Synthesis of Some New Metal Complexes of 4-(2-carboxyl-1,3-dioxalan-4-yl)-4,6-oxofuro[3,4-d][1,3]dioxole-2-carboxylic acid L-Ascorbic acid Synthesis and Spectral Studies of Some Metal Complexes with Bis[O,O-2,3;O,O-5,6(Chlorocarboxylic Methyliden)] L-Ascorbic Acid Salah M. Fizea E-Mail. Salahmohammadiraq@gmail.com Fallih H. Musa E-Mail. Dr.Falihhassan@yahoo.com Huda A. Fidhel Dept. of Chemistry/ College of Education for Pure Science (Ibn Al-Haitham) /University of Baghdad Received in : 12 June 2013 , Accepted in : 4 December 2013 Abstract The reaction of L-ascorbic acid with the tirchloroacetic acid in the presence of potassium hydroxide gave new product Bis[O,O-2,3;O,O-5,6(chlorocarboxylicmethyliden)]L- ascorbic acid (H2L) which was isolated and characterized by 1H,13C-NMR, elemental analysis (C,H,N), UV-Visible and Fourier Transform Infrared (FTIR). The complexes of the ligand (H2L) with metal ions, M+2= (Cu, Co, Ni, Cd and Hg) were synthesized and characterized by FTIR, UV-Visible, molar conductance, atomic absorption, magnetic susceptibility and the molar ratio. The analysis evidence showed the binding of the metal ions with (H2L) through the bicarboxylato group manner resulting in six-coordinated metal ion. The TLC for (H2L) and complexes showed one spot for each indicating the purity of these compounds. Key words: Synthesis; L-ascorbic acid; Complexes; Analysis 225 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 mailto:Salahmohammadiraq@gmail.com mailto:Dr.Falihhassan@yahoo.com Introduction L-Ascorbic acid (vitamin c) is an important molecule in both chemistry and biology, and its complexes with metals are of particular interest in both of these areas[1-3]. This vitamin is present in various foods, particularly of plant origin, that are several orders of magnitude higher than those of other vitamins.[4] Musa-etal, [5-7] synthesized derivatives of L-ascorbic acid such as 5,6-O- isopropylidene-2,3-(2ˉ-X,1carboxyl) deoxy-L-ascorbic acid, where X = H, Cl., 1,2-dihydroxyl ethyl-1-(2-mercaptophenyl)-5-(2-mercaptophenyl)-2,5-dihhydro-1H-pyrrol-3,4-diol. Finally 5,6-O, 2,3-O L-ascorbic acid were substituted by acetic acid. L-ascorbic acid derivatives of transition and alkali metal ions complexes were also synthesized and characterized. Experimental part Instruments, materials and methods All chemicals were purchased from BDH, and used without further purifications. FTIR spectra were recorded in KBr on Shimadzu- spectrophotometer in the range of (4000-400)cm- 1. Electronic spectra in distilled water were recorded using the UV-visible spectrophotometer type Shimadzu in the range of (200-1100)nm with quartz cell of (1cm) path leangth. Melting points where measured with an electrothermal Stuart apparatus, model SMP30. Electrical conductivity measurements of the complexes were recorded at (25oC) for 10-3 mol.L-1 solution of the samples in distilled water using Ltd 4071 digital conductivity meter. 1H NMR and 13C NMR spectra were recorded on a Bruker 300-MHz spectrometer in DMSO-d6. Chemical shifts are in ppm relative to internal Me4Si was performed at AL-al-Bayt University, Jordon. Elemental microanalyses of the ligand were carried out by using Euro Vectro- 3000A, AL-al-Bayt University, Jordon. Metal content of the complexes were measured using atomic absorption technique by Perkin-Elmer 5000, University of Baghdad college of science. While Hg metal is determined using Biotech Eng. Management Co. Ltd. (UK), University of Mustansiriyah, College of Science. Magnetic susceptibility values were obtained at room temperature using the Gouy method, Johnson Mattey, England, were performed at Al-Nahrain University. Thin Layer Chromatography (TLC): the (TLC) was performed on aluminum plates coated with silica gel (Fluka), and detected by iodine. Synthesis of ligand (H2L) L-ascorbic acid (0.18gm, 1m mole) was dissolved in the mixture of (15ml ethanol + 5ml water). Potassium hydroxide (0.23gm, 4m mole)in ethanol (10ml) solution was added. The solution was stirring for 30 minutes. The trichloroacetic acid (0.32gm, 2m mole) was added drop wise, stirring was continued for one hour and left to evaporate slowly. The precipitate was recrystallized from ethanol giving a yellow precipitate melting point (138C ْ◌ ), yield 68%. Synthesis of complexes (MΙΙ = Cu, Co, Ni, Cd, Hg) To a solution of the (H2L) (0.35gm, 1m mole) in mixture of (15ml ethanol + 5ml water) was added, a solution of 2m mole of metal chloride in 20ml ethanol 0,34gm CuCl2.2H2O, 0.24gm NiCl2.6H2O, 0.48gm CoCl2.6H2O, 0.46gm CdCl2.H2O, 0.54gm HgCl2. The solutions were stirring for one hour and left them to evaporate slowly to bring down the complexes. The complexes were washed from mixture of ethanol + water (4:1). The isolated complexes are colored solids, stable in air and insoluble in common organic solvents but completely soluble in water, ethanol, DMSO and DMF. Some physical properties for all synthesized ligand (H2L) and its complexes are shown in Table 1. 226 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 Results and discussion Bis[O,O-2,3;O,O-5,6(chlorocarboxylic methyliden)]L-ascorbic acid (H2L) was synthesized in a good yield by the reaction of L-ascorbic acid with trichloroacetic acid in the ratio (1:2) in presence of four mole of potassium hydroxide (Scheme 1). O O O O CHOOC Cl OO C COOH Cl O O OHHO HO HO 2Cl3CCOOH+ 4KOH + 4KCl 1 23 4 5 6 7 8 O O OKKO KO KO + + 4H2O Scheme (1) The reaction of L-ascorbic acid with trichloroacetic acid in base media FT-IR spectral analysis The I.R spectrum of L-ascorbic acid as starting material is compared with the new ligand (H2L) spectrum, the results are summarized in table (2). L-ascorbic acid exhibits bands at 3525, 3410, 3313 and 3213 cm-1 caused by υ(OH) positions (C-5,6,2,3) respectively, these are disappeared in the spectrum of the new ligand accompanied by the appearance of three bands in the 3380 (broad), 1566 (asym.), 1417 (sym.) are due to carboxylate group. (C-1=O) stretching vibration appeared at (1718 cm-1). The bands at (1678,1647) cm-1 in starting L- ascorbic acid are due to the υ(C=C), υ(C=O) appeared as broad band centre at 1660 cm-1 in the new ligand. The bands located at (1566,1417) cm-1 which were assigned to υ(C=O) stretching vibration for (COOH) in free ligand (H2L), were shifted to lower frequency and appeared at [1400,1344] cm-1 in (Cu), [1420,1344] cm-1 in (Co), [1445,1384] cm-1 in (Ni), [1415,1361] cm-1 in (Cd), [1425,1361] cm-1 in (Hg). Each two bands were assignable to asymmetric and symmetric stretching frequencies of the carboxylate ion with average separation ∆υcoo-; 56, 76, 61, 54, 64) cm-1 respectively indicating the deprotonation of the carboxylic proton and suggests that coordination occurs through the carboxylate ion as a bidentates bonding nature[7-9]. New bands appeared in the range 428-482cm-1 in the all complexes assignable to υ(M-O) vibrations[10]. A band due to υ(C=O) of the lacton ring appeared as a shoulder within the range (1730-1735) cm-1 in all complexes. A strong broad absorption band appeared around (3566-3433) cm-1 associated with water molecules in these metal complexes. Coordinated H2O appeared at range (825-844) cm-1 in all complexes[11]. NMR spectrum for the ligand (H2L) 1H-NMR spectrum of the ligand (L) (Figure 1)in DMSO-d6 exhibited at δ(3.019-3.518) and (4.436) ppm are due to (CH2-6) and (CH-5) respectively, (CH-4) lactone appeared at δ(5.135) ppm. The OH- carboxylic showed broad center at 8.281 ppm. The 13C-NMR of the ligand (L) (Figure 2) showed the following data. • The signal at δ=177 ppm is due to carboxylic acid • The signal at δ=163 ppm is due to C=O lactone • The signals at δ=(125, 128, 79 and 60) ppm are due to (C-3, C-4, C-5, C-6) The results were compared with those obtained by chem. Office program and with 1H,13C- NMR previous obtained on derivatives of L-ascorbic acid[12,13]. 227 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 Spectral studies The electronic absorption bands as well as the magnetic moment values are summarized in Table 3. The UV-Visible spectrum of the ligand (H2L) showed one absorption at (40000 cm-1) is due to π−π* transition[14]. The electronic spectrum of Co-complex in water solution exhibited two bands appeared at (15873 cm-1) and (19230 cm-1) were assigned to the 4T1g→4A2g (υ2) and 4T1g→4T1g(p) (υ3) transitions respectively of octahedral geometry[15]. From the ratio of (υ3)/(υ2) (1.21), the value of Bcomplex (872.1) as well as position of υ1 (8284 cm-1) were calculated by using Tanaba-Sugano diagram for d7 configuration of the octahedral configuration geometry[16]. The value of β (0.89) indicates some covalent character. The conductivity measurement indicates that the complex is non-ionic. Spectrum of Ni(II) complex showed three bands in the visible region at (24390 cm-1) 3A2g→3T1g(P) (υ3), (14556 cm-1) 3A2g→3T1g(F) (υ2) and the last one is at (9259 cm-1) 3A2g→3T2g, (υ1). The ratio of υ2/υ1, (1.57) was applied on Tanaba-Sugano diagram for d8 octahedral complexes[17,18], Bcomplex and β, 10Dq(υ1) were calculated theoretically. The conductivity showed that the Ni(II)-complex was non-electrolyte. The spectrum of Cu(II) complex showed broad band at (12391cm-1) assigned to 2Eg→2T2g transition which refers to Jahn-Teller distortion of octahedral geometry[19]. The conductivity measurement of the complex indicates that the complex is non-electrolyte. The spectra of Cd(II), Hg(II) complexes gave no bands in the visible region, only bands assigned to charge transfer transitions (39682cm-1) Cd(II), (34482cm-1) Hg(II) complexes were observed, compared with free ligand showed one band at (40000cm-1, 250nm) confirms the complexes formation[20]. The conductivity measurements of the two complexes indicate that the complexes are non-electrolyte. Magnetic studies The magnetic moment values at (294K) of the [M2LCl4].XH2O M2+ = Cu, Ni, Co Table 3 show values (0.78, 1.57, 2.22)B.M respectively which are lower than the total spin-only values indicating a high spin octahedral geometry around metal ion. The lowering of these magnetic moments indicates a dominate antiferromagnetic interaction in all complexes. This may due to the fact that the Syn-Syn carboxylate provide a small metal-metal distance and results in a good overlap of the magnetic orbitals, an antiferromagnetic coupling is always induced[21-22]. Molar ratio The complexes of the ligand (H2L) with metal ions [Co(II), Ni(II), Cu(II), Cd(II), Hg(II)] were studied in solution using water as solvent, in order to determine (M:L) ratio in the prepared complexes, following molar ratio method[23]. A series of solutions were prepared having a constant concentration (C) 10-3 M of the hydrated metal salts and the ligand (H2L). the (M:L) ratio was determined from the relationship between the absorption of the observed light and mole ratio (M:L) found to be (2:1). The results of complexes formation in solution are shown in Table (4), these data are compatible with the results obtained by atomic absorption for determination metal analysis in the complexes. Thin layer chromatography (TLC) The solution of ligand (H2L) and its complexes in water as solvent appeared in one spot, this is confidence that all these compounds are pure and have one isomer. Table (1) shows the Rf for complexes and ligand (H2L). 228 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 Conclusion The ligand (H2L) acts as a tetra-dentate dianion with two metal ions coordinate with each carboxylate group in an octahedral geometry. Figure (3) References 1. Martell, A. E.; Seib, P. A. and Tolbert, B. M., (1982) Chelates of Ascorbic Acid: Formation and Catalytic Properties. In Ascorbic Acid: Chemistry, Metabolism, and Uses; Eds.; American Chemical Society: Washington, 200: 153−178. 2. Hughes, D. L. (1973) Crystal structure of thallium(I)L-ascorbate, J. Chem. Soc., Dalton Trans. 21, 2209−2215. 3. Hollis, L. S.; Amundsen, A. R. and Stern, E. W. (1985) Synthesis, structure and antitumor properties of platinum complexes of vitamin C, J. Am. Chem. Soc. 107: 274−276. 4. Padayatty, S. J.; Katz, A; Wang, Y; Eck, P.; Kwon, O.; Lee, J. H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S. K. and Levine, M. (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll. Nutr. 22: 18-35. 5. 5. Musa, F.H.; Mukhlus, A. A. and Sultan, J. S. (2011) Synthesis, spectroscopic and biological studies of some metal complexes with 2,3,5,6-O,O,O,O-tetraacetic acid L- ascorbic acid. J. Ibn-Al-Haitham for Pure and Appl. Sci. 24: 2. 6. Musa, F.H.; Mukhlus, A. A. and Sultan, J. S. (2012) Synthesis of some new metal complexes of 5,6-O-isopropylidene-2,3-O,O-acetic acid-L-ascorbic acid. J. Ibn-Al- Haitham for Pure and Appl. Sci. 25: 1. 7. Fiza'a, S. M.; Musa, F. H. and AL-Bayti, H. A. F. (2013) Synthesis and characterization of Co(II), Ni(II), Cu(II), Cd (II) and Hg(II) complexes with new derivative of L-Ascorbic acid. In press Sent to Arabian Journal Chemistry. 8. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic Coordination Compounds 5th ed. John Wiley and Sons, Inc. New York. 9. Abu-Melha, K.S. and El-Metwaly, N.M. (2007) Synthesis and spectral characterization of some investigated thiocarbohydrazone binuclear complexes with an illustrated EPR study for d1complexes. Trans. Met. Chem. 32, 828-834. 10. Huang, J.; Quj, Q.; Wang, L. F.; Liu, Y. Q.; Wang, Y. Y.; Song, Y. M.; Zhang, C. J. ;Zhau, R. (2005) Synthesis, Characterization, and Antioxidative Activity of Ternary Rare- Earth Complexes of 5-Fluorouracil-1-acetic Acid and 2,2-Bipyridine. Chem. Pap. 59: 267- 270. 11. Pansuriva, P. B. and Patel, M. N. (2008) Synthesis, characterization and biological aspects of novel five-coordinated dimeric-Cu(II) systems. J. Enzy. Inhib. Med. Chem. 23(1): 108- 19. 