IHJPAS. 36 (3) 2023 365 This work is licensed under a Creative Commons Attribution 4.0 International License *Corresponding Author: mbhmsc2015110@gmail.com Abstract Let 𝑅 be a commutative ring with 1 and 𝑀 be left unitary 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. In this papers we introduced and studied concept P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ (An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be P-small compressible if 𝑀 can be embedded in every of it is nonzero P-small submodule of 𝑀. Equivalently, 𝑀 is P-small compressible if there exists a monomorphism : 𝑀 ⟢ 𝑁 ,0 β‰  𝑁 β‰ͺ𝑃 𝑀, 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be P-small retractable if π»π‘œπ‘š(𝑀, 𝐾) β‰  0 , for every non- zero P-small submodule 𝐾of 𝑀. Equivalently, 𝑀 is P-small retractable if there exists a homomorphism 𝑓: 𝑀 ⟢ 𝑁 whenever 0 β‰  𝑁 β‰ͺ𝑃 𝑀 as a generalization of compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ and retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ respectively and give some of their advantages characterizations and examples. Keywords: Compressible module, Retractable module, Small submodule, P-small submodule, P- small Compressible module, P-small Retractable module. Hollow module, PS-Hollow module. 1. Introduction Let R be a commutative ring with 1 and M be left unitary 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Authors introduced and studied concept small submodules. A proper submodule 𝑁 of an 𝑅 βˆ’module 𝑀 is termed a small submodule (𝑁 β‰ͺ 𝑀), if 𝑁 + 𝐿 β‰  𝑀 for every submodule 𝐿 of 𝑀[1]. A proper submodule 𝑁 of 𝑀 is said to be prime if whenever π‘Ÿ ∈ 𝑅 , π‘š ∈ 𝑀 such that π‘Ÿ. π‘š ∈ 𝑁 π‘–π‘šπ‘π‘™π‘–π‘’π‘  either π‘š ∈ 𝑁 or ∈ [𝑁: 𝑀] ; [𝑁: 𝑀] = {π‘Ÿ ∈ 𝑅: π‘Ÿπ‘€ βŠ† 𝑁}[2] . In [3] Iman M.A.Hadi and Tammader A.Ibrahiem introduced and studied the concept of P-small submodules , where a submodule 𝑁 of an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called P-small submodule 𝑁 β‰ͺ𝑃 𝑀 if 𝑁 + 𝑃 β‰  𝑀 for any prime submodule 𝑃 of 𝑀. An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘€ is called compressible if 𝑀 can be embedded in every non-zero submodule. An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be P-small compressible if 𝑀 can be embedded in every of it is nonzero P-small submodule of 𝑀. Equivalently, 𝑀 is P-small compressible if there exists a monomorphism 𝑓: 𝑀 ⟢ 𝑁 whenever 0 β‰  𝑁 β‰ͺ𝑃 𝑀. doi.org/10.30526/36.3.3089 Article history: Received 27 October 2022, Accepted 19 December 2022, Published in July 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq P-small Compressible Modules and P-small Retractable Modules Mohammed Baqer Hashim Al Hakeem* Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq. mbhmsc2015110@gmail.com Nuhad S. Al-Mothafar Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq. nuhad.salim@sc.uobaghdad.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:mbhmsc2015110@gmail.com mailto:mbhmsc2015110@gmail.com mailto:mbhmsc2015110@gmail.com mailto:nuhad.salim@sc.uobaghdad.edu.iq mailto:nuhad.salim@sc.uobaghdad.edu.iq IHJPAS. 