تشخيص سلالات البكتريا المعزولة من المرضى المصابين Identification of Bacterial Strains Isolated from Patients with Urinary Tract Infection and the Role of Plasmids in their Antibiotic Resistance Zeena Gh. Faisal Falah A. J. Attawi Ghalib H. Al-Bakiri Dept. of Biotechnology/College of Science/ University of Al -Nahrain Received in :26 July 1999 Accepted in :26 July 1999 Abstract One hundred fifty bacterial strains were isolated from patients with urinary tract infections (UTIs). They were belong to ten different species of gram-negative bacteria and to two genera of gram–positive bacteria. E. coli was the major causative agent and comprise 40% of all cases. Klebsiella pneumoniae and Proteus mirabilis were second and third with 18.67% & 18.0% respectively. Other gram-negative bacteria were belong to the genera Enterobacter, Acinitobacter, Pseudomonas, Citrobacter and Serratia. Ten cases (6.67%) were caused by genus Staphylococcus and seven (4.66%) were caused by Streptococcus. Out of the 150 positive cases, 96(64%) were from female patients, while 54(36%) were from males. High percentage of all isolates were resistant to all used antibiotics except for the nitrofuranation to which all isolates were sensitive . the second most effective antibiotic for all isolates was Nalidixic acid (25% of all isolates were resistant), while the Gentamycin was the third most effective antibiotic (39% were resistant). 75% of E. coli isolates and 86% of all isolates were resistant to Ampicillin. High percentages of resistance to antibiotics is a reflection for the misuse of antibiotics. Conjugation experiments showed that E. coli strains harbor a self transmissible plasmid carrying resistant genes for tetracycline (TEr), Chloramphenicol (Cr), streptomycin (Sr) and Trimethoprime (SXTr). It seems that this plasmid is widely spread in the Iraqi isolates since it was detected in all the three examined E. coli strains. No conjugation was detected between E. coli and other members of Enterobacteriaceae like proteus, Serratia and Acinitobacter. Keywords: Bacteria, Resistance to Antibiotics, plasmids 1 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Introduction The urinary tract is one of the most common sites of bacterial infection, particularly in females; 10-20% of the women have a urinary tract infection (UTI) at some time in their life and a significant number have recurrent infection [1]. UTI is a disease of worldwide importance and in some instances it threatens renal function and may be life [2]. However a considerable proportion of the population may acquire asymptomatic infection [5]. It may involve just the lower tract or both lower and upper tracts [6]. Urinary tract infections are caused by gram-positive and gram-negative bacteria. However the vast majority of infections are caused by Enterobacteriaceas originating from the gut [7]. The most common bacteria causing UTIs is Escherichia coli [2,3,4,8,9]. Proteus mirabilis is often associated with urinary stone. Klebsiella, Enterobacter, Serratia and Pseudomonas aeuroginosa are more frequently found in hospital acquired UTI [1]. Gram- positive cocci cause UTIs less often than gram-negative bacteria [10]. Distribution of bacteria causing UTIs and their antibiotic sensitivities vary from place to place and from time to time depending on the environment and the choice of treatment which require a continuous assessment to establish the resistance pattern of the microorganisms [11,12,13,14,15]. The wide spread of bacterial strains resisting several antibiotics became one of the major problems in treating the UTI. The antibiotic resistance can be coded by chromosomal or plasmid genes. Many of the plasmids carrying antibiotic resistance genes can be transferred from one bacterial cell into another by conjugation, thus spreading the resistance to antibiotics [16]. The association of transmissible plasmids with the multiresistance to several antibiotics were established in several bacterial spp. causing UTIs [17,18]. In this study the distribution and antibiotic sensitivity of bacterial strains isolated from UTIs were determined, and the role of transmissible plasmid in the resistance to some antibiotics was investigated. Materials and Methods Sample collection and culture: Midstream urine samples were collected in sterile tubes from patients in Medical City Hospital and Al-Hilla Hospital during the period from 20.6.1998 to 10.8.1998. Loopful of undiluted urine samples were spread on blood agar plates (Oxoid) and MacConkey's agar plates (Difco), and inclubated overnight at 37°C. Bacterial identification: Gram-negative