finite Mixture of Exponential, Rayleigh and Burr Type-XII Distributions: Estimation of Parameters in Bayesian Framework, Electronic Journal of Applied Statistical Analysis, 2017,10, Issue 01, 271 – 293. 5. Isaac, R S.; Mehta, N. B. ; Ieee, S. M. Efficient Computation of Multivariate Rayleigh and Exponential Distributions, IEEE Wireless Communications Letters, 2019,8, 2, 456 – 459. 6. Mohammed, M. J. ; Hussein, I. H. Study of New Mixture Distribution, Journal of Engineering and Applied Sciences, 2019,14, 20, 7566 – 7573. 7. Shi, X; Oluyede, B. O. ; Pararai, M. Theoretical Properties of Weighted Generalized Rayleigh and Related Distribution, Theoretical Mathematics & Applications, 2012, 2, 2, 45 – 62. 8. Oguntunde, P. E; Balogun, O. S; Okagbue, H. I. ; Bishop, S. A. The Weibull-Exponential Distribution: Its Properties and Applications, Journal of Applied Sciences, 2015,15,11, 1305 – 1311. 9. Merovci, F. ; Elbatal, I. Weibull Rayleigh Distribution: Theory and Applications, Applied Mathematics and Information Sciences, 2015,9, 4, 2127 – 2137 10. Nasiru, S. Another Weighted Weibull Distribution from Azzalini’s Family, European Scientific Journal March, 2015,11, 9, 134 – 144. 11. Hussian, M. A. A Weighted Inverted Exponential Distribution, International Journal of Advanced Statistics and Probability, 2013,1, 3, 142 – 150. 12.Oguntunde, P E; Owoloko, E. A. ; Balogun, O. S. On A New Weighted Exponential Distribution: Theory and Application, Asian Journal of Applied Sciences, 2016,9, 1, 1 – 12. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962382