12. Jabs, W. and Gaube, W. (1984) Compounds of L-ascorbic acid with metals, precipitation of ascorbate complexes of some 3d elements. Z.Anorg.Allerg.Chem., 514, 179-184. 13. Wimalasena, K. and Mahindrate, M. P. D. (1994) Chemistry of L-Ascorbic Acid: Regioselective and Stereocontrolled 2-C- and 3-C-Allylation via Thermal Claisen Rearrangement. J. Org. Chem. 59: 3427-3432. 14. Olabisi, O.; Mahindrate, M. P. D. and Wimalasena, K. (2005) A Convenient Entry to C2- and C3-Substituted Gulono-γ-lactone Derivatives from L-Ascorbic Acid., J. Org. Chem. 70: 6782-6789. 15. Yadav, P.N.; Demertzis, M.A.; Demertzi, D.; Skoulika, S. and West, D.X. (2003) Palladium(II) complexes of 4-formylantipyrine N(3)-substituted thiosemicarbazones: first example of X-ray crystal structure and description of bonding properties., Inorg. Chem. Acta 349: 30-36. 16. Chohan, H. Z. (2001) Synthesis, characterization, and biological properties of bivalent transition metal complexes of Co(II), Cu(II), Ni(II) and Zn(II) with some acylhydrazine 229 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 http://link.springer.com/article/10.1007/s11243-007-0274-7 http://link.springer.com/article/10.1007/s11243-007-0274-7 http://link.springer.com/article/10.1007/s11243-007-0274-7 http://www.chempap.org/?id=7&paper=209 http://www.chempap.org/?id=7&paper=209 http://pubs.acs.org/doi/abs/10.1021/jo00091a036 http://pubs.acs.org/doi/abs/10.1021/jo00091a036 http://pubs.acs.org/doi/abs/10.1021/jo00091a036 http://pubs.acs.org/doi/abs/10.1021/jo0508550 http://pubs.acs.org/doi/abs/10.1021/jo0508550 http://www.sciencedirect.com/science/article/pii/S0020169303000872 http://www.sciencedirect.com/science/article/pii/S0020169303000872 derived furanyl and thienyl ONO and SNO donor schiff base ligands. Synth. React. Inorg. Met. Org. Chem. 31: 1. 17. Jabs, W. and Gaube W. (1986) Verbindungen der L-Ascorbinsäure mit Metallen. IV. Ligandeigenschaften des Monoanions der L-Ascorbinsäure, C6H7O6−., Z. anorg. All. Chem. 538: 166-176. 18. Lever, A. B. P. (1968) Electronic spectra of some transition metal complexes: Derivation of Dq and B., J.Chem.Ed., 45: 711. 19. Lever, A. B. P. (1984) Inorganic Electronic Spectroscopy, 2nd ed. Elsevier, Amsterdam. 20. Mohamed, G. G. and Abd El-Wahab, Z. H. (2005) Mixed ligand complexes of bis(phenylimine) Schiff base ligands incorporating pyridinium moiety: Synthesis, characterization and antibacterial activity., Spectrochem. Acta, A61: 1059-1068. 21. Cotton, F. A. and Willinson, G. (1980) Advanced Inorganic Chemistry, 4th ed. John Wiley and Sons, Toronto, Singapor. 22. Himanshu, A.; Francesc, L. and Rabindranath, M. (2009) One-Dimensional Coordination Polymers of MnII, CuII, and ZnII Supported by Carboxylate-Appended (2- Pyridyl)alkylamine Ligands – Structure and Magnetism Eur. J. Inorg. Chem.,22: 3317- 3325. 23. Tohyama, T.; Saito, T.; Mizumaki, M.; Agui, A. and Shimakawa, Y. (2010) Antiferromagnetic Interaction between A′-Site Mn Spins in A-Site-Ordered Perovskite YMn3Al4O12., Inorg. Chem. 49: 2492-2495. 24. Ahsen, V. F.; Gok, C. and Bekaroglu, O. (1987) Synthesis of SS′-bis(4′-benzo[15-crown- 5])dithioglyoxime and its complexes with copper(II) nickel(II), cobalt(II), cobalt(III), palladium(II), platinum(II), and platinum(IV)., J. Chem. Soc. Dalton Trans. 8, 1827-1831. Table No. (1): Physical properties, analytical data for synthesized ligand (H2L) and its complexes Empirical formula Color m.p. ْ◌C Yield (%) Found(Calc.)(%) Rf C H M(II) Ligand(L) C10H6O10Cl2 Yellow 138 68 33.1 (33.6) 1.47 0.62 ـــ (1.69) [Cu2(C10H4O10Cl4.6H2O)].5H2O Brown 187 71 ـــ ـــ 16.68 (16.91) 0.55 [Co2(C10H4O10Cl4.6H2O)].2H2O Red 122 65 ـــ ـــ 16.96 (17.15) 0.48 [Ni2(C10H4O10Cl4.6H2O)].3H2O Green 118 74 ـــ ـــ 16.43 (16.64) 0.50 [Cd2(C10H4O10Cl4.6H2O)].2H2O Yellow 167 77 ـــ ـــ 28.81 (28.46) 0.43 [Hg2(C10H4O10Cl4.6H2O)].H2O white 173 58 ـــ ـــ 42.21 (42.07) 0.37 230 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 http://onlinelibrary.wiley.com/doi/10.1002/zaac.19865380717/abstract http://onlinelibrary.wiley.com/doi/10.1002/zaac.19865380717/abstract http://pubs.acs.org/doi/abs/10.1021/ed045p711 http://pubs.acs.org/doi/abs/10.1021/ed045p711 http://www.sciencedirect.com/science/article/pii/S1386142504003245 http://www.sciencedirect.com/science/article/pii/S1386142504003245 http://www.sciencedirect.com/science/article/pii/S1386142504003245 http://onlinelibrary.wiley.com/doi/10.1002/ejic.200900326/abstract http://onlinelibrary.wiley.com/doi/10.1002/ejic.200900326/abstract http://onlinelibrary.wiley.com/doi/10.1002/ejic.200900326/abstract http://pubs.acs.org/doi/abs/10.1021/ic9024876 http://pubs.acs.org/doi/abs/10.1021/ic9024876 http://pubs.rsc.org/en/content/articlelanding/1987/dt/dt9870001827 http://pubs.rsc.org/en/content/articlelanding/1987/dt/dt9870001827 http://pubs.rsc.org/en/content/articlelanding/1987/dt/dt9870001827 Table No. (2): Assignments of the IR spectral bands of L-ascorbic acid, ligand(H2L) and its complexes(cm-1) Empirical formula υOH υC=O υC=C υC=O υas(COO)- υs(COO)- Coord. H2O υM-O L-ascorbic acid C6H8O6 3525,s 3410,s 3313,s 3213,s ـــ ـــ ـــ ـــ 1647 1678 1720 υCOOH Ligand(L) C10H6O10Cl2 3380,br 1718 1660,br 1566 1417 ـــ ـــ [Cu2(C10H4O10Cl4.6H2O)]5H2O 3342,m 1743 1651,m 1400 1344 839,m 428 [Co2(C10H4O10Cl4.6H2O)]2H2O 3448,br 1735 1640,m 1420 1344 844,s 476 [Ni2(C10H4O10Cl4.6H2O)]3H2O 3377,br 1730 1654,m 1445 1384 840,m 420 [Cd2(C10H4O10Cl4.6H2O)]2H2O 3473,br 1715 1662 1415 1361 829,s 425 [Hg2(C10H4O10Cl4.6H2O)]H2O 3520,m 1720 1670 1425 1361 835,m 482 Table No. (3): Magnetic moments and electronic spectral bands (cm-1) of the complexes. V(ml) L-Cu (λ=800) L-Co (λ=510) L-Ni (λ=740) L-Cd (λ=340) L-Hg (λ=280) (1) 0.5 0.11 1.32 1.75 0.33 0.56 (2) 1 0.17 1.94 1.95 0.56 1.23 (3) 1.5 0.23 2.76 2.87 0.98 1.42 (4) 2 0.29 3.44 3.51 1.12 1.85 (5) 2.5 0.31 3.68 3.72 1.25 1.94 (6) 3 0.23 3.91 3.98 1.38 2.37 (7) 3.5 0.33 4.21 4.19 1.61 2.55 (8) 4 0.35 4.50 4.48 1.95 2.86 (9) 4.5 0.37 4.63 4.70 2.33 3.12 (10) 5 0.39 4.79 4.89 2.34 3.11 Table No. (4) Molar ratio data for H2L-complexes Complex µeff (B.M.) Band position cm-1 Assignments Bcomplex β 10Dq (υ1) theoretical cm-1 Λm Ω-1 cm2mol- 1 L-Co(II) 2.25 19230 υ3 15873 υ2 4T1g→4T1g(p) 4T1g→4A2g 872.1 0.89 8284 11.93 L-Ni(II) 1.85 24390 υ3 14556 υ2 9259 υ1 3A2g→3T1g(P) 3A2g→3T1g(F) 3A2g→3T2g 649.2 0.63 10006 7.31 L-Cu(II) 0.82 12391 2Eg→2T2g 9.13 ـــ ـــ ـــ L-Cd(II) 39682 ـــ ILCT 11.40 ـــ ـــ ـــ L-Hg(II) 34482 ـــ ILCT 6.37 ـــ ـــ ـــ 231 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 Figure (1): 1H-NMR spectrum of the ligand Figure (2): 13C-NMR spectrum of the ligand O O O O C Cl OO C C Cl O O M OH2Cl OH2OH2 C O O M OH 2 H 2O H 2O Cl n(H2O) Figure (3): Suggested structure of [M2LCl4.6H2O]nH2O M = Cu(II), Hg(II) n = 2H2O, Co(II), Ni(II) n = 4H2O, Cd(II), n = H2O 232 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 -O,O;3,2-6,5تحضیر ودراسة طیفیة لبعض المعقدات الفلزیة مع ثنائي O,O] )كلورو كاربوكسلك مثیلیدینL [(- حامض االسكوربك صالح محمد فزع فالح حسن موسى ھدى أحمد فاضل جامعة بغداد ) /ابن الھیثم( كلیة التربیة للعلوم الصرفة / قسم الكیمیاء 2013كانون األول 4، قبل البحث في : 2013حزیران 12استلم البحث في : الخالصة حامض االسكوربك مع ثالثي كلورو حامض الخلیك بوجود ھیدروكسید البوتاسیوم ناتجاً جدیداً ھ�و L–أعطى تفاعل )، فصل الناتج و شخص بوساطة Lحامض االسكوربك ( -)] Lكلورو كاربوكسلك مثیلیدین( [O,O;3,2-O,O-6,5ثنائي المرئی��ة، وطی��ف ال��رنین -)، و االش��عة تح��ت الحم��راء، و االش��عة ف��وق البنفس��جیةH,C,Nالتقنی��ات االتی��ة تحلی��ل العناص��ر ( . C13و الكاربون H1البروتون –النووي المغناطیسي و (Co, Ni, Cu, Cdی�ة التك�افؤ باستخدامھ حضرت وشخصت معقدات امالح بعض ایونات العناص�ر الثنائ (Hg المرئی�ة ، والتوص�یلیة الكھربائی�ة ، واالمتصاص�یة الذری�ة، -باستخدام تقنیات االشعة تحت الحمراء، واالشعة ف�وق البفس�جیة ) H2Lللكن�د (والحساسیة المغناطیسیة ، والنسبة المولیة. واستنتج من التحالیل ان تناسق االیونات الفلزیة الثنائیة التك�افؤ م�ع ا ان (TLC) ثم من خالل مجموعتي الكربوكسیل معطیاً ای�ون الفل�ز سداس�ي التناس�ق، أظھ�رت كرومتوكرافی�ا الطبق�ة الرقیق�ة ) ومعقداتھ الفلزیة ھي مركبات نقیة. Lاللكند ( حامض االسكوربك، معقدات، تحلیل L-: تحضیر، الكلمات المفتاحیة 233 | Chemistry @a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹127@@ÖÜ»€a@I1@‚b«@H2014 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 27 (1) 2014 2. Hughes, D. L. (1973) Crystal structure of thallium(I)L-ascorbate, J. Chem. Soc., Dalton Trans. 21, 2209−2215. 3. Hollis, L. S.; Amundsen, A. R. and Stern, E. W. (1985) Synthesis, structure and antitumor properties of platinum complexes of vitamin C, J. Am. Chem. Soc. 107: 274−276. 11. Pansuriva, P. B. and Patel, M. N. (2008) Synthesis, characterization and biological aspects of novel five-coordinated dimeric-Cu(II) systems. J. Enzy. Inhib. Med. Chem. 23(1): 108-19. 13. Wimalasena, K. and Mahindrate, M. P. D. (1994) Chemistry of L-Ascorbic Acid: Regioselective and Stereocontrolled 2-C- and 3-C-Allylation via Thermal Claisen Rearrangement. J. Org. Chem. 59: 3427-3432. 14. Olabisi, O.; Mahindrate, M. P. D. and Wimalasena, K. (2005) A Convenient Entry to C2- and C3-Substituted Gulono-γ-lactone Derivatives from l-Ascorbic Acid., J. Org. Chem. 70: 6782-6789. 15. Yadav, P.N.; Demertzis, M.A.; Demertzi, D.; Skoulika, S. and West, D.X. (2003) Palladium(II) complexes of 4-formylantipyrine N(3)-substituted thiosemicarbazones: first example of X-ray crystal structure and description of bonding properties., Inorg. � 18. Lever, A. B. P. (1968) Electronic spectra of some transition metal complexes: Derivation of Dq and B., J.Chem.Ed., 45: 711. 20. Mohamed, G. G. and Abd El-Wahab, Z. H. (2005) Mixed ligand complexes of bis(phenylimine) Schiff base ligands incorporating pyridinium moiety: Synthesis, characterization and antibacterial activity., Spectrochem. Acta, A61: 1059-1068. 23. Tohyama, T.; Saito, T.; Mizumaki, M.; Agui, A. and Shimakawa, Y. (2010) Antiferromagnetic Interaction between A′-Site Mn Spins in A-Site-Ordered Perovskite YMn3Al4O12., Inorg. Chem. 49: 2492-2495. 24. Ahsen, V. F.; Gok, C. and Bekaroglu, O. (1987) Synthesis of SS′-bis(4′-benzo[15-crown-5])dithioglyoxime and its complexes with copper(II) nickel(II), cobalt(II), cobalt(III), palladium(II), platinum(II), and platinum(IV)., J. Chem. Soc. Dalton Trans. �