The Structural and Surface Morphology Properties of Aluminum Doped CdO Thin Films Prepared by Vacuum Thermal Evaporation Technique. Alia A. Shehab Samir A. Maki Ayad A. Salih Department of Physics, College of Education for Pure Science (Ibn Al- Haitham)/ University of Baghdad Received in :22 June2014, Accepted in : 8September 2014 Abstract Undoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology and to estimate the surface roughness of the obtained films. All films were homogeneous and smooth, with a characteristic spherical grain size depending on Al content. The (RMS) roughness of the films increases with the increase of Al dopant. The improvement of the structural and surface morphology properties of Al-doped CdO has potential applications for different optoelectronic device applications. Keywords: CdO:Al thin films, structure properties, XRD, AFM, SEM. 158 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 Introduction Transparent conductive oxides (TCO) are a type of semiconductor oxides of high conductivity arising from structural metal interstitials and oxygen vacancies. It is well known that high carrier mobility μH is essential for TCOs with good quality electro-optical properties[1]. From other side sometimes it is necessary to hybridize TCO in order to get some properties for various advanced technology applications, the hybridization can be realized by doping with elements having the required wanted property to be appeared in the TCO. Among these TCOs, CdO is an important material for the fundamental studies. It is now well conceived that the CdO shows many excellent properties, which make it suitable as a TCO [2]. CdO is a degenerate n-type semiconductor with a rock-salt crystal structure (FCC). Its high electrical conductivity (102-104) Ω-1cm-1 and high optical transmittance in visible and NIR spectral regions with a moderate reflective index make it useful for various applications, photo diodes, gas sensors devices, transparent electrodes, photo transistors, photovoltaic solar cells, etc[2-5] with a direct band gap of (2.2-2.7) eV [4-7]. The n-type electrical conduction in CdO and the low resistivity of CdO thin films are due to Cd interstitial (Cdi) and oxygen vacancies, however the oxygen vacancies is dominate defect acting as doubly ionized (+2) charge shallow donors [6]. The carrier mobility in CdO films could be improved by doping with different metallic ions. It was established experimentally that doping of host CdO by ions of radius slightly smaller than that of Cd2+, like Tl [8], Y [9], In [10], Sm[11] and Al [12-14], could improve the electronic mobility and conductivity of carriers. In this paper, we investigate both the structural and surface morphology properties for undoped CdO and Al-doped CdO films with various low percentages of Al. Our aim is to improve new nanostructure CdO films to control their structural and surface morphology properties to be utilized in new applications in optoelectronic devices. We conclude that Al as an incorporation element can be used to change structural and surface morphology properties to raise the chemical stability. Experimental details CdO:Al films have been deposited on glass substrate by thermal vacuum evaporation using (Edwards- Unit 306) system in vacuum about 4.5x10-5 mbar at room temperature. The thickness of the films were determined with (Precisa-Swiss) microbalance by using weighing method and found to be about (300∓10) nm, with deposition rate about (1∓0.1) nm/sec. The metal bulk Cadmium thin films (from Fluka A.G company / Germany), were evaporated in vacuum at room temperature onto cleaned glass substrates with (2.5 x 2 x 1)cm3 size. The distance between the