IHJPAS. 36 (3) 2023 372 This work is licensed under a Creative Commons Attribution 4.0 International License *Corresponding Author: Sajidak.mohammed@uokufa.edu.iq Abstract In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the relationships between these kinds of modules and fully fuzzy visible modules. Many other intersecting results we found. Keywords: Fully fuzzy visible modules , fully fuzzy stable modules, fuzzy Artiain modules, fuzzy regular rings, fuzzy quasi injective modules. 1. Introduction. The notion of fuzzy set has been presented by Zadeh in 1965[1].The fuzzy groups have been introduced by Rosenfeld in 1971 [2]. Then, many other researchers studied different applications of fuzzy sets of algebra. The concept of fuzzy modules was presented by Negoita and Relescn in 1975 [3]. The notion of fuzzy visible submodules was introduced by Sajda K.M. and Buthyna N. S. 2021 [4]. The concept of fully fuzzy visible modules has been introduced by Sajda K.M. and Buthyna N.S. in 2022 [5]. In this paper, the relationships between fully fuzzy visible modules and other different modules have been explained, like fuzzy (prime, semiprime, semisimple, and F- egular). Also, the notions of stable submodules, fully stable modules, and quasi-injective modules doi.org/10.30526/36.3.3092 Article history: Received 30 October 2022, Accepted 19 December 2022, Published in July 2023. Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq Fully Fuzzy Visible Modules with other Related Concepts *Sajda K.Mohammed Department of Mathematics Faculty of Education for Girls, University of Kufa, Iraq Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. Sajidak.mohammed@uokufa.edu.iq Buthyna N. Shihab Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. bothaina.n.s@ihcoedu.uobaghda.edu.iq https://creativecommons.org/licenses/by/4.0/ mailto:Sajidak.mohammed@uokufa.edu.iq http://en.uobaghdad.edu.iq/?page_id=15060 http://en.uobaghdad.edu.iq/?page_id=15060 mailto:Sajidak.mohammed@uokufa.edu.iq mailto:Sajidak.mohammed@uokufa.edu.iq http://en.uobaghdad.edu.iq/?page_id=15060 http://en.uobaghdad.edu.iq/?page_id=15060 mailto:bothaina.n.s@ihcoedu.uobaghda.edu.iq IHJPAS. 36 (3) 2023 373 are fuzzyified. Many important properties and results between these above concepts and fully fuzzy visible modules have been proven. Through this paper will be a unitary module over a commutative ring with identity and for each fuzzy ideal ษ„ of ๐”ฝ, ษ„ (0)=1. 2. Preliminaries. This section contains some definitions and properties that will be needed in our work. 2.1 Definition: Let ๐”ฝ โ‰  โˆ… be a set and ฦ— = [0, 1] of the real line (real numbers). Let ษฆ: ๐”ฝ โ†’ ฦ— is a function. Then, ษฆ is known as a fuzzy set in ๐”ฝ (a fuzzy subset of, [1]. Let FSF(๐”ฝ) = {ษฆ: ษฆ: ๐”ฝ โ†’ ฦ— is a function }. 2.2 Definition. Let ๐• โ‰  โˆ… and โ„ญ โˆˆ ๐น๐‘ˆ๐‘†(๐•) . A level set of ๐• with respect to โ„ญ denoted by the set โ„ญ๐‘ก , where โ„ญ๐‘ก ={xโˆˆ ๐• โˆถ โ„ญ (x)โ‰ฅ t} โˆ€๐‘ก โˆˆ [0,1], [ 6- 8] . 2.3 Definition: Suppose that ๐•„ be an ๐”ฝ โ€“module and โ‚ฎ โˆˆ ๐น๐‘†๐ธ(๐•„) . โ„™ is known as a fuzzy module of an ๐”ฝ -module if, 1- โ‚ฎ (ส‘ - ฦซ)โ‰ฅmin { โ‚ฎ (ส‘), โ‚ฎ (ฦซ) }, for all ส‘ ,ฦซโˆˆ ๐•„, 2- โ‚ฎ (rส‘)โ‰ฅ โ‚ฎ (ส‘), for all ส‘โˆˆ ๐•„, rโˆˆ ๐”ฝ, 3- โ‚ฎ (0)=1 [9-10] . Let ๐น๐‘ˆ๐‘€(๐•„ ) = {โ‚ฎ: โ‚ฎ is ๐‘Ž fuzzy modules of an ๐”ฝ โˆ’ module ๐•„ }. 2.4 Definition: Let โ„ญ , โ„™ โˆˆ FUM(๐•„). โ„ญ is known as a fuzzy submodule of โ„™ if โ„ญ โŠ† โ„™ [11- 13] . Let FUS(โ„™) = {โ„ญ: โ„ญ โˆˆ FUM(๐•„ ) and โ„ญ โŠ† โ„™ }. 2.5 Definition: Let ๐”ฝ be a ring and แฟ› โˆˆ ๐น๐‘†๐ธ(๐”ฝ). แฟ› is referred to as a fuzzy ideal of ๐”ฝ, if โˆ€ ส‘, ฦซโˆˆ ๐”ฝ : 1-แฟ› (ส‘ -y)โ‰ฅ min {แฟ› (ส‘), แฟ› (ฦซ)} 2-แฟ› (ส‘.y)โ‰ฅ max {แฟ› (ส‘), แฟ› (ฦซ)}, [14] . FUI(โ„ ) will be used to represent the set of all fuzzy ideals of ๐”ฝ . 