36 (3) 2023 366 In this paper we introduce and study the concept of P-small compressible as a generalization of compressible module, and we give some properties , characterization and examples. In addition, we see that under condition. P-small compressible, small compressible and compressible are equivalent.some of their advantages characterizations and examples are given. We also study the relation between P-small compressible module, P-small retractable module and some of classes of modules. 2. Preliminaries Definition (2.1): Let 𝑀 be an 𝑅 βˆ’module and 𝑁 ≀ 𝑀: 1. 𝑁 is called small submodule of 𝑀 , (𝑁 β‰ͺ 𝑀) if 𝑁 + 𝐾 = 𝑀 implies 𝐾 = 𝑀 , for any submodule 𝐾 of 𝑀[1]. 2. An 𝑅 βˆ’module𝑀 is called hollow if every proper submodule is small in𝑀[4]. 3. A proper submodule 𝑁 of 𝑀 is called prime if whenever π‘Ÿ ∈ 𝑅 , π‘š ∈ 𝑀 implies either π‘š ∈ 𝑁 or π‘Ÿ ∈ [𝑁: 𝑀] : [𝑁: 𝑀] = {π‘Ÿ ∈ 𝑅: π‘Ÿπ‘€ βŠ† 𝑁} [2] 4. A proper submodule 𝑁 is called P-small submodule of 𝑀 , (𝑁 β‰ͺ𝑃 𝑀) if 𝑁 + 𝑃 β‰  𝑀 , for any prime submodule 𝑃 of 𝑀, [3]. 5. An 𝑅 βˆ’module𝑀 is called PS-hollow if every proper submodule in 𝑀 is P-small[3]. 6. An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be small compressible if 𝑀 can be embedded in every nonzero small submodule of 𝑀. Equivalently, 𝑀 is small compressible if there exists a monomorphism 𝑓: 𝑀 ⟢ 𝑁 whenever 0 β‰  𝑁 β‰ͺ 𝑀[5]. 7. An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’ if for all 𝑓 ∈ 𝐸𝑛𝑑𝑅 (𝑀) , 𝑓 β‰  0 implies πΎπ‘’π‘Ÿπ‘“ = 0, [7]. 8. An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called small quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’ if for all 𝑓 ∈ 𝐸𝑛𝑑𝑅 (𝑀) , 𝑓 β‰  0 implies πΎπ‘’π‘Ÿπ‘“ β‰ͺ 𝑀, [7]. Remark(2.2) :[3](1) (2Μ…) is P-small subπ‘šπ‘œπ‘‘π‘’π‘™π‘’ of 𝑍6 as 𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. (2) (2Μ…) and (3Μ…) are not P-small submodule of 𝑍6. (3) If 𝑀 is semi-simple π‘šπ‘œπ‘‘π‘’π‘™π‘’, then (0) is the only P-small submodule. Remark (2.3): Each small submodule is P-small. But the converse is not true in general for example(2Μ…) is P-small subπ‘šπ‘œπ‘‘π‘’π‘™π‘’ of 𝑍6 as 𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ but not small. Lemma (2.4): 1. Let 𝑁 be a proper submodule of 𝑀. If WβŠ‚ 𝑁 β‰ͺ𝑃 𝑀, then Wβ‰ͺ𝑃 𝑀. In particular if W is a direct summand of 𝑁 and 𝑁 β‰ͺ𝑃 𝑀, then Wβ‰ͺ𝑃 𝑀. 2. Let 𝑁1 and 𝑁2 be proper submodules of 𝑀. If 𝑁1 + 𝑁2 β‰ͺ𝑃 𝑀, then 𝑁1 β‰ͺ𝑃 𝑀, 𝑁2 β‰ͺ𝑃 𝑀, the converse is not true. 3. Let 𝐴 βŠ‚ 𝐡 βŠ‚ 𝑁 βŠ‚ 𝑀. If Bβ‰ͺ𝑃 𝑁, then 𝐴 β‰ͺ𝑃 𝑀. 4. Let 𝑀, 𝑀′ be 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  and πœ“: 𝑀 ⟢ 𝑀′ be an 𝑅 βˆ’ β„Žπ‘œπ‘šπ‘œπ‘šπ‘œπ‘Ÿπ‘β„Žπ‘–π‘ π‘š. If 𝐴 β‰ͺ𝑃 𝑀, then πœ“(𝐴) β‰ͺ𝑃 𝑀′. 3 .P-small Compressible Module In this section, we introduce the concept of P-small compressible module as a generalization of compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, give some of basic properties, examples and characterizations of this concept. IHJPAS. 