substrate and the boat is (18) cm. A thin layer of CdO is formed on a chemically deposited Cd thin film through reaction with atmospheric oxygen during heating by (VECTOREEN model) oven for one hour at 400 °C. During the heating process, the color of the Cd films changed from silver-grey at room temperature to a black- brown color at a temperature of oxidation. So that Al atomic percentages doping in the films were (0, 0.5, 1 and 2)% wt. The crystal structure of these films was checked by X-ray diffraction technique, (XRD) patterns were obtained with a (SHIMADZU Japan -XRD600) automatic Diffractmeter using the CuKα radiations (λ=1.54059 Å) in the range of 2θ between 25° and 75°. Surface morphology was studied using (VEGA3-TESCAN model, USA) scanning electron microscope (SEM). Atomic force microscopy (AFM) measurements were carried out using (SPM model AA 3000 Angstrom Advanced Lns., USA) to determine the nanocrystalline topography and grain size of the films. 159 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 Results and Discussion 1. Crystal structure: (XRD) spectra of the undoped and Al-doped CdO films are shown in Fig. 1. The existence of multiple diffraction peaks of (111), (200), (220), (311) and (222) planes indicates the polycrystalline nature of the CdO films compound with cubic NaCl structure. The d-space ‘d’ and the lattice constant ‘a’ of the prominent peaks ((111), (200) and (222)) were calculated and presented in Table. 1. The XRD peaks coincide with those of cubic crystal structure according to ASTM card No. 05-0640 [15]. The observed ‘d’ and ‘a’ values are in good agreement with standard ‘d’ and ‘a’ values taken from (ASTM) data as shown in Table (1). The lattice constant parameter ‘a’ of the cubic structure of CdO films is calculated using the following formula [16]: 𝟏 𝒅𝟐 = 𝐡 𝟐+𝐤𝟐+𝐥𝟐 𝐚𝟐 …………….. (1) The calculated lattice constant for the dominant peaks of (111), (200) and (222) of CdO is averaged to a = 4.6963 Ǻ which is close to the reported value [13, 16, 17, 18]. However, intensity of all peaks rapidly decreases as shown in Fig. 1 and full width at half maximum (FWHM) increases for the films with the increase of Al content. This behavior can be associated with the presence of Al-Cd compounds in the amorphous phase and with a diminishing of the CdO grain size ‘D’ [19]. The lattice parameter ‘a’ decreases from 4.6968 to 4.6763 Å when Al percentage increases from (0 to 2)% wt. for (111) plane as shown in table (2). The relatively stronger intensity of the peak indicates preferential (111)orientation of the films or indicating a strong orientational growth along that plane, similar behavior has also been reported by other researchers [12, 20-22]. The undoped thin film has shown the highest (111) diffraction peak intensity while the peak intensities of the aluminum doped films decreased with doping concentrations, which indicates that an increase in doping concentration deteriorates the crystallinity of the films. For polycrystalline semiconductor, dopants are known to segregate in grain boundaries in electrically inactive configurations [23-25]. There is always a tendency for the aluminum dopants to segregate at the grain-inter particle boundaries even for a low Al doping concentration [26]. Considering the above mentioned cases, the deterioration of crystallinity in the present CdO:Al films may be attributed to the deformation in the CdO lattice induced by the ion size difference between Cd (ionic radius=0.095 Ǻ) and Al (ionic radius=0.0535 Ǻ) and excess Al may also occupy interstitial positions in CdO lattice resulting in distorted crystal structure, thus decreasing the carrier mobility [27], and an increased segregation of aluminum in grain boundaries inhibiting the crystalline formation as a function of doping concentration. This is evident by the peak width broadening with increasing Al content, which suggests that the grain size of the CdO:Al thin film decreases as a function of Al concentration as shown in table(2). The grain size value ‘D’ of the films was estimated from the Scherrer's equation[28]: D = 𝟎.