2.6 Definition: Let โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐•„),โ„ญ โˆˆ ๐น๐‘ˆ๐‘†(โ„™) and แฟ› โˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ).The product (แฟ› โ„ญ)(x) = { ๐‘ ๐‘ข๐‘ {๐‘–๐‘›๐‘“ {แฟ› (๐‘Ÿ1), โ€ฆ , แฟ› (๐‘Ÿ๐‘›), โ„ญ(๐‘ฅ1), โ€ฆ , โ„ญ(๐‘ฅ๐‘›)๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘Ÿ๐‘– โˆˆ ๐”ฝ, ๐‘ฅ๐‘– โˆˆ ๐•„, ๐‘› โˆˆ ๐‘, 0 ๐‘œ. ๐‘ค. ๐‘ฅ = โˆ‘ ๐‘Ÿ๐‘– ๐‘ฅ๐‘– ๐‘› ๐‘–=1 ,[9] . Note that แฟ› โ„ญ โˆˆ ๐น๐‘ˆ๐‘†(โ„™) if แฟ› (0)=1, [9]. And (แฟ› โ„ญ)๐‘ก = แฟ› ๐‘ก โ„ญ๐‘กfor each ๐‘ก โˆˆ [0,1], [15]. 2.7 Definition Let แตฎ be a mapping from a set ๐•„ into a set N, Let ๐”ธ โˆˆ FSE(๐•„) and ๐”น โˆˆ ๐น๐‘†๐ธ(๐‘). The image of ๐”ธ denoted by แตฎ (๐”ธ) โˆˆ ๐น๐‘†๐ธ(๐‘) defined by : แตฎ(๐”ธ)(โ„ฏ) = { {๐‘ ๐‘ข๐‘ {๐”ธ(๐‘ง): ๐‘ง โˆˆ แตฎโˆ’1(โ„ฏ), ๐‘–๐‘“ แตฎโˆ’1(โ„ฏ) โ‰  โˆ…, ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ โ„ฏ โˆˆ ๐‘ 0 ๐‘œ. ๐‘ค. , and the inverse image of ๐”น denoted by ๐‘“ โˆ’1(๐”น) โˆˆ ๐น๐‘†๐ธ(๐•„)๐‘–๐‘  defined by: แตฎโˆ’1(๐”น)(๐‘ฅ) = ๐”น(แตฎ(๐‘ฅ)), for all โˆˆ ๐•„ [15-16] . 2.8 Definition: Let ๐• โˆˆFUM(๐•„1) and ๐• โˆˆFM(๐•„2). โ„Š โˆถ ๐• โ†’ ๐• is called a fuzzy homomorphism if โ„Š: ๐•„1 โ†’ ๐•„2 is ๐”ฝ-homomorphism and ๐•(โ„Š(๐’ฝ) = ๐•(๐’ฝ) for each ๐’ฝ โˆˆ ๐•„1 [15] . IHJPAS. 36 (3) 2023 374 2.9 Definition: Let โˆ… โ‰  โ„ญ โˆˆ ๐น๐‘ˆ๐‘†(โ„™). The fuzzy annihilator of A denoted by F-ann โ„ญ is defined by: (F-ann โ„ญ)(r)=sup{tโˆถ t โˆˆ[0,1],๐‘Ÿ๐‘ก โ„ญ โŠ† 01 },for all rโˆˆ ๐”ฝ [17-18] . Note that that F-ann โ„ญ =(01โˆถ โ„ญ) ," [16]. "Hence ((๐น โˆ’ ๐‘Ž๐‘›๐‘› โ„ญ))๐‘ก โŠ† ann โ„ญ๐‘ก [19]. 2.10 Remark: For A โˆˆ FUM(๐•„).We let โ„ญโˆ— = {๐‘ฅ โˆˆ ๐•„: โ„ญ(๐‘ฅ) = 1}[20 โˆ’ 21] . 2.11 Proposition: Let โ„™ โˆˆ FUM(M) .Then ๐น โˆ’ ๐‘Ž๐‘›๐‘› โ„™ โˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ)[9] . 2.12 Definition: Let า  โˆˆFUI(๐”ฝ). า  is called a principle fuzzy ideal if โˆƒ๐“€๐‘ก โŠ† า  such that า  = (๐“€๐‘ก ) for each ๐’พ๐‘  โŠ† า  , โˆƒ a fuzzy singleton โ„ฏ๐‘™ of ๐”ฝ such that ๐’พ๐‘  = โ„ฏ๐‘™ ๐’ฝ๐‘ก , where ๐‘ , ๐‘™, ๐‘ก โˆˆ [0,1] , which is า  = (๐“€๐‘ก ) = {๐’พ๐‘  โŠ† ๐ป: ๐’พ๐‘  = โ„ฏ๐‘™ ๐“€๐‘ก for some fuzzy singleton ๐‘Ž๐‘™ of ๐”ฝ} [22] . 2.13 Definition: Let ฯฎ โˆˆ ๐น๐‘ˆ๐‘€(๐•„) and ฯฎโ‰  ฤโˆˆFUS (ฯฎ).Then ฤ is known to as a fuzzy visible submodule if ฤ=ฦ—ฤ โˆ€ non-empty ฦ— โˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ). ษฌโˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ) is defined visible if it is visible of a fuzzy ๐”ฝ -module ๐”ฝ [4]. 2.14 Definition: Let ๐• โˆˆ ๐น๐‘ˆ๐‘€(๐•„). Then ๐• is said to be fully fuzzy visible module if for any ๐• โ‰  โ„จ โˆˆ ๐น๐‘ˆ๐‘† (๐•) is a fuzzy visible [5]. 2.15 Proposition: Let ๐• โˆˆ ๐น๐‘ˆ๐‘€(๐•„) . Then โ„™ is fully fuzzy visible module if and only if ๐•t is fully visible module,โˆ€ ๐‘ก โˆˆ (0,1] [5] . 2.16 Definition: Let ๐• โˆˆ ๐น๐‘ˆ๐‘€(๐•„). ๐‘‹โ‰  โ„ญโˆˆFUS(๐•), โ„ญ is termed as a semiprime fuzzy submodule if for each fuzzy singleton ๐‘Ÿ๐‘™ of ๐”ฝ, ๐‘ฅ๐‘  โŠ† ๐•, ๐‘Ÿ๐‘™ 2๐‘ฅ๐‘  โŠ† โ„ญ implies ๐‘Ÿ๐‘™ ๐‘ฅ๐‘  โŠ† โ„ญ [23] . 2.17 Remark: We assume that if โ„ญโˆ— = ๐””โˆ— . Then , โ„ญ = ๐”” is called Condition ( *) [20] . 3. Fully Fuzzy Visible Modules with Different Modules: In this section, the relationships between fully fuzzy visible modules and other fuzzy modules such as (semiprime, prime quasi prime, fully stable, Artiain, essential and quasi injective) have been investigated. Many interesting outcomes were identified. 3.1 proposition: Let โ„™ โˆˆ FUM(๐•„) over principle fuzzy ideal ring. Then โ„™ is fully fuzzy visible if and only if every proper fuzzy submodule of โ„™ is fuzzy semiprime. Proof: Let โ„™ be a fully fuzzy visible, then โ„™t is a fully visible, where ๐‘ก โˆˆ (0,1] by [5,proposition 3.2] and let โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™) . Then ๐”št is a proper submodule of โ„™t and hence ๐”št is a semprime submodule by [ 24 , proposition 2.6.1 ] . Therefore ๐”š is a fuzzy semiprime by [23 , proposition 3.2.6] . Conversely, let โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™) , then ๐”š is a fuzzy semprime and hence ๐”št is semiprime by [23, proposition 3.2.6], therefore โ„™t is a fully visible by [ 24 , proposition 2.6.1] and hence โ„™ is fuzzy fully visible. 