36 (3) 2023 367 Definition (3.1): An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be P-small compressible if 𝑀 can be embedded in every of it is nonzero P-small submodule of 𝑀. Equivalently, 𝑀 is P-small compressible if there exists a monomorphism 𝑓: 𝑀 ⟢ 𝑁 whenever 0 β‰  𝑁 β‰ͺ𝑃 𝑀. Remarks and examples (3.2): 1. It’s obvious that every compressible module is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, but the converse is not true. For example 𝑍6 as Z-module is P-small compressible since (0Μ…) is the only P-small submodule, but not compressible. 2. 𝑍 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small compressible module, because it's compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. 3. 𝑍𝑃 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’; 𝑃 𝑖𝑠 π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ. 4. Every simple 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small compressible module but not conversely, because 𝑍 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is a P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ but not simple. 5. 𝑍4 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is not P-small compressible.(Because 𝑍4 can’t be embedded in 〈2Μ…βŒͺ and 〈2Μ…βŒͺ β‰ͺ𝑃 𝑍4 ) . 6. A homomorphic image of a P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ need not be P- small compressible in general for example 𝑍 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is a P-small compressible module and 𝑧 4𝑧 ≃ 𝑧4 is not P-small compressible module view remark (5). Proposition(3.3): A P-small submodule of P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ is also P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proof: Let 0 β‰  𝐾 β‰ͺ𝑃 𝑀 and 𝑀 be P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ and let 0 β‰  𝐿 ≀ 𝐾 β‰ͺ𝑃 𝑀 , then 𝐿 β‰ͺ𝑃 𝑀 [3]. Since 𝑀 is P-small compressible, so βˆƒ a monomorphism 𝑓: 𝑀 ⟢ 𝐿 and 𝑖: 𝐾 ⟢ 𝑀 is the inclusion homomorphism, then 𝑓 ∘ 𝑖: 𝐾 ⟢ 𝐿 is a monomorphism. Therefore 𝐾 is a P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proposition(3.5): If an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 has no prime submodule such that βˆƒ a monomorphism 𝑓: 𝑀 ⟢ 𝑁 , βˆ€π‘ ⊊ 𝑀 , then 𝑀 is P-small compressible . Proof: Suppose 𝑀 has no prime submodule and let 𝑁 ⊊ 𝑀, then 𝑁 β‰ͺ𝑃 𝑀 ⌈3βŒ‰and by assumption 𝑀 is P-small compressible. Proposition(3.6): Let 𝑀1 and 𝑀2 be isomorphic 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘ . Then 𝑀1is P-small compressible if and only if 𝑀2is P-small compressible. Proof: Let 0 β‰  𝑁 β‰ͺ𝑃 𝑀1 and suppose that 𝑀2 is P-small compressible. Let πœ™: 𝑀1 ⟢ 𝑀2 be an isomorphism., then by[3] 0 β‰  πœ™(𝑁) β‰ͺ𝑃 𝑀2.Put 𝐾 = πœ™(𝑁) β‰ͺ𝑃 𝑀2, so 𝛼: 𝑀2 ⟢ 𝐾 is a monomorphism (by assumption), let 𝑔 = πœ™βˆ’1 │𝐾 , then 𝑔: 𝐾 ⟢ 𝑀1 is a monomorphism. 𝑔(𝐾) = πœ™βˆ’1(πœ™(𝑁)) = 𝑁. Hence, we have a composition πœ“ = 𝑔 ∘ 𝛼 ∘ πœ™, hence πœ“: 𝑀1 ⟢ 𝑁 is a monomorphism. Therefore 𝑀1is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. Remark(3.7): The direct sum of P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ need not be P-small compressible. Consider the following example let 𝑍4 ≃ 𝑍2⨁𝑍2 as Z-module . 𝑍2 is P-small compressible module, but 𝑍4 is not P-small compressible module see remarks and examples (2.3) point(5) Proposition(3.8):Let 𝑀 = 𝑀1⨁𝑀2 be an 𝑅 βˆ’module such that π‘Žπ‘›π‘›π‘… 𝑀1β¨π‘Žπ‘›π‘›π‘… 𝑀2 = 𝑅. If 𝑀1 and 𝑀2 are P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘ , then 𝑀 is P-small compressible. Proof: Let 0 β‰  𝑁 = 𝐾1⨁𝐾2 β‰ͺ𝑃 𝑀. Then by theorem (1.12)[3] .0 β‰  𝐾1 β‰ͺ𝑃 𝑀1 ≀ 𝑀 and 0 β‰  𝐾2 β‰ͺ𝑃 𝑀2 ≀ 𝑀. But 𝑀1and 𝑀2 P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘ , so βˆƒ monomorphisms 𝑓: 𝑀1 ⟢ 𝐾1and 𝑔: 𝑀2 ⟢ 𝐾2 . Define πœ“: 𝑀 ⟢ 𝑁 by πœ“(π‘Ž, 𝑏) = (𝑓(π‘Ž), 𝑔(𝑏)), it can be easily show that πœ“is a monomorphism. Therefore 𝑀 is P-small compressible. IHJPAS. 36 (3) 2023 368 Proposition(3.9):Let 𝑀 = 𝑀1⨁𝑀2 be P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ such that π‘Žπ‘›π‘›π‘… 𝑀1β¨π‘Žπ‘›π‘›π‘… 𝑀2 = . 0 β‰  𝐾1 β‰ͺ𝑃 𝑀1 ≀ 𝑀 and 0 β‰  𝐾2 β‰ͺ𝑃 𝑀2 ≀ 𝑀 with 𝑁 = 𝐾1⨁𝐾2 β‰ͺ𝑃 𝑀, then 𝑀1 and 𝑀2 are P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  . Proof: Let 0 β‰  𝐾1 ≀ 𝑁 = 𝐾1⨁𝐾2 β‰ͺ𝑃 𝑀, then by remarks and examples(1.2)(7)[3] 𝐾1 β‰ͺ𝑃 𝑀, but 𝑀 be P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, so βˆƒ a monomorphisms 𝑓: 𝑀 ⟢ 𝐾1 and 𝐽: 𝑀1 ⟢ 𝑀1⨁𝑀2 = 𝑀, hence we have a composition . Letπœ“ = 𝑓 ∘ 𝐽, thus πœ“ : 𝑀1 ⟢ 𝐾1 is a monomorphism . Therefore 𝑀1is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. The same way we can prove 𝑀2 is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ . Remarks and Examples (3.10): 1. Every P-small compressible module is small compressible module. Proof: Let 0 β‰  𝑁 β‰ͺ 𝑀, then by [3] 𝑁 β‰ͺ𝑃 𝑀 and 𝑀 is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, therefor 𝑀 is small compressible module. 2. 𝑍6as 𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is small compressible, since (0Μ…) the only P-small submodule of 𝑍6. 3. 𝑄 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is not P-small compressible module, since π»π‘œπ‘šπ‘… (𝑄, 𝑍) = 0 , where 𝑍 β‰ͺ𝑃 𝑄. Proposition(3.11): Let 𝑀 be an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ and 0 β‰  π‘š ∈ 𝑀 such that π‘…π‘š ⊊ 𝑀, then 𝑀 is small compressible if and only if 𝑀is P-small compressible. Proof: Suppose that 𝑀 is small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ and let 𝑁 β‰ͺ𝑃 𝑀 , then by [3] 𝑁 β‰ͺ 𝑀 and since 𝑀 is small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, therefore 𝑀 is P-small compressible. Conversely it's clear by remarks and examples (3.10)point(1) Corollary(3.12): A small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is P-small compressible, if every cyclic submodule of 𝑀 is P-small submodule in 𝑀 . Proof: obviously by above proposition. Proposition(3.13): Let 𝑀 be a finitely generated (or multiplication) 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ . Then 𝑀 is small compressible if and only if 𝑀is P-small compressible. Proof: Let 𝑁 β‰ͺ𝑃 𝑀. We want to show that 𝑀is P-small compressible. Since 𝑀 is finitely generated (or multiplication), then by proposition(1.4)[3], so 𝑁 β‰ͺ 𝑀, but 𝑀 is small compressible 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Therefore 𝑀 is P-small compressible. Conversely clear by remarks and examples (3.10) point (1). Corollary(3.14): Let 𝑀 be a noetherian 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Then 𝑀 is small compressible if and only if 𝑀is P-small compressible. Proof: Since 𝑀 is noetherian, then every submodule is finitely generated, then the result follows by proposition(3.13). Therefore 𝑀 is small compressible. Conversely clear by remarks and examples (3.10) point (1). Recall that an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called almost finitely generated if 𝑀 is not finitely generated and every proper submodule of of 𝑀 is finitely generated[6]. Proposition(3.15): Let 𝑀 be an almost finitely generated 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Then 𝑀is P-small compressible if and only if 𝑀is small compressible. Proof: Let 𝑁 β‰ͺ𝑃 𝑀. We want to show that 𝑀is P-small compressible. Since 𝑀 is almost finitely generated[6], then by corollary (1.11)[3], we get 𝑁 β‰ͺ 𝑀, but 𝑀 is small compressible 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Therefore 𝑀 is P-small compressible. Conversely clear by remarks and examples (3.10) point (1). Proposition(3.16): Let 𝑀 be a hollow π‘šπ‘œπ‘‘π‘’π‘™π‘’. Then the following statements are equivalent: (1) 𝑀 is compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. IHJPAS. 36 (3) 2023 369 (2) 𝑀 is P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. (3) small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ . Proof: (1) ⟹ (2) It's clear by remarks and examples (3.2) point (1). (2) ⟹ (3) It's clear by remarks (3.10) point (1) (3) ⟹ (1)Let𝐾 ≀ 𝑀. Since 𝑀 is β„Žπ‘œπ‘™π‘™π‘œπ‘€ π‘šπ‘œπ‘‘π‘’π‘™π‘’ and small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’, then βˆƒ a monomorphism 𝑓: 𝑀 ⟢ 𝐾. Therefor 𝑀 is compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. We introduce the following Definition (3.17): An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called P-small quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’ if for all ∈ (𝑀) , 𝑓 β‰  0 implies πΎπ‘’π‘Ÿπ‘“ β‰ͺ𝑃 𝑀. Remark (3.18): It's clear that every quasi-Dedekind is P-small quasi-Dedekind. Proposition(3.19): If 𝑀 is P-small quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’, then 𝑀 can't be compressible . Proof: Suppose that 𝑀 is P-small quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’ and let 𝑁 = πΎπ‘’π‘Ÿπ‘“ ≀ 𝑀, but 𝑀 is P- small quasi-Dedekind, then πΎπ‘’π‘Ÿπ‘“ β‰ͺ𝑃 𝑀, 𝑓 β‰  0 , thus can't be embedded 𝑀 in πΎπ‘’π‘Ÿπ‘“ , because π»π‘œπ‘š(𝑀, πΎπ‘’π‘Ÿπ‘“) = 0. Therefore 𝑀 can't be compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. Remark(3.20): Every small quasi-Dedekind is P-small quasi-Dedekind. Proof: Let 0 β‰  𝑓 ∈ 𝐸𝑛𝑑𝑅 (𝑀), where 𝑀 is an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ since 𝑀 is a small quasi-Dedekind, then πΎπ‘’π‘Ÿπ‘“ β‰ͺ 𝑀, hence πΎπ‘’π‘Ÿπ‘“ β‰ͺ𝑃 𝑀. Thus 𝑀 is a P-small quasi-Dedekind module. 