bacterial isolates were identified by the API 20E system (API Bio Merieux, Lyon, France) that designed for the performance of 20 standard biochemical tests. Gram-positive isolates were identified by microscopic examination and some biochemical tests. Antibiotics susceptibility testing: Susceptibility to antibiotics were determined for all bacterial isolates by standard disk diffusion method [19], using 12 commercially available disks (Al-Raze Center Disks). The following antibiotics were tested: Ampicillin (AM, 25µg), Tetracycline (TE, 30µg), Rifampicin (RA, 5µg), Cephalexin (CX, 30µg), Streptomycin (S, 10µg), Chloromaphenicol (C, 30µg), Neomycin (N, 30µg), Gentamycin (GM, 10µg), Amoxicillin (AMX, 10 µg), Nalidixic Acid (NA, 30 µg), Nitrofurantion (FT, 300µg), and Trimethoprime + Sulfamethoxazole (SXT, 1.25µg - 23.75µg). Minimum inhibitory concentrations (MICs) were determined on nutrient agar plates (Oxoid) by agar dilution method [20]. Bacterial Conjugation: Conjugation between donor and recipient E. coli HB 101 strain was performed on solid surface as described by [21]. Cells of donor and recipient strains were grown in Brain Heart Infusion Broth (BHIB) to mid log phase (O.D = 0.35). 0.5ml of donor and recipient cultures were mixed and filtered through a millipore filter (0.45um). The filter was laid on the surface of nutrient agar plate and incubated at 37°C for 6 hours. Cells were 2 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 washed of the filter paper with fresh BHIB, diluted and plated on nutrient agar plates containing the appropriate antibiotics to select for the transconjugants. Controls of both donor and recipient cells were treated exactly in the same manner as above to check background spontaneous mutation frequencies. Conjugation frequency was expressed as the number of transconjugants per donor cells in the mating mixture. Results and Discussion Isolation and Identification of bacterial strains: Suspected bacterial colonies were picked up from blood agar and MacConkey's plates and identified by microscopic examination and biochemical tests. The gram-negative rods were identified by using the API 20E system, while the gram-positive cocci were identified by microscopic examination and catalase and coagulase tests. One hundred and fifty urine samples were positive (i.e. more than 105 Bacteria / ml were detected). Microscopic and biochemical identification showed that the causative agents were belong to ten different species of gram–negative rod bacteria and to two genera of gram- positive bacteria (Table-1). E. coli was the major causative agent and comprise 40% of all cases (Table-1). This is in agreement with what is known about the E. coli as the major cause of UTI worldwide [1,2,10,22]. All other gram-negative bacterial spices isolated during the study are common cause of UTIs worldwide. However their prevalence are different from one place into another [1,2,10]. The frequency of infection with K. pneumoniae and P. mirabilis have approximately the same rate compared with previous studies that showed that P. mirabilis was the second causative agent of UTI after E. coli [1,10]. This is probably because Klebsiella and Proteus produce potent urease which acts on urea to produce ammonia, rendering the urine alkaline [1]. Enterobacter, Citrobacter, Serratia and Pseudomonas species are more frequently found in hospital acquired UTI because their resistance to antibiotic favours their selection in hospital patients [1]. Seventeen positive cases were caused by gram-positive bacteria which represented 11.33% of all positive cases (Table-1). Gram-positive bacteria are known to be involved in the UTI. However the vast majority of UTIs are caused by gram-negative bacteria originating from the gut before entering the urethra[7]. Out of the 150 positive cases, 96(64%) were from female patients, while 54 (36%) of the cases were from males (Table-2). It is known that the incidence of UTI is generally higher in females than the males worldwide and for several reasons [1,7,10]. Antibiotic sensitivity: The standard disk diffusion method was used to determine the sensitivity of all gram-negative bacterial isolates to several antibiotics. Results are shown in (Table-3). It is obvious that a high percentage of all isolates were resistant to all used antibiotics except the nitrofurantion to which all tested isolates were sensitive. Nitrofurantion is an effective antibiotic in the treatment of UTI all over the world [2,23]. 