3.2 Proposition: Let โ„™ โˆˆ FUM(๐•„) over principle fuzzy ideal ring and โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™). Then, ๐”š visible if and only if ๐”š divisible. Proof: Assume that ๐”š is visible then โˆ€ ๐‘Ÿ๐‘™ โ‰  01, we have < ๐‘Ÿ๐‘™ > ๐”š = ๐”š , then ๐‘Ÿ๐‘™ ๐”š = ๐”š.Therefore ๐”š is divisible. Conversely, clear. 3.3 Proposition: Let ๐• be a fully fuzzy visible module over ๐”ฝ. Then every proper fuzzy submodule of ๐• is divisible. IHJPAS. 36 (3) 2023 375 Proof: Let ๐• be a fully fuzzy visible module, then every proper fuzzy submodule of ๐• is visible and hence is divisible by above proposition. 3.4 Proposition: If โ„™ is a fully fuzzy visible module, then โ„™ is F โ€“ regular fuzzy module. Proof: By using definition( 2.14) and [4, proposition 3.17], the result is true. The converse of the above proposition is not correct as we see in the following example. Consider ๐•„ = ๐‘6 and ๐”ฝ = ๐‘. Let โ„™: ๐‘6 โ†’ [0,1], as โ„™(๐‘ฅ) = 1 โˆ€๐‘ฅ โˆˆ ๐‘6. ๐‘6 ๐‘Ž๐‘  ๐‘ โˆ’ module is F- regular by [24, p97 ] and hence โ„™ is F-regular by [25 , proposition 3.1.3]. But ๐‘6 is not fully visible by [24, p97] and hence โ„™ is not fully visible . 3.5 Proposition: Let โ„™ be a fuzzy divisible module over a field, then โ„™ is a fully fuzzy visible module. Proof: From [25, proposition 3.1.8], we have โ„™ is an F- regular fuzzy module, then โ„™t is a F- regular module, for every ๐‘ก โˆˆ (0,1] by [25, proposition 3.1.2]. โ„™t is divisible because โ„™ is a fuzzy divisible module by [ 23, proposition 2.2.12] and hence every proper pure submodule of โ„™t is visible by [26 , proposition 1.11]. Therefore โ„™t is fully visible, then โ„™ is fuzzy fully visible. 3.6 Corollary: Suppose that โ„™ is a non-constant fully fuzzy visible module over a fuzzy integral domain ๐”ฝ. Then, โ„ is a fuzzy field. Proof: Depending on proposition (3.4) and [ 22, remark and examples 1.3.4(4) ], we get the result. 3.7 Corollary: Let โ„™ โˆˆ FUM(๐•„). If โ„™ is fully visible, then ๐น โˆ’ ๐ฝ(โ„™) = 01, where โ„™ satisfies condition(โˆ—). Proof: โ„™โˆ— is a fully visible because โ„™ is a fully fuzzy visible by [5, proposition3.2] and hence๐ฝ(โ„™โˆ—) = {0} = (01)โˆ—, by [ 24, corollary 2.6.6]. But ๐ฝ(โ„™โˆ—) = (๐น โˆ’ ๐ฝ(โ„™))โˆ— = (01)โˆ—, then ๐น โˆ’ ๐ฝ(โ„™) = 01. 3.8 Definition: Let โ„™ โˆˆ FUM(๐•„). Then โ„™ is called fuzzy Artiain module if every descending chain fuzzy submodules of โ„™ is finite. 3.9 Theorem: If โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐•„) Artiain ๐”ฝ -module, then โ„™โˆ— is Artiain modules. Proof: Let โ„™ โˆˆ ๐น๐‘€(๐•„) Artiain โ„ -module and ๐ด1 โŠ‡ ๐ด2 โŠ‡ โ‹ฏ be descending chain of submodules of โ„™โˆ—. For each positive integer i, we define the mapping โ„™๐‘– : ๐•„ โ†’ [0,1] by โ„™๐‘– (๐‘ฅ) = { 1 ๐‘–๐‘“ ๐‘ฅ โˆˆ ๐ด๐‘– 0 ๐‘œ. ๐‘ค , clearly, โ„™๐‘– โˆˆ FS(โ„™) . Then โ„™1 โŠ‡ โ„™2 โŠ‡ โ‹ฏ is descending chain of fuzzy submodules of โ„™, so there exist a positive integer m such that โ„™๐‘š = โ„™๐‘š+โ„Ž for every positive integer h. It is clear that (โ„™๐‘– )โˆ— = ๐ด๐‘– . Now, let h be a positive integer and ๐‘Ž โˆˆ ๐ด๐‘š+โ„Ž so, โ„™๐‘š(๐‘Ž) = โ„™๐‘š+โ„Ž (๐‘Ž) = 1, hence ๐‘Ž โˆˆ ๐ด๐‘š. Thus ๐ด๐‘š โŠ‡ ๐ด๐‘š+โ„Ž โŠ‡ ๐ด๐‘š. Therefore โ„™โˆ— is Artiain. The converse of above theorem is not true as in the following example. Let ๐•„ = ๐”ฝ and ๐”ฝ = โ„ . Express โ„™: ๐•„ โ†’ [0,1] by โ„™(x) = 1 โˆ€x โˆˆ ๐•„. Clearly, โ„™ โˆˆ FUM(๐•„). Describe โ„™: ๐•„ โ†’ [0,1] by โ„™๐‘š (๐‘ฅ) = { 1 ๐‘–๐‘“ ๐‘ฅ = 0 1 2๐‘š ๐‘–๐‘“ ๐‘ฅ โ‰  0 , ๐‘š โˆˆ ๐‘+. Clear that โ„™๐‘š โˆˆ ๐น๐‘ˆ๐‘†(โ„™) for each m. Then โ„™1 โŠ‡ โ„™2 โŠ‡ โ‹ฏ is an infinite strictily descending chain of fuzzy submodules of โ„™. Thus โ„™ is not fuzzy Artiain. But, โ„™โˆ— = ๐•„, is Artiain ๐”ฝ โˆ’module. 3.10 Corollary: Let โ„™ be a fully fuzzy visible Artiain module on ๐”ฝ. Then โ„™ is fuzzy semisimple module provided that โ„™ satisfies condition (โˆ—). IHJPAS. 36 (3) 2023 376 Proof: โ„™โˆ— is a fully visible module since โ„™ is fully fuzzy visible and โ„™โˆ— is Artiain by theorem 3.9. Therefore โ„™โˆ— is semisimple by [24, proposition 2.6.7]. Then, โ„™ is fuzzy semisimple by [20, proposition 2.8(1)]. 3.11 Definition: A fuzzy ring ๐”ฝ is called regular if and only if every fuzzy singleton in ๐”ฝ is fuzzy regular, i.e. โˆ€ fuzzy singleton ๐‘ฅ๐‘ก of ๐”ฝ, ๐‘ก โˆˆ (0,1], there exist a fuzzy singleton ๐‘ฆ๐‘˜ of ๐”ฝ such that ๐‘ฅ๐‘ก = ๐‘ฅ๐‘ก ๐‘ฆ๐‘˜ ๐‘ฅ๐‘ก . 3.12 Proposition: A fuzzy ring ๐”ฝ is regular if and only if ๐”ฝ is regular ring. Proof: Suppose that ๐”ฝ is regular, then โˆ€๐‘ฅ โˆˆ ๐”ฝ, โˆƒ๐‘ฆ โˆˆ ๐”ฝ, s.t. ๐‘ฅ = ๐‘ฅ๐‘ฆ๐‘ฅ , hence ๐‘ฅ๐‘ก = (๐‘ฅ๐‘ฆ๐‘ฅ)๐‘ก = ๐‘ฅ๐‘ก ๐‘ฆ๐‘ก ๐‘ฅ๐‘ก , where ๐‘ฅ๐‘ก , ๐‘ฆ๐‘ก fuzzy singleton of ๐”ฝ, ๐‘ก โˆˆ (0,1]. Therefore, a fuzzy ring ๐”ฝ is regular. Conversely, let ๐‘€๐”ฝ be a fuzzy ring over ๐”ฝ , then โˆ€ fuzzy singleton xt of ๐”ฝ, โˆƒ๐‘ฆ๐‘˜ fuzzy singleton of ๐”ฝ such that ๐‘ฅ๐‘ก = ๐‘ฅ๐‘ก ๐‘ฆ๐‘˜ ๐‘ฅ๐‘ก = (๐‘ฅ๐‘ฆ๐‘ฅ)๐‘š๐‘–๐‘›{๐‘ก,๐‘˜}, hence ๐‘ฅ = ๐‘ฅ๐‘ฆ๐‘ฅ and ๐‘ก = ๐‘š๐‘–๐‘›{๐‘ก, ๐‘˜}. Therefore ๐”ฝ is a regular. 3.13 Corollary: Let โ„™ be a fully fuzzy visible and Artiain module on ๐”ฝ, satisfied condition(*), then ๐‘€๐”ฝ/(๐น โˆ’ ๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ก )โˆ— is fuzzy regular โˆ€๐‘ฅ๐‘ก โŠ† โ„™. Proof: โ„™โˆ— is fully visible and Artiain module as in corollary (3.10). Then ๐”ฝ/(๐น โˆ’ ๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ก )โˆ— is regular by [24, corollary 2.6.10], then M๐”ฝ/(F โˆ’ ๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ก )โˆ— is fuzzy regular by [27, theorem 3.2.10] and proposition (3.12) . 3.14 Proposition: Let โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐‘€) over principle fuzzy ideal ring. If every โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™) over ๐”ฝ is divisible, then โ„™ is fuzzy fully visible and hence โ„™ is F- regular fuzzy. Proof: By using proposition 3.2, we have โ„™ a is fuzzy fully visible, then โ„™ is F-regular by proposition (3. 4). 3.15 Proposition: Let ๐”ฝ be a principle fuzzy ideal ring and โ„™ is a fuzzy divisible, then the following is equivalent: 1. โ„™ is a fully fuzzy visible module. 2. Each โ„™ โ‰  แตน โˆˆ ๐น๐‘ˆ๐‘†(โ„™) is pure. 3. Each โ„™ โ‰  แตน โˆˆ ๐น๐‘ˆ๐‘†(โ„™) is divisible. 4. Each โ„™ โ‰  แตน โˆˆ ๐น๐‘ˆ๐‘†(โ„™) is visible. Proof:1 โŸน 2 directly from [4, proposition 3.17]. 2 โŸน 3 Since ๐”ฝ be a principle fuzzy ideal ring and โ„™ is a fuzzy divisible, then by[4, proposition 3.19] we have each proper submodule of โ„™ is visible and hence divisible. 3 โŸน 4 Directly from proposition 3.2. 4 โŸน 1 Clear. 3.16 Proposition: Let โ„™ be a fully fuzzy visible module over a local ring, then โ„™ is a fuzzy semisimple module such that โ„™ satisfied condition (โˆ—). Proof: โ„™โˆ— is a fully visible module by [5, proposition 3.2], then โ„™โˆ— is semisimple by [24 , proposition 2.6.13], hence โ„™ is a semisimple by [20, proposition. 2.8(1)]. 3.17 Proposition: Let โ„™ be a fuzzy divisible over principle fuzzy ideal ring, then โ„™ is fully visible. Proof: Depending on [4, proposition 3.19], every proper fuzzy submodule of โ„™ is visible and hence โ„™ is fully visible. 3.18 Proposition: Let โ„™ be a fully fuzzy visible module over ๐”ฝ, then โ„™ is a fuzzy torsion free. Proof: โ„™t is fully visible โˆ€ ๐‘ก โˆˆ (0,1] by [5, proposition 3.2], then โ„™t torsion free by [ 24 ,proposition 2.6.16]. Therefore โ„™ is fuzzy torsion free by {17, proposition 2.2.23]. IHJPAS. 36 (3) 2023 377 3.19 Proposition: Let โ„™ be a fully fuzzy visible module, โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™). Then, ๐”š is a prime submodule. Proof: Because โ„™ is a fully fuzzy visible module and โ„™ โ‰  ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™), then ๐”š is pure, hence ๐”š is weakly pure fuzzy submodule of โ„™. Therefore ๐”š is a prime fuzzy by [17, proposition 2.2.22]. 3.20 Corollary: If โ„™ is a fully fuzzy visible module, then every proper fuzzy submodule ๐”š of โ„™ is quasi prime. Proof: Depending proposition 3.19 and [23, proposition 3.2.2], the result hold. 3.21 Corollary: Every fully fuzzy visible module is fuzzy T-regular. Proof: Depending on proposition (3.4) and [22, remark and examples 2.1.5(1)]. The converse of the corollary (3.21) is not true as we see in the following example: Let ๐•„ = ๐‘4, ๐”ฝ = ๐‘. Define ๐‘ƒ: ๐•„ โ†’ ๐‘4 as โ„™(๐‘ฅ) = { 1 if ๐‘ฅ โˆˆ ๐‘4 0 ๐‘œ. ๐‘ค , clearly, โ„™ โˆˆ FUM(๐•„), then โ„™t = Z4 , โˆ€ ๐‘ก โˆˆ (0,1] as Z-module is T-regular by [ 24 , p99 ], then โ„™ is fuzzy T-regular by [22, proposition 2.1.2]. But Z4 as Z-module is not fully visible module by [24, remark and examples 2.1.2], then โ„™ is not fully fuzzy visible. 3.22 Definition: Let โ„™ โˆˆ FUM(๐•„) , ๐”š โˆˆFUS(โ„™). We say that ๐”š is stable if ๐‘“(๐”š) โŠ† ๐”š for each fuzzy ๐”ฝ -homomorphism ๐‘“: ๐”š โ†’ โ„™. 3.23 Proposition: Let โ„™ โˆˆ FUM(๐•„) and ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™) constant on ๐‘˜๐‘’๐‘Ÿ ๐‘“. Then ๐”š is fuzzy stable if and only if ๐”šโˆ— is stable and โ„™ satisfies Condition (โˆ—). Proof: Let ๐”š be a fuzzy stable. Then, ๐‘“(๐”š) โŠ† ๐”š by definition (3.21). Since ๐”š is constant on ker ๐‘“, then ๐‘“(๐”šโˆ—) โŠ† ๐”šโˆ— by [27, lemma 3.2.5]. Therefore ๐”šโˆ— is stable. Conversely, let ๐”šโˆ— is stable. Then ๐‘“(๐”šโˆ—) โŠ† ๐”šโˆ— and hence (๐‘“(๐”š ))โˆ— โŠ† ๐”šโˆ— by [27, lemma 3.2.5], since ๐”š satisfies condition( โˆ—), then ๐‘“(๐”š) โŠ† ๐”š. Therefore ๐”š is fuzzy stable. 3.24Example: Let ๐•„ = ๐”ฝ and ๐”ฝ = โ„. Define า : ๐”ฝ โ†’ [0,1] by า (๐‘ฅ) = 1 โˆ€๐‘ฅ โˆˆ ๐”ฝ . Consider ๐”›: ๐”ฝ โ†’ [0,1] as ๐”›(๐‘ฅ) = { 1 ๐‘–๐‘“ ๐‘ฅ โˆˆ Q 0 ๐‘œ. ๐‘ค . Clear that ๐”› โˆˆ ๐น๐‘ˆ๐‘†(า ). า โˆ— = โ„ , ๐”›โˆ— = Q . We know that ๐‘„ is stable of ๐”ฝ, then ๐”› is a fuzzy stable of า  by proposition (3.22), where ๐”›is coustant on ๐‘˜๐‘’๐‘Ÿ ๐‘“. 3.25 Example: Let ๐•„ = ๐‘ and ๐”ฝ = ๐‘. Define โ„™: ๐‘ โ†’ [0,1] by โ„™(๐‘ฅ) = 1 โˆ€๐‘ฅ โˆˆ ๐‘. Suppose that ๐”š: ๐‘ โ†’ [0,1] defined as ๐”š(๐‘ฅ) = { 1 ๐‘–๐‘“ ๐‘ฅ โˆˆ 2๐‘ 0 ๐‘œ. ๐‘ค . It is clear that ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™), โ„™โˆ— = ๐‘ and ๐”šโˆ— = 2๐‘. Then ๐”šโˆ— is not stable by [28, example and remarks 1.2(a)], and, hence, ๐”š is not fuzzy stable by proposition 3.23. 3.26 Definition: Let โ„™ โˆˆ FUM(M). โ„™ is termed to be fuzzy fully stable if and only if every ษฎ โˆˆ ๐น๐‘ˆ๐‘†(โ„™) is fuzzy stable. 3.27 Proposition: Let โ„™ be a fuzzy ๐”ฝ โ€“module, such that every fuzzy submodule of โ„™ constant on ๐‘˜๐‘’๐‘Ÿ ๐‘“ and satisfies condition(*). Then โ„™ is a fuzzy fully stable if and only if โ„™โˆ— is fully stable. Proof: In a similar way of proposition (3.23). 3.28 Proposition: Let โ„™ be a fully fuzzy visible ๐”ฝ -module and Endโ„(โ„™โˆ—) is commutative. Then โ„™ is fuzzy fully stable such that โˆ€ ๐”š โŠ† โ„™ constant on ๐‘˜๐‘’๐‘Ÿ ๐‘“ and satisfies condition (*). Proof: โ„™โˆ— is a fully visible by[3, proposition 3.2], then โ„™โˆ— is fully stable by [24, proposition (2.6.22) ], and hence each submodule of โ„™โˆ— will be stable, then โˆ€ ๐”š โˆˆ ๐น๐‘†(โ„™) , ๐”šโˆ— will be stable, then by proposition 3.22, ๐”š is a stable fuzzy submodule. Therefore, โ„™ is fuzzy fully stable. IHJPAS. 36 (3) 2023 378 3.29 Proposition: Let โ„™ be a fully fuzzy visible module over ๐”ฝ. Then each Jโ„™ โˆˆ ๐น๐‘ˆ๐‘†(โ„™) is an essential submodule of โ„™ for each non-emptyJ โˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ). Proof: Let ฮพ be a non-trivial fuzzy submodule of โ„™ such that Jโ„™ โˆฉ ๐”› = 01. But ๐”› is visible and hence ฮพ is pure. Then Jฮพ = Jโ„™ โˆฉ ฮพ = 01, so Jฮพ = 01 and hence ฮพ = 01. Therefore Jโ„™ is a fuzzy essential. 3.30 Proposition: Let โ„™ be a fully fuzzy visible multiplication module, then every non-empty fuzzy submodule of โ„™ is an essential of โ„™. Proof: Because โ„™ is fully fuzzy visible, then every fuzzy submodule Jโ„™ is an essential for each non-empty J โˆˆ ๐น๐‘ˆ๐ผ(๐”ฝ) by proposition (3.29). But โ„™ is fuzzy multiplication, then every non โ€“ empty fuzzy submodule of โ„™ is essential. 3.31 Proposition: Let โ„™ be a fully fuzzy visible module over a domain ๐”ฝ and EndR(โ„™t) is commutative ring. Then โ„™ is fuzzy divisible. Proof : Since โ„™t is fully visible, then โ„™t is divisible by [ 24, proposition 2.6.42(2)]. Then โ„™ is divisible by [17]. Let ๐”“ โˆˆ ๐น๐‘ˆ๐‘€(๐•„) and ๐”Š โˆˆ ๐น๐‘ˆ๐‘€(๐‘). If แตฎ โˆถ ๐•„ โ†’ ๐‘ is a ๐”ฝ โ€“module homomorphism and ๐”Š(แตฎ(๐‘ฅ)) โ‰ฅ ๐”“(๐‘ฅ), โˆ€ ๐‘ฅ โˆˆ ๐•„, then แตฎ is called a fuzzy homomorphism and denoted by แตฎ: ๐”“ โ†’ ๐”Š [29].This definition can be used to introduce the following concept. 3.32 Definition : Let โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐•„). โ„™ is termed to be fuzzy quasi Injective if for each submodule N of ๐•„ and each fuzzy homomorphism แตฎ โˆถ ๐”š โ†’ โ„™, where ๐”š โˆˆ ๐น๐‘ˆ๐‘€(๐‘) can be extended to fuzzy endomorphism แถƒ such that แตฎ = แถƒ โˆ˜ i, where i: ๐”š โ†’ ๐•„ inclusion homomorphis. 3.33 Proposition: Let ๐• โˆˆ ๐น๐‘ˆ๐‘€(๐•„). โ„™ is fuzzy quasi injective iff ๐•„ is quasi injective and ๐•(โ„ฏ) = 1 โˆ€โ„ฏ โˆˆ ๐•„. Proof: Let ๐• be a fuzzy quasi injective ๐”ฝ -module and N be a submodule of ๐•„. Define ๐”š: N โ†’ [0,1] by ๐”š(๐“†) = { 1 if ๐“† โˆˆ N 0 o. w , then โˆ€ แตฎ: ๐”š โ†’ ๐• be a fuzzy homomorphism โˆƒ แถƒ: ๐• โ†’ ๐• s.t. แตฎ = แถƒ โˆ˜ i and hence โˆ€ submodule N of ๐•„ and แตฎ: N โ†’ ๐•„, there exist g: ๐•„ โ†’ ๐•„ such that แตฎ = แถƒ โˆ˜ i.Now, if ๐•(๐“†) โ‰  1, since ๐•(แถƒ(๐“†)) โ‰ฅ ๐•(๐“†) by definition of fuzzy homomorphism, then ๐•(แถƒ(๐“†)) โ‰ฅ ๐•(๐“†) = ๐•(i(๐“†)) โ‰ฅ ๐”š(๐“†) = 1, hence ๐•(๐“†) = 1 โˆ€๐“† โˆˆ ๐•„. Conversely, Let ๐•„ be a quasi-injective, N be a submodule of ๐•„ and ๐•(๐“†) = 1 โˆ€๐“† โˆˆ ๐•„, let ๐”š โˆˆ ๐น๐‘ˆ๐‘€(๐‘). Then โˆ€ แตฎ: N โ†’ M โˆƒ แถƒ: ๐•„ โ†’ ๐•„s.t. แตฎ = แถƒ โˆ˜ i, i: N โ†’ ๐•„ inclusion homomorphism, hence โˆ€ แตฎ โˆถ ๐”š โ†’ ๐• โˆƒ แถƒ: ๐• โ†’ ๐• s.t. แตฎ = แถƒ โˆ˜ i, where (แถƒ โˆ˜ i)(๐“†) = ๐•(แถƒ โˆ˜ i)(๐“†) = ๐•(แถƒ(๐“†)) = ๐•(๐“†) = 1 โ‰ฅ ๐•(๐“†) = 1 โ‰ฅ ๐”š(๐“†) . 3.34 Definition: A fuzzy ring ๐”ฝ is self injective if it is fuzzy injective ๐”ฝ -module. 3.35 Corollary: Suppose that โ„™ is a fuzzy fully visible ๐”ฝ - module ๐•„ and EndR(Pโˆ—) is commutative, where โ„™ satisfies condition (โˆ—). If โ„™ is a fuzzy quasi injective module and โ„™ (x)=1 โˆ€ x โˆˆ ๐•„, then 1. Every fuzzy submodule ๐”š of โ„™ constant on ker แตฎ is fuzzy duo module. 2. Every homomorphism image constant on ker แตฎ is duo module. 3. A fuzzy ring ฮณ on End๐”ฝ(โ„™โˆ—) is self injective. Proof: 1. Since โ„™ is fully fuzzy visible and EndR(โ„™โˆ—) is commutative, then โ„™โˆ— is fully visible. But โ„™ is fuzzy quasi injective, then ๐•„ is a quasi injective and โ„™(x) = 1 โˆ€x โˆˆ ๐•„. Therefore IHJPAS. 36 (3) 2023 379 โ„™โˆ—is duo by [5, proposition 3.8]. Let ๐”š โˆˆ ๐น๐‘ˆ๐‘†(โ„™), then ๐”šโˆ— submodule of โ„™โˆ—, then ๐”šโˆ— is duo which implies that ๐”š is duo by [5, proposition 3.8 ]. 2. Since every fuzzy homomorphic image is a fuzzy submodule of โ„™, then by (1), we get the result. 3. Since End๐”ฝ(โ„™โˆ—) is End๐”ฝ(โ„™โˆ—) โˆ’injective by [24, proposition 2.6.25], then ฮณEnd๐”ฝ (โ„™โˆ—) is a fuzzy self injective [29, proposition 4.3(i)]. 3.36 Corollary: Let โ„™ be a finitely generated fully visible module over Dedkined domain, then โ„™ is fuzzy duo multiplication module, where โ„™ satisfies condition (โˆ—) and every fuzzy submodule of โ„™ constant on ker f. Proof : โ„™โˆ— is finitely generated module, then โ„™โˆ— is duo multiplication module by [24, corollary 2.6.26], but โ„™โˆ— is fully visible, then โ„™ is duo multiplication by [25] and [ 5,proposition 3.8 ] . 3.37 Proposition: If โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐•„) over a fuzzy principle ideal ring and ๐”š โˆˆ ๐น๐‘ˆ๐‘€(โ„™) be a such that โˆ€๐‘ฅ๐‘ก โŠ† ๐”š and a fuzzy singleton ๐‘Ÿโ„“ of ๐”ฝ , ๐‘ฅ๐‘ก = ๐‘Ÿโ„“๐‘ ๐‘˜ ๐‘ฅ๐‘ก for some fuzzy singleton ๐‘ ๐‘˜ of โ„ , then โ„™ is a fully visible fuzzy module . Proof: Let ๐‘ฅ๐‘ก โŠ† ๐”š and fuzzy singleton ๐‘Ÿโ„“ of ๐”ฝ. Then ๐‘ฅ๐‘ก โŠ†< ๐‘ฅ๐‘ก >โŠ† ๐”š, then ๐‘ฅ๐‘ก = ๐‘ ๐‘˜ ๐‘ฅ๐‘ก for some ๐‘ ๐‘˜ โŠ† ๐‘…. Then for each ๐‘Ÿโ„“ โŠ† ๐”ฝ, we get ๐‘ ๐‘˜ ๐‘ฅ๐‘ก = ๐‘Ÿโ„“๐‘ ๐‘˜ = ๐‘Ÿโ„“๐‘ ๐‘˜ ๐‘ฅ๐‘ก โŠ† ๐‘Ÿโ„“๐”š. Therefore, ๐‘ฅ๐‘ก โŠ† ๐‘Ÿโ„“๐”š, but ๐”ฝ is a fuzzy principle ideal ring, then ๐‘ฅ๐‘ก โŠ† ๐ฝ๐”š and hence ๐”š โŠ† ๐ฝ๐”š, but ๐ฝ๐”š โŠ† ๐”š. Therefore ๐”š = ๐ฝ๐”š for each nonempty fuzzy ideal J of ๐”ฝand hence ๐”š is a fuzzy visible submodule, thus the result holds. 3.38 Proposition: Let ๐”ฝ be a principle ideal field and ๐”š be a fuzzy submodule of a fuzzy module of an ๐”ฝ -module ๐•„. Then 1. โ„™ is a fully fuzzy visible. 2.ฮณ๐”ฝ/(F โˆ’ annxt)โˆ— is fuzzy negular ring โˆ€xt โŠ† โ„™, where ฮณ๐”ฝ is a fuzzy ring of ๐”ฝ. 3.โˆ€ xt โŠ† โ„™ โˆƒrโ„“ fuzzy singleton of ๐”ฝ, xt = rโ„“hkxt, k โˆˆ (0,1]. Proof: 1 โ‡’ 2 Pโˆ— is fully visible by propositon (2.15) and hence ๐”ฝ/(F โˆ’ annxt)โˆ— is regular ring by [24, proposition 2.6.27].Therefore ฮณ๐”ฝ/(F โˆ’ annxt)โˆ— is fuzzy negular ring by [27, theorem 3.2.10] and proposition 3.12. 2 โŸน 3 Since ฮณ๐”ฝ/(F โˆ’ annxt)โˆ— is fuzzy regular, then ๐”ฝ/(F โˆ’ annxt)โˆ— is regular ring by [24,theorem 3.2.10], hence โˆ€x โˆˆ โ„™๐‘ก , r โˆˆ ๐”ฝ, x = rhx for some h โˆˆ ๐”ฝ by [ 24 ,proposition 2.6.27]. Therefore, โˆ€ xt โŠ† โ„™, โˆƒฮณโ„“ fuzzy singlet of ๐”ฝ s.t. xt = rโ„“hkxt , t = min{โ„“, k, t} . 2 โŸน 3 Directly from proposition 3.37 3.39 Corollary: If ๐”ฝ is a principle ideal field, then ๐•„๐”ฝ is fuzzy regular, if and only if ๐•„๐”ฝis a fuzzy ๐”ฝ -module is fully visible. Proof: Let ๐•„๐”ฝ be a fuzzy regular ring, then ๐”ฝ is regular ring by proposition 3.12, then ๐”ฝ is fully visible by [ 24, corollary 2.6.28], and hence M๐”ฝ is fully visible. 3.40 Corollary: If ๐”ฝ is a field and โ„™ โˆˆ ๐น๐‘ˆ๐‘€(๐•„) such that ๐•„๐”ฝ is a fuzzy ring on ๐”ฝ, then โ„™ is fully fuzzy visible module, if ๐•„๐”ฝ/(F โˆ’ ann โ„™) ๐‘ก is a fuzzy regular ring , where (F โˆ’ annโ„™)t = annโ„™t , โˆ€ ๐‘ก โˆˆ (0,1]. Proof: Since ๐•„๐”ฝ/F โˆ’ annโ„™ is a fuzzy regular, then ๐”ฝ/(F โˆ’ annโ„™)t is a regular ring by [27,theorem 3.2.10] and proposition 3.15, but (F โˆ’ annโ„™)t = annโ„™๐‘ก, โˆ€ ๐‘ก โˆˆ (0,1] , then โ„™๐‘ก is fully visible by [24 ]. Therefore โ„™ is fully fuzzy visible. 3.41 Proposition: If โ„™ is divisible over P.I.D. and d F-ann โ„™ is semimaximal ideal of ๐”ฝ. Then โ„™ is a fully fuzzy visible, where (F โˆ’ annโ„™)โˆ— = annโ„™โˆ—. And โ„™(x) = 1 โˆ€x โˆˆ ๐•„. IHJPAS. 36 (3) 2023 380 Proof: Pโˆ— is divisible module by [23], since (F โˆ’ annโ„™)โˆ— = annโ„™โˆ— and F โˆ’ annโ„™ is semimaximal, then annPโˆ— is semimaximal ideal by [20, proposition (2.4)]. Then โ„™โˆ— is fully visible [ 24 ,proposition 2.6.38]. Therefore โ„™ is fuzzy fully visible. 3.42 Proposition: Let ฮณ๐”ฝ be a fuzzy visible ring defined as ฮณ๐”ฝ(r) = 1 โˆ€r โˆˆ ๐”ฝ, if โ„™ is a fuzzy ๐”ฝ - module M, then โ„™ is flat. Proof: Since (ฮณ๐”ฝ)t = ๐”ฝ, then ๐”ฝ is visible, then M is flat by [ 24, proposition 2.6.39]. Therefore โ„™ is fuzzy flat by [ 29, theorem 3.15] 4. Conclusion: In this paper, a number of characteristics and properties that explain the relationship of fully fuzzy visible modules with other modules are proved. In addition many useful examples with a collection of important results are obtained. References 1. Zadeh, L. A.. "Fuzzy Sets", Information and Control, 1965, 8, 338-353. 2. Rosenfeld, A. "Fuzzy Groups", Journal of Mathematical Analysis and Applications. 1971,35, 512-517. 3. Negoita C.V.; Ralescu, D.A. "Applications of Fuzzy sets and System Analysis"(Birkhauser ,Basel). 1975. 4. Sajda, K.M.; Buthyna, N.S. "Fuzzy visible submodules with some results" ,Int.J.Nonlinear Anal. Appl. 2021, 12,Special Issue , 2231-2241. 5. Sajda, .K.M.; Buthyna, N. S. "Fully Fuzzy Visible Modules With Distinguishing Result", accepted for publication in Journal of Discrete Mathematical Sciences and Cryptography,2022. 6. John. N. M. ; Malik, D. S. "Fuzzy Maximal, Radical,and Primary Ideals of a ring", Information Sciences. 1991, 53, 237-250 . 7. Hassan. K. M.; Hatam. Y. K. "Some Properties of the Essential Fuzzy and Closed Fuzzy Submodules", Iraqi Journal of science. 2020, 61, 890-897. 8. Asmaa Z.M.; Mahmood, R.D. and Marwa M.F. "On Fuzzy Essential Ideals of Rings", International Mathematical Form. 2020, 15, 383-391. 9. Zahedi, M. M."On L-Fuzzy residual quotient modules and P- Primary submodules", Fuzzy Sets and Systems. 1992, 51, 333-344, 10. Saad S.M.; Hatam.Y.K, "Fuzzy Soc-T-ABSO Sub-Modules", Iraqi Journal for Computer Science and Mathematics . 2022, 3 , 124-134. 11. Mashinchi, M.; Zahedi, M.M. "On L-Fuzzy primary submodules", Fuzzy Sets and Systems, 1992,49, 843-857, . 12. Maysoun A. H.; Hatam, H.Y. "Fuzzy Maximal Sub-Modules", Iraqi Journal of Science.2020, 61, 1164-1172. 13. Shaheed, J.K ; Hatam, H.Y., "Loc-hollow Fuzzy Modules with Related Modules", Ibn Al Haitham Journal for Pure and Applied Science, 2022, 35, 84-96. 14. Kumar, R. "Fuzzy semiprimary ideal of rings", Fuzzy Sets and Systems. 1991, 42, 263-272. 15. Kumar, R. S.; Bhambri K.; Kumar, P. "Fuzzy Submodules: Some analogues and deviations", Fuzzy Sets and Systems. 1995, 70, 125-130. 16. Nimbhorkar, S.; Khubchandani, J. "Fuzzy Essential Submodules With Respect To An Arbitrary Fuzzy Submodules", TWMS J. App. and Eng. Math. 2022, 12, 435-444. 17. Rabi, H. "Prime Fuzzy Submodules and Prime Fuzzy modules", MSc Thesis, University of Baghdad. 2001. IHJPAS. 36 (3) 2023 381 18. Hadi,G.R; Hatem, Y.K., "Quasi-Fully Cancellation Fuzzy Modules", Ibn Al Haitham Journal for Pure and Applied Science, 2017, 30, 192-207. 19. Inaam M. H.; Maysoun, A. H. "Cancellation and Weakly Cancellation Fuzzy Modules", Journal of Basrah Reserches ((Sciences)). 2011,37 4D, 20. Maysoun, A. H; Hatam H.Y. "Fuzzy Semimaximal Submodules", Ibn Al Haitham Journal for Pure and Applied Science . 2020,33(4), 137-147. 21. Hasan, K.M.; Hatem, Y.K., "Weak Essential Fuzzy Submodules of Fuzzy Modules", Ibn Al Haitham Journal for Pure and Applied Science,30, 2020, 65-72. 22. Shymaa, A. M. "New Types of Regular Fuzzy Modules And Pure Fuzzy Submodules", MSc Thesis, College of Education for Pure science(Ibn-Al-Haitham), University of Baghdad. 2018. 23. Hatam, Y.K. "Fuzzy Quasi - Prime Modules and Fuzzy Quasi โ€“ Prime Submodules", MS.C. Thesis, College of Education for Pure science(Ibn-Al-Haitham), University of Baghdad, 2001. 24. Mahmood, S. F. "Visible(W-visible) submodules and fully visible(W-visible) Modules with some of Their Generalizations", Ph.D Thesis, College of Education for Pure science(Ibn-Al- Haitham), University of Baghdad, 2019. 25. Maysoun, A. H. "F-Regular Fuzzy Modules", M.SC.Thesis, College of Education for Pure science(Ibn-Al-Haitham), University of Baghdad, 2002. 26. S. F., Mahmood; N.S. Buthyna, "Behavior of Visible Submodules in the Class of Multiplication Modules". Aviable online :https://www.researchgate.net/publication/3327113 92, (2019). 27. Mordeson, J. N.; Malik, D. S. , "Fuzzy commutative Algebra"; World Scientific Publishing Co.Pre.Ltd: USA, 1998; ISBN 981-02-3628-X. 28. Mahdi, S. A. "On Fully Stable Module", Ph.D. Thesis, University of Baghdad, 1991. 29. Zahedi, M.M.; Ameri, R.A. "Fuzzy Flat and Faithfully flat R-modules", The Journal of Fuzzy Mathematics. 1997, 5, 855-864.