4. P-small Retractable Module In this section, we introduce the concept of P-small retractable module as a generalization of retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’, give some of basic properties, examples and characterizations of this concept. Definition (4.1): An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is said to be P-small retractable if 𝑀 π»π‘œπ‘š(𝑀, 𝐾) β‰  0 , for every non-zero P-small submodule 𝐾of 𝑀. Equivalently, 𝑀 is P-small retractable if there exists a homomorphism 𝑓: 𝑀 ⟢ 𝑁 whenever 0 β‰  𝑁 β‰ͺ𝑃 𝑀. Remarks and Examples(4.2): 1. It’s obvious that every P-small compressible module is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’, but the converse is not true for instance𝑍4 is P-small retractable but not P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ see remarks and examples (3.2) point(5). 2. 𝑍 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’, because it's P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’. 3. Every simple 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable module but not conversely, because 𝑍 π‘Žπ‘  𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is a P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ but not simple. 4. Every retractable 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’, but the converse is not true. 5. Every semi-simple 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable because it is retractable. 6. Every compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’, but the converse is not true for instance 𝑍4 is P-small retractable but not P-small compressible π‘šπ‘œπ‘‘π‘’π‘™π‘’ see remarks and examples (3.2)point(5). 7. A homomorphic image of a P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ is a P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Remark(4.3): The direct sum of P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proposition(4.4): A P-small submodule of P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ is also P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. IHJPAS. 36 (3) 2023 370 Proof: Let 0 β‰  𝐾 β‰ͺ𝑃 𝑀 and 𝑀 be P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’ and let 0 β‰  𝐿 ≀ 𝐾 β‰ͺ𝑃 𝑀 , by remarks and examples (1.2)point(3), [3]. 𝐿 β‰ͺ𝑃 𝑀 . Since 𝑀 is P-small retractable, so βˆƒ a homomorphism 𝑓: 𝑀 ⟢ 𝐿 and 𝑖: 𝐾 ⟢ 𝑀 is the inclusion homomorphism, then 𝑓 ∘ 𝑖: 𝐾 ⟢ 𝐿 be a homomorphism. Therefore 𝐾 is a P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proposition(4.5): Let 𝑀1 and 𝑀2 be isomorphic 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘ . Then 𝑀1is P-small retractable if and only if 𝑀2is P-small retractable Proof: Let 0 β‰  𝑁 β‰ͺ𝑃 𝑀1 and suppose that 𝑀2 is P-small retractable. Let 𝑓: 𝑀1 ⟢ 𝑀2 be an isomorphism. Then by[3] 0 β‰  𝑓(𝑁) β‰ͺ𝑃 𝑀2. Put 𝐾 = 𝑓(𝑁) β‰ͺ𝑃 𝑀2, we get β„Ž: 𝑀2 ⟢ 𝐾 is a homomorphism (by assumption), let 𝑔 = 𝑓 βˆ’1 │𝐾 , then 𝑔: 𝐾 ⟢ 𝑀1 is a monomorphism. 