75% of E. coli isolates (the leading causative agent) and 86% of all isolates were resistant to ampicillin (Table-3). The ampicillin is one of the common antibiotic used for the treatment of UTI [10,21,23], and the spread of resistance to this antibiotic in the Iraqi strain represent a major problem in treatment of the infection. It was reported in several parts of the world that the wide spread of ampicillin resistance is due to self transmissible plasmids carrying ampicillin resistance gene [22,24,25,26]. The second most effective antibiotic agent for all isolates was Nalidixic acid (25% of all isolates were resistant), while the Gentamycin was the third most effective antibiotic (39% were resistant) (Table-3). Both antibiotics are known to be effective in the treatment of UTI worldwide [2,27]. Generally speaking the percentages of resistance to antibiotics reported in this study are higher than those reported in some other part of the world [2,23,27]. This is a reflection for the misuse of antibiotics. 3 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Many of the antibiotics resistance genes were found to be carried on self transmissible or mobilizable plasmids, and the transfer of such plasmids from one strain to another via conjugation was one of the major reasons for spreading the antibiotics resistance between bacterial population specially those belong to the family Enterobacteriaceae which represent the major causative agents for UTI [17,18,21,25,27]. Minimum Inhibitory Concentration: In order to determine the proper concentrations of antibiotics to be used in the selective media for selection of transconjugants, the minimum inhibitory concentration (MIC) for several multiresistant isolates (Donor) and E.coli HB101 (recipient) were determined. Results in (Table-4) showed that the standard strain E.coli HB101 was resistant to rifampicin (RA) and the MIC was 30µg/ml. However it was sensitive to all other antibiotics and the MICs were less than 10µg/ml,which was the lowest concentration used in the experiment. On the other hand, the three multiresistant E. coli donor strain were all more sensitive to rifampicin than E. coli HB101 but they were resistant to all other antibiotics tested in the experiment. Their MICs to all antibiotics were higher than that of E.coli HB101. According to the MIC values obtained it was decided to add rifampicine (30µg/ml) and tetracycline (30µg/ml) to the media for the selection of transconjugants resulted from conjugation between E. coli strain. The MIC value for other Enterobacteriaceae donor strains are shown in (Table-4) and accordingly (30µg/ml) tetracycline and rifampicine were used for the selection of transconjugants in all experiments. Conjugation: Results of conjugation experiments between different multiresistant donor strains and E. coli HB101are shown in (Table-5). Conjugation mixture of three E. coli donor and E. coli HB101were plated on media containing rifampicin and tetracycline to select for tetracycline resistance transconjugants. Tetracycline resistant transconjugants were detected in all three cases and the conjugation frequencies were similar. It was concluded that tetracycline resistance marker in the three E. coli strains is a plasmid mediated maker. Five tetracycline resistant transconjugants from each case were tasted for the transfer of other donor markers by rechecking their sensitivity to all antibiotics to which the donor strains are resistant. It was found that chloramaphenicol resistance, streptomycin resistance and trimethoprime + sulfamethoxazole resistance markers were all transferred with the tetracycline resistance in all tested transconjugants (Table-5). These results indicated that the tetracycline, chloramaphenicol, streptomycin and trimethoprime+Sulfamethoxazole resistance genes of the three E. coli strains are located on one selftransmissible plasmid. It seems that this plasmid is widely spread in the Iraqi isolates since it was detected in all the three E. coli strains. Studies in various parts of the world have demonstrated that different kinds of antibiotic markers including tetracycline resistance, streptomycin resistance, chloramphenicol resistance, trimethoprim + sulfamethexazole resistance are located (either singly or in combination of two or more) on plasmids of E. coli strains isolated from UTIs, and such plasmids plays an important role in spreading antibiotic resistance among the causative agents of UTI [16,17,21,22,24,26]. It was also reported that the wide spread of ampicillin resistance in bacterial strains causing UTIs is due to self transmissible plasmids carrying ampicillin resistance gene [22,24,25,26]. However the ampicillin resistance gene did not transfer by conjugation