𝟗 𝛌 𝛃 𝐜𝐨𝐬 (𝛉) …………………. (2) Where β (FWHM), is the full width at half maximum of diffraction peak measured in radians units, θ is the Bragg angle and λ is the X-ray wavelength used (λ=1.54059 Å). The grain size associated to the (111) direction was found to decrease from 60.8 nm (undoped) to a minimum about 48 nm for an Al concentration of 2 wt.% as shown in Fig. 2, this behavior is consistent with previous report of Al-doped CdO films prepared by sol-gel [28], spray pyrolysis [13, 18, 29] and by ultrasonic spray pyrolysis technique [30]. The dislocation density (δ) is defined as the length of dislocation lines per unit volume of the crystal, has been estimated using the equation [31]: δ= 𝟏 𝐃𝟐 ………………. (3) 160 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 The δ-value is criterion of crystallization level. Lower δ-values indicated higher crystallinity levels for the films, since δ is the measure of the amount of defects in a crystal and the value of dislocation density obtained in this work is found to be equal to 2.7x1014 lines/m2 for undoped films. The small value of δ obtained in the present work confirms the good crystallinity of the CdO film fabricated by employing this thermal evaporation technique. The number of crystallites per unit surface area (N) of the film was determined using the formula [31]: N= 𝐭 𝐃𝟑 …………………. (4) Where, t is the thickness of the films. The value of N was found to be equal to 1.334x1015/m2 for undoped films. The variation of δ and N as a function of Al dopant as shown in Fig. 3 and table (2), were increased with the increase of Al dopant concentration in the films. 2. (AFM) analysis: AFM scans of the surface morphology were carried out to study the change in the surface morphology of the films. AFM images of pure and Al doped CdO thin films are shown in Fig. 4. These images show that the film is homogeneous and it has a large number of vertically aligned (columnar) grains, uniformly distributed features with no pinholes or island structures are observed in all the thin films. It can be seen in Fig. 4 that the surface roughness of the CdO film is changed with the increase of Al-doping level from (0 to 2)% wt. The increase in pyramidal shape with increases Al dopant, indicate that the increase in the surface roughness affects the surface characterization of the films and leads to changes in the optical, electronic, and vibrational transitions of the material. [32]. Nanoscale surface roughness of the films was calculated by section analysis of the height image. The section analysis of the height image indicated increase in nanoscale roughness for films with additives. AFM phase image can be used to map stiffness difference on the surface [33]. The grain size and the root-mean-square (RMS) roughness of the samples were estimated from AFM images and the results have been shown in table (3). The measured (RMS) roughness of the (undoped, 0.5, 1 and 2)%wt. Al doped cadmium oxide films were (0.76, 0.96, 1.03 and 1.18) nm, respectively (table 3). It is less than 1.2 nm over a (2μm×2μm) area for all films; these values are consistent with previous reports for undoped and doped CdO thin films prepared by various techniques [34-36]. It is evaluated that the surface roughness of the films depends on the distribution of particles on surface of the films. Further, the roughness of the samples increases with the increase of Al concentration as shown in Fig.(2). This behavior is similar to CdO:Al thin films of the previous reports [14, 29]. Therefore, the increases in roughness of the film surface indicate the possibility of using the synthesized films as anti-reflection-coatings, which reduce light reflection, but increase light absorption in the visible region of the solar spectrum [37]. It is observed from Table (3) of AFM analysis, that the grain size or the particle size of CdO is decreased with increase in Al-doping percentage. The AFM observation is consistent with the above XRD results. From table (2) & table (3), it seems a lower estimate of the corresponding size determined by the XRD analysis. The disagreement between the grain size determinations from XRD and AFM measurements is expected because the AFM measurement directly visualizes the surface grains only without considering the degree of structural defects [38], while the XRD determination is based on the grain size of the defect- free volume [39] (common lattice defects in metal oxide semiconductors are for instance oxygen vacancies and metal atoms on interstitial lattice sites) [40]. So, we conclude that an average grain observed by the AFM contains other lager size crystallites belonging to 161 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 different orientations, as observed in the XRD [38]. AFM images are consistent with pervious report of Al-doped CdO films prepared by spray pyrolysis method [29]. 3. (SEM) analysis: Fig. 5 shows scanning electron micrographs (SEM) of the nanostructured undoped and Al–doped CdO films. From the first image (Fig. 5a) it seems that the particles have rounded shape less than 1 μm diameter. But the diameter decreases in second image (Fig. 5b), while the third and fourth images (Fig. 5c,d), the particles shape is like pyramids and the number of pyramids-like particles increased with Al doping. Furthermore, at the fourth image, we can see that the pyramids-like shape particles are more homogeneous than the third image. All the films were homogenously distributed and have dense uniform spherical crystalline grains for undoped and 0.5%wt. doped films (Fig. 5a,b), and granular surface properties with uniform pyramids shape of single mode size distribution of grains are observed for 1% and 2wt.% doped films (Fig. 5c,d). Also, it is well hold and well adherent with glass substrate surface without cracks. With the Al-doping, surface becoming homogeneous and fairly smooth. This array completely diminished and surface becomes highly smooth and homogenous for 2%wt. Al- doped sample (Fig. 5d). The SEM images show that the surface morphology of the films is strongly dependent on the concentration of aluminum, that suggests Al acts as an agent provide homogeneity and to improve film quality. Generally, the low ratio doping samples exhibited a porous microstructure and spherical crystalline surface particles. Furthermore, when the doping concentration increases the CdO particle size decreases. These results are consistent with above XRD and AFM results. The change of particle size can be attributed to the almost 43% difference in ionic radius between cadmium (0.095 nm) and aluminum (0.0535 nm) [41]. However, the SEM images confirm the AFM images. SEM images are consistent with pervious report of Al-doped CdO films prepared by sol–gel process [12]. Conclusion The undoped and Al-doped CdO films were deposited by Physical Vapor Deposition in vacuum technique. The structural and surface morphology properties of these films were investigated as a function of Al doping concentration at room temperature. Well adherent, homogeneous, smooth and crack-free thin films with nano-grain size were successfully grown on glass substrate utilizing a new precursor, by PVD method. XRD patterns shows that it has polycrystalline nature with cubic crystal structure with (111) plane as preferential orientation. SEM images revealed a spherical and pyramids shapes-grain surface with single mode size homogenous distribution of grains. The mean values of nano-clusters size and roughness for pure and Al-doped CdO were determined by using AFM. AFM imaging indicated high smooth surfaces with small RMS roughness values and the results show moderate autosimilarity of the film surfaces and the Surface morphology of CdO film can be improved substantially by Al-doping. The correlation between structural properties and morphology of the films have shown that the grain size decreased with the increase of Al concentration and RMS roughness. The grain size of undoped CdO film is 60.81 nm which decreases with the increase of Al content. Finally, it may be concluded that vacuum thermal evaporation technique is a good technique for producing nano-structure material. In addition, the surface morphology of the films plays an important role on structural, optical and electrical behavior of Al doped CdO thin films. 162 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 References 1. Ramakrishna, K.T. ;Reddy; Shanthini, G.M.; Johnston, D. and Miles R. W. (2003). Highly transparent and conducting CdO films grown by chemical spray pyrolysis. Thin Solid Films, 427(1): 397-400. 2. Calnan, S. and Tiwari, A. N. (2010) High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films, 518, 1839-1849. 3. Azarian, A.; Iraji zad, A. and Mahdavi, S. M. (2009) CdO/PSi/Si photo detector . Int. J. of Nanotechnology, 6: 997-1005. 4. Zhao, Z. ; Morel, D. L. and Ferekides, C. S. (2002) Electrical and optical properties of tin- doped CdO films deposited by atmospheric metal organic chemical vapor deposition”. Thin Solid Films, 413: 203–211. 5. Dakhel, A.A. (2013). Germanium Doping to Improve Carrier Mobility in CdO Films. Advances in OptoElectronics, 2013: 804646-804652. 6. Burbano, M. ; Scanlon, D. O. and G. W. Watson. (2011) Sources of conductivity and doping limits in CdO from hybrid density functional theory”. Journal of the American Chemical Society, 133(38): 15065–15072. 7. Mustafa, Q. M. (2011). Study of the Optical Constants as a function of the annealing temperature and the thickness for CdO thin films, M. Sc. Thesis, University of Baghdad. 8. Dakhel, A. A. (2008) “Effect of thallium doping on the electrical and optical properties of CdO thin films. Physica Status Solidi (A), 205(11): 2704–2710. 9. Dou, Y.; Egdell, R.; Walker, T. and Beamson, G. (1998) “N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy”. Surface Science, 398(1): 241–258. 10. Al-Anssari, Ramiz; Habubi, Nadir and Ali, Jinan. (2013)."Fabrication and characterization of n-CdO: In/p-Si thin film solar cell. Journal of Electron Devices, 17: 1457-1464. 11. Dakhel, A.A.(2009) Transparent conducting properties of samarium doped CdO. Journal of Alloys and Compounds, 475(2): 51-54. 12. Ilican, S. ; Caglar, M; Cagar, Y. and Yakuphanoglua, F. (2009). CdO:Al films deposited by sol–gel process: a study on their structural and optical properties. Optoelectronics & advanced materials- rapid communication, 3(2): 135-140. 13. Khan, M.K. ; Azizar Rahman, M. ; Shahjahan, M ; Mozibur Rahman, M ; Hakim, M.A. ; Dilip Kumar Saha and Jasim Uddin Khan.(2010). Effect of Al-doping on optical and electrical properties of spray pyrolytic nano-crystalline CdO thin films. Current Applied Physics, 10: 790–796. 14. Yahia, I. S.; Salem, G. F.; Abd El-sadek, M.; Yakuphanoglu, F. (2013)."Optical properties of Al-CdO nano-clusters thin films by sol-gel spin coating method". Super lattices and Microstructures, 64: 178-184. 15. JCPDS,(1997).International Center for Diffraction Data, ASTM data files 5-64 and 8-459, Card 05- 0640. 16. Usharani, K. ; Balu, A. ; Shanmugavel, G. and Suganya, M. (2013). Transparent conducting CdO thin films fabricated by low cost simplified spray technique using perfume atomizer. IJSRR, 2(3): 53-68. 17. Dakhel, A.A.and Henari, F.Z.(2003). Optical characterization of thermally evaporated thin CdO films. Crystal Research and Technology, 38(11): 979-985. 18. Kumaravel, R. ; Menakaa, S. ; Regina, S.; Mary Snegaa, K. and Ramamurthia, K. (2010). Electrical, optical and structural properties of aluminum doped cadmium oxide thin films prepared by spray pyrolysis technique". Materials Chemistry and Physics, 122: 444–448. 19. Ngamnit Wongcharoena ; Thitinai Gaewdanga and W. Tiparatana W. (2012). Electrical Properties of Al-Doped CdO Thin Films Prepared by Thermal Evaporation in Vacuum". Energy Procedia, 15: 361–370. 20. Maity, R.; Chattopadhyay, K. (2006). Synthesis and characterization of aluminum doped CdO thin films by sol-gel process. Solar Energy Materials and Solar cells, 5(23): 597-606. 163 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 http://www.researchgate.net/researcher/6957033_A_Azarian http://www.researchgate.net/researcher/53490016_A_Iraji_zad http://www.researchgate.net/researcher/11947409_S_M_Mahdavi http://adsabs.harvard.edu/cgi-bin/author_form?author=Yahia,+I&fullauthor=Yahia,%20I.%20S.&charset=UTF-8&db_key=PHY http://adsabs.harvard.edu/cgi-bin/author_form?author=Salem,+G&fullauthor=Salem,%20G.%20F.&charset=UTF-8&db_key=PHY http://adsabs.harvard.edu/cgi-bin/author_form?author=Abd+El-sadek,+M&fullauthor=Abd%20El-sadek,%20M.%20S.&charset=UTF-8&db_key=PHY http://adsabs.harvard.edu/cgi-bin/author_form?author=Yakuphanoglu,+F&fullauthor=Yakuphanoglu,%20F.&charset=UTF-8&db_key=PHY 21. Saha, B.; Das, S. and Chattopadhyay, K. K. (2007). Electrical and Optical properties of Al doped cadmium oxide thin films deposited by radio frequency magnetron sputtering, Solar Energy Material cells, 91(18): 1692-1697. 22. Gupta, R. K. ; Ghosh, K. ; Patel, R. ; Mishra, S. R. and Kahol, P. K. (2009). Preparation and characterization of highly conducting and transparent Al doped CdO thin films by pulsed laser deposition.Current Applied Physics, 9: 673-677. 23. Jin, S.; Jones, K. S.; Law, M. A. and Camillo, R. (2012). Boron segregation to grain boundaries and diffusion in polycrystalline Si with flash annealing. J. Appl. Phys., 111: 44508-44513. 24.Qin, W.; Ast, D. and Kamins, T.(2000)."Segregation of phosphorus and germanium to grain boundaries in chemical vapor deposited silicon-germanium films determined by scanning transmission electron microscopy". Journal of Electronic Materials, 29(8): 13- 17. 25. Maitia, A.; Chisholm, M. F.; Pennycook, S. J. and Pantelides, S. (1996)."Dopant Segregation at Semiconductor Grain Boundaries through Cooperative Chemical Rebonding. Phys. Rev. Lett., 77(7): 1306 –1309. 26. Nasr, B.; Dasgupta, S.; Wang, D.; Mechau, N.; Kruk, R. and Hahn, H. (2010). Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries, J. Appl. Phys., 108: 103721- 103727. 27. Salam, S.; Islam, M. and Akram, A. (2013). Sol–gel synthesis of intrinsic and aluminum doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films, 529: 242-247. 28. Abdolahzadeh Ziabari, A. ; Ghodsi, F. E. and Kiriakidis, G. (2012). "Correlation between morphology and electro-optical properties of nanostructured CdO thin films: Influence of Al doping". Surface & Coatings Technology, 213: 15–20. 29. Faizullah, A. F. M.; Khan, M. K. R. and Mozibur Rahman, M. (2013). Pyrolized growth of (Al, N) dual doped CdO thin films and study of structural, surface morphology and opto- electrical properties. International Journal of Materials Science &Applications, 2(4):124- 127. 30. Akyuz, I. ; Kose, S. ; Atay, F. and Bilgin, V., (2010). "Preparation and characterization of aluminum - incorporated cadmium oxide films". Materials Science in Semiconductor Processing, 13: 109–114. 31. Suryanarayana, C. and Norton, M. G. (1998). X-ray Diffraction, A Practical Approach. Plenum Press, New York. 32. Asmiet Ramizy; Khalid Omar; Hassan, Z. and Omar Alattas.(2011). The effect of sub- band gap photon illumination on the properties of GaN layers grown on Si (111) by MBE. Journal of Nanopartical Research, 13: 7139-7148. 33. Irzaman; Irmansyah; Heriyanto Syafutra; Ardian Arif; Husin Alatas; Yuli, A.; Nurullaeli; Ridwan Siskandar; Aminullah; Gusti Putu Agus Sumiarna and Zul Zahid Jamal. (2014). Effect of annealing times for LiTaSiO5 thin films on structure, nano scale grain size and band gap. American Journal of Materials Research, 1(1): 7-13. 34. Yuankun Zhu ; Rueben J.; Mendelsberg, A.; Jiaqi Zhu; Jiecai Han and André Anders. (2013). Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition. Applied Surface Science, 265: 738‐744. 35. Gupta, R. K.; Ghosh K.; Pate, R.; Mishra, S. R. and Kahol, P. K. (2008). "Effect of oxygen partial pressure on optoelectrical properties of tin-doped CdO thin films". Journal of optoelectronics and advanced materials, 10(10): 2611-2615. 36. Kudrynskyia, Z.R.; Kovalyuka, Z.D.; Katerynchuka, V.M.; Khomyakb, V.; Orletskyb, I. and Netyaga, V. (2013). Fabrication and Characterization of Photosensitive n-CdO/p-InSe Heterojunctions. Acta physica polonica, 124(4): 720-723. 164 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 http://link.springer.com/search?facet-author=%22W.+Qin%22 http://link.springer.com/journal/11664 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.1306 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.1306 37. Najim, J. A. ; Rozaiq,J. M. (2013). Effect Cd doping on the structural and optical properties of ZnO Thin Films". International Letters of Chemistry, Physics & Astronomy, 10(2): 137-150. 38. Raid A. Ismail; Abdulrahman, K. Ali and Khaleel,I. Hassoon. (2013). "Preparation of a silicon heterojunction photodetector from colloidal indium oxide nanoparticles". Optics & Laser Technology, 51: 1–4. 39. Spolenak, R.; Ludwig, W.; Buffiere, J. Y. and Michler, J. (2010). In-situ elastic strain measurements – diffraction and spectroscopy. MRS Bulletin, 35(5): 368-374. 40. Ellmer, K.; Klein, A.; Rech, B. Eds. (2008). Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer-Verlag, Berlin, Germany. Page 57 41. Shannon, R.D.(1976). Revised effective ionic radius and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst , A32: 751–767. Table No.(1): XRD, results of CdO:Al thin films compared with (ASTM) card. Å) a ( Observed a (Å) (ASTM) )hkl ( )ASTM( d(Å) Observed d (Å) )ASTM( 2θ Observed 2θ )ASTM( Sample 4.6968 4.6964 4.6959 4.695 111 200 222 2.7117 2.3482 1.3556 2.7120 2.3490 1.3550 32.9807 38.2722 69.2869 33.000 38.283 69.284 CdO (Pure) 4.6914 4.6942 4.6904 4.695 111 200 222 2.7086 2.3471 1.3540 2.7120 2.3490 1.3550 33.022 38.305 69.312 33.000 38.283 69.284 Al (0.5%)/CdO 4.68017 4.6902 4.6838 4.695 111 200 222 2.7021 2.3451 1.3521 2.7120 2.3490 1.3550 33.104 38.370 69.315 33.000 38.283 69.284 Al (1%)/CdO 4.6763 4.6862 4.6763 4.695 111 200 222 2.6999 2.3431 1.3508 2.7120 2.3490 1.3550 33.118 38.450 69.361 33.000 38.283 69.284 Al (2%)/CdO Table No.(2): XRD, results of CdO:Al thin films for the (111) preferred orientation peak Ratio Ta (oC ) d (111) ( Å ) a (Å ) FWHM (111) (deg) D (nm) N0x1015 (m-2 ) δx1014 (m-2 ) Intensity (cps) CdO(Pure) R.T 2.7117 4.6968 0.14230 60.81 1.3341 2.7042 7113 0.5 % Al 2.7086 4.6914 0.1494 57.92 1.5439 2.9808 6530 1 % Al 2.7021 4.6801 0.1651 52.429 2.0816 3.6379 5854 2 % Al 2.6999 4.6763 0.1802 48.037 2.7064 4.3336 4765 Table No. (3): AFM analysis, the crystal grain size, RMS surface roughness of the pure CdOand Al doped CdO thin films. Thin films Grain size, D (nm) (RMS) roughness (nm) Pure (CdO) 79.53 0.76 0.5%Al - CdO 64.67 0.96 1% Al - CdO 57.87 1.03 2% Al - CdO 51.19 1.18 165 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 Figure No. (1): X-ray diffraction pattern of Al doped CdO thin films at room temperature. Figure No. (2): Variation of grain size and (RMS) roughness as a function of Al doping ratio. 166 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 Figure No. (3): Variation of (δ) and (No) of CdO:Al thin films as a function of Al doping ratio Figure No .(4): AFM-3D images of (a)0%wt , (b)0.5%wt, (c)1%wt, (d)2%wt Al doped CdO films. 167 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 Figure No.(5) : SEM – 1 μm images of CdO thin films with various Al doping ratio (a) undoped , (b) 0.5 %wt. , (c) 1%wt. , (d) 2%wt 168 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 والمشوبة النقیة (Al) ألغشیة ومورفولوجیة السطح تركیبیةالخواص ال والمحضرة بتقنیة التبخیر الحراري في الفراغ (CdO)ب لیة عبد المحسن شھابع سمیر عطا مكي أیاد أحمد صالح / جامعة بغداد )إبن الھیثم(كلیة التربیة للعلوم الصرفة /قسم الفیزیاء 2014ایلول 8، قبل في:2014حزیلران 22استلم في : الخالصة د عتم�اوبإ %(2 ,1 ,0.5)بنسب تش�ویب (Al)النقیة والمشوبة ب ) الرقیقة (CdOحضرت أغشیة أوكسید الكادمیوم . ُدرس�ت الخ�واص التركیبی�ة بأس�تخدام تقنی�ة زجاجی�ة بدرج�ة ح�رارة الغرف�ة تقنیة التبخیر الحراري الفراغي على أرض�یات )XRD وكذلك مواصفات مورفولوجیة الس�طح لألغش�یة المحض�رة بإس�تخدام تقنی�ة ،((AFM) و(SEM) . أظھ�رت نت�ائج ) إن جمیع األغشیة المحض�رة النقی�ة والمش�وبة كان�ت ذا تركی�ب بل�وري متع�دد التبل�ور (XRDقیاسات حیود األشعة السینیة لألغش�یة النقی�ة والمش�وبة (111)م�ع ھیمن�ة النم�و باإلتج�اه nm 0.4696ومن النوع المكعب الذي یمتلك ثابت شبیكة طولھ د، وح�دوث أنخف�اض ف�ي ش�دة القم�م المقاس�ة مم�ا ی�دل عل�ى نقص�ان التبل�ور وتن�اقص واض�ح كافة مع إزاحة في زاویة الحیو ).Al) عند زیادة التشویب باأللمنیوم (nm )60.81-48.03أیضاً یظھر في معدل الحجم الحبیبي س�طوح ) لدراس�ة طوبوغرافی�ة وخش�ونة SEM) والمجھر اإللكتروني الماس�ح (AFMأستخدمت تقنیة مجھر القوة الذریة ( األغشیة الرقیقة المحضرة. أظھرت نتائج فحوصات المجھر أن جمی�ع األغش�یة متجانس�ة وناعم�ة وأن ش�كل الحج�م الحبیب�ي ) بإزدی��اد نس��بة RMSالمتك��ون أش��بھ بالش��كل الك��روي باألعتم��اد عل��ى نس��بة التش��ویب، م��ع زی��ادة مع��دل خش��ونة الس��طح ( بعد تشویبھا بنسب قلیل�ة ج�داً CdOورفولوجیة السطح تتحسن ألغشیةالتشویب. وأظھرت النتائج أن الخواص التركیبیة وم مما یجعل ھذه األغشیة واسعة التطبیقات في مجال النبائط االلكتروضوئیة. Alمن .XRD, AFM, SEM، الخواص التركیبیة ، (CdO/Al)الرقیقة غشیة األ:المفتاحیة الكلمات 169 | Physics @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I2@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (2) 2014 32. Asmiet Ramizy; Khalid Omar; Hassan, Z. and Omar Alattas.(2011). The effect of sub-band gap photon illumination on the properties of GaN layers grown on Si (111) by MBE. Journal of Nanopartical Research, 13: 7139-7148. 38. Raid A. Ismail; Abdulrahman, K. Ali and Khaleel,I. Hassoon. (2013). "Preparation of a silicon heterojunction photodetector from colloidal indium oxide nanoparticles". Optics & Laser Technology, 51: 1–4. 39. Spolenak, R.; Ludwig, W.; Buffiere, J. Y. and Michler, J. (2010). In-situ elastic strain measurements – diffraction and spectroscopy. MRS Bulletin, 35(5): 368-374.