𝑔(𝐾) = 𝑓 βˆ’1(𝑓(𝑁)) = 𝑁. Hence we have a composition Ξ— = 𝑔 ∘ β„Ž ∘ 𝑓. Hence Ξ—: 𝑀1 ⟢ 𝑁 is a monomorphism. Therefore 𝑀1is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proposition(4.7): Let 𝑀 be 𝑃𝑆 βˆ’ β„Žπ‘œπ‘™π‘™π‘œπ‘€ π‘šπ‘œπ‘‘π‘’π‘™π‘’, then the following are equivalent (1) 𝑀 is retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. (2) 𝑀 is P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Proposition(4.8): If 𝑀 is P-small quasi-Dedekind 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’, then 𝑀 can't be P-small retractable . Proof: Suppose that 𝑀 is P-small quasi-Dedekind π‘šπ‘œπ‘‘π‘’π‘™π‘’ and let 𝑁 = πΎπ‘’π‘Ÿπ‘“ ≀ 𝑀, but 𝑀 is P- small quasi-Dedekind, then πΎπ‘’π‘Ÿπ‘“ β‰ͺ𝑃 𝑀, 𝑓 β‰  0 , thus π»π‘œπ‘š(𝑀, πΎπ‘’π‘Ÿπ‘“) = 0. Therefore 𝑀 can't be P-small retractable π‘šπ‘œπ‘‘π‘’π‘™π‘’. Recall that an 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called monoform if for each non-zero submodule 𝑁 of 𝑀 and for each 𝑓 ∈ π»π‘œπ‘šπ‘… (𝑁, 𝑀), 𝑓 β‰  0 implies πΎπ‘’π‘Ÿπ‘“ = 0, [5]. Definition(4.9): An 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ 𝑀 is called P-small monoform if for each non-zero submodule 𝑁 of 𝑀 and for each 𝑓 ∈ π»π‘œπ‘šπ‘… (𝑁, 𝑀), 𝑓 β‰  0 implies πΎπ‘’π‘Ÿπ‘“ β‰ͺ𝑃 𝑁. Remark(4.10): Every P-small compressible 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small monoform, but not conversely. For example , 𝑍8 as 𝑍 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’ is P-small monoform but not P-small compressible. Proposition(4.11): Let 𝑀 be a quasi-Dedekind 𝑅 βˆ’ π‘šπ‘œπ‘‘π‘’π‘™π‘’. Then 𝑀 is P-small monoform if and only if 𝑀 is P-small compressible. Proof: Suppose that 𝑀 is P-small monoform. Let 0 β‰  𝑁 β‰ͺ𝑃 𝑀, then 0 β‰  𝑓 ∈ π»π‘œπ‘šπ‘… (𝑁, 𝑀). Since 𝑀 is quasi-Dedekind , then 𝑓 ∘ 𝑔: 𝑀 ⟢ 𝑁 ⟢ 𝑀 is a monomorphism, hence 𝑔: 𝑀 ⟢ 𝑁 is a monomorphism. Thus 𝑀 is P-small compressible. Conversely it is clear by remark (4.10). 5. Conclusion In this work, the class of compressible and retractable modules have been generalized to a new concepts called P-small compressible and P-small retractable modules. Several characteristics of this type of modules have been studied. Sufficient conditions under which these modules with compressible and retractable are discuss Also we see relations between P-small compressible modules and other related modules as P- small retractable module P-small quasi-Dedekind, P-small monoform. IHJPAS. 36 (3) 2023 371 References 1. Wisam, A. Ali.; Nuhad S. Al. Mothafar .On Quasi-Small Prime Submodules. Iraqi Journal of Science, 2022,63, 4,1692-1699. 2. Nuhad, S. Al-Mothafar,; Mohammed B. H. Alhakeem. Nearly Semiprime submodules. Iraqi Journal of Science, 2015, 56, 4, 3210-3214. 3. Inam, M.A. Hadi.; Tamadher A. Ibrahiem ,"P-small submodules and PS-hollow Module" journal of pure and applied science. 2010.(22). 4. Fluery ,P.; Hollow modules and local endomorphism rings. Pacific J. Math. 1974.53. 379–385. 5. Israa. H. Muslem.;Some types Of Retractable and Compressible Modules. M.Sc.thesis. 2016. College of Education for pure Science. University of Baghdad. 6. Wealely, W.D. Modules whose proper submodules are finitely generated”, journal of algebra.1983.84.189-219. 7. Mijbass, A .S.; Quasi- Dedekind Modules . Ph. D .Thesis. 1997. College of Science.University of Baghdad.