during this study (Table-5). This does not necessarily means that the ampicillin resistance gene is not located on a self transmissible plasmid in the studied strains because the selection for transconjugent was done on the bases of tetracycline resistance transconjugant and not for ampicillin resistance transconjugants. It is possible that the ampicillin resistance gene is located on conjugative plasmid other than the one carrying TEr , Cr , Sr and SXTr genes. No conjugation was detected between E. coli and other member of the family Enterobacteriaceae (i.e. Proteus, Serratia and Acinitobacter) (Table-5). It is known that the conjugation process between bacterial strains belong to the same species is more common 4 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 than conjugation between members of different species. However several studies reported that the antibiotic resistance can be spread between different members of Enterobacteriaceae and related bacteria via conjugation [27]. The multiresistant conjugative plasmid detected in E. coli strain during this study deserve more detailed investigation because it seems to be widely distributed in the Iraqi E. coli strains isolated from UTIs. Characterization of this plasmid and determination of its exact role in spreading the antibiotic resistance will be certainly important for the understanding of the wide spread of antibiotic resistance among bacterial strains causing UTI. References 1. Mims, C.A. ; Playfair, J. ; Roitt, I.M. ; Wakelin, D. and Williams, R. (1994). Medical Microbiology, first edition. M. Mosby Toronto. 2. Hannan, M. ; Cormican, M. and Flynn, J. (1993). A comparison of antimicrobial sensitivities of urinary pathogens for the years 1980 and 1990. I.J.M.S. , 162: 499-501. 3. Wilkie, M.E.; Almond, M.K. and Marsh, F.P. (1992). Diagnosis and management of urinary tract infection in adults. Br. Med. J., 305: 1137-1141. 4. Leibovici, L.; Greenshtain, S.; Cohen, O. and Wysenbeck, A.J. (1992). Toward improved empiric management of moderate to sever urinary tract infections. Arch. Intern. Med. 152: 2481-2486. 5. Santoro, J. and Kaye, D. (1978). Recurrent urinary tract infections: Pathogenesis and management. Med. Clin. North. Am., 62: 1005-1010. 6. Brooks, G.F., Butel, J.S.; Ornston, L.N.; Jawetz, F. and Adelberg, E.A. (1995). Medical microbiology, twentieth edition. Prentic – Hall International INC. 7. Stamey, T.A. (1973). The role of introital bacteria in recurrent urinary tract infection. J. Urol., 109: 467-470. 8. Kosakai, N.; Kumamoto, Y.; Hirose, T. and Shigeta, S. et al. (1990). Comparative studies on activities of antimicrobial agents against causative organisms isolated from urinary tract infections. Japanese J. Antibiotics, 43: 954-967. 9. Vigg, A. and Jad, C.Y. (1991). Bacteriology of commutity acquired urinary tract infections. Analysis of 1048 cases. J. Assoc. Phys. India, 39: 601-603. 10. Glauser, M.P. (1986). Medical microbiology and infections disease. W.B. Saunders, West Washington square, Philadelphia. 11. Gruneberg, R.N. (1976). Susceptibility of urinary pathogens to various antimicrobial substances: A four year study. J. Clin. Path., 29: 292-295. 12. Gruneberg, R.N. (1980): Antibiotic sensitivities of urinary pahtogenes, 1971-1978., J. Clin. Path., 33: 853-856. 13. Gruneberg, R.N. (1984). Antibiotic sensitivities of urinary pathogens. 1971-1982. J. Antimicrob. Chemo., 14: 17-23. 14. Adler, J.L. and Shulman, J.A. (1970). Nosocomial infection and antibiotic usage at Grady Memorial Hospital: Prevalence survey. Southern Med. J., 63: 102-106. 15. Turck, M. (1981). New concepts in genitor – urinary tract infection. J.A.M.A., 246: 2019- 2023. 16. Satta, G.; Coredda, M.; Pruna, M. and Pompei, R. (1987). Bacterial resistance and single- dose therapy of urinary tract infection. Eur. Urol., 13: 42-44. 17. Pedler, S.J. and Bint, A.J. (1985). Comparative study of Amoxicillin – clavulanic acid and cephalexin in the treatment of bacteriuria during pregnancy. Antimicrob. Chemother., 27: 508-510. 18. Livrelli, V.; Champs, C.; Martino, P. and Joly, B. (1996). Adhesive properties and antibiotic resistance of Klebsiella, Enterobacter and Serratia clinical isolates involved in nosocomial infection. J. Clinc. Microbiol., 34: 1963-1969. 5 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 19. National Committee for Clinical Laboratory Standard (NCCLS). (1990). Performance standards for antimicrobial disk susceptibility tests, 4th ed. Approved standard M2-A4. National committee for clinical laboratory standards. Villanova, Pa. 20. National Committee for Clinical Laboratory Standards (NCCLS). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7- A3. National committee for clinical laboratory standard. Villanova, Pa. 21. Rice, L.B.; Carias, L.L.; Bonoma, R.A. and Shlaes, D.M. (1996). Moleculor genetics of resistance to both ceftazidime and beta–lactam–beta–lactamase inhibitor combinations in Klebsiella pneumoniae and in–vivo response to beta–lactam therapy. J. Infect. Dis., 173: 151- 158. 22. Malkawi, H.I. and Youssef, M.T. (1996). Characterization of E. coli isolated from patients with urinary tract infections in Northern Jordan: Antibiotic resistance and plasmid profiles. Mu'tah J. Research and Studies. 11: 172-192. 23. Damjanovic, V. and Whitfield, E. (1986). Antibiotic sensitivities of urinary pathogens isolated from patients in Liverpool, 1984-1985. J. Hyg. Camb. 97: 299-303. 24. Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264: 375-381. 25. Harnett, N.; Mongan, L.; Brown, S. and Krishnan, C. (1996). Thermosensitive transfer of antimicrobial resistance and citrate utilization and cotransfer of hydrogen sulfide production from Escherichia coli isolates. Diagn. Microbiol. Infect. Dis., 24: 173-178. 26. Bermudes, H.; Arpin, C.; El-Harrif, Z. and Quentin, C. (1997). Molecular epidemiology of an out break due to extended – spectrum B. Lactamase–producing Enterobacteria in French Hospital. Eur. J. Clin. Microbiol. Infect. Dis., 16: 523-529. 27. Broda, P. (1979). Conjugation in bacteria. In plasmids of medical, environmental and commercial importance. Timmis K.N. and Puhler A. Elsevier; North–Holland Biomedical Press. Table No. (1): Percentage of bacterial species isolated from urinary tract infections Bacterial species Number Percentage (%) 1 - Escherichia coli 60 40 2 - Klebsiella pneumoniae 28 18.67 3 - Proteus mirabilis 27 18.00 4 - Enterobacter aerogenes 4 2.67 5 - Citrobacter ferundii 4 2.67 6 - Enterobacter cloacae 3 2.00 7 - Acinitobacter calco var anitral 3 2.00 8 - Pseudomonas maltophilia 2 1.33 9 - Pseudomonas aeurogenosa 1 0.67 10- Serratia marcescens 1 0.67 11- Staphylococcus sp. 10 6.67 12- Streptococcus sp. 7 4.66 Total 150 100 Table No.(2): Prevalence of urinary tract infection in males and females. Sex Number of patients Percentage (%) Female 96 64 Male 54 36 Total 150 100 6 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Table No.(3): Percentage of resistance to antibiotics by the bacterial strains isolated from urinary tract infection and the best three antibiotics Isolates Percentage of resistance to: The best three antibiotics AM C N RA NA S TE SXT FT GN AMX CX E. coli 75 50 70 73 17 65 77 88 0 53 75 20 FT, NA, CX K. peneumoniae 89 54 57 100 32 50 43 86 0 61 100 32 FT, NA, CX P. mirabilis 74 74 67 89 11 78 85 93 0 56 85 30 FT, NA, CX Ent. aerogenes 100 75 100 100 0 50 75 100 0 75 100 75 FT, NA, S C. ferundii 25 50 50 75 25 50 50 100 0 25 50 0 FT, NA, GM Ent. Cloacae 100 33 100 100 33 67 33 67 0 0 100 100 FT, GN, NA A. calco var anitrat 100 100 33 0 33 67 67 100 0 67 100 67 FT, RA, NA Ps. maltophilia 100 100 50 50 0 0 100 100 0 50 50 50 FT, NA, S Ps. aeroginosa 100 100 100 100 100 100 100 100 0 0 100 100 FT, GN Ser. marcescens 100 0 0 0 0 100 100 100 0 0 100 0 FT, NA, GN Total 86 64 63 69 25 63 73 84 0 39 86 48 Table No.(4): Minimum inhibitory concentration for different multiresistant donor strains and the recipient strain E. coli HB101. Bacterial strain Antibiotic MICs µg/ml AM RA NA S TE GM AMX CX 1 - E. coli HB101 < 10 > 30 < 10 < 10 < 10 < 10 < 10 < 10 2 - E. coli Z4 25 12.5 *- 25 30 30 - 30 3 - E. coli Z 64 25 25 30 25 30 30 30 30 4 - E. coli Z 76 30 25 30 25 30 30 35 30 5 - P. mirabilis Z 88 25 20 < 10 35 30 > 40 - 30 6 - Ser. marcescena Z 109 - <20 20 20 30 25 30 20 7 - A. calco var anitrat Z 45 - < 20 35 25 35 20 - - * - = Not done Table No.(5): Conjugation between multiresistant bacterial donor strains and the recipient E. coli HB101 strain. Donor and its resistance pattern Recipient and its resistance pattern Donor marker selected Conjugation frequency Other donor markers transferred 1 E. coli Z4 Amr, Cr, NAr, Sr, TEr, SXTr, GNr, AMXr, CXr E. coli HB101 RAr TE r 1.5 x 10-4 Cr, Sr, SXTr 2 E. coli Z64 Amr , Cr, Nr, NAr, Sr, TEr, SXTr, GNr, AMXr E. coli HB101 RAr TE r 2 x 10-4 Cr, Sr, SXTr 3 E. coli Z76 Amr, Cr, Sr, TEr, SXTr, GNr, AMXr E. coli HB101 RAr TE r 3 x 10-4 Cr, Sr, SXTr 4 P. mirabilis Z88 Amr, Cr, Nr, TEr, SXTr, GNr, AMXr E. coli HB101 RAr TE r * - - 5 Ser. marcescens Z109 Amr, Cr, Sr, TEr, SXTr, AMXr E. coli HB101 RAr TE r * - - 6 A. colco varanitrat Z45 Amr, Cr, N.Ar, TEr, SXTr, AMXr, CXr E. coli HB101 RAr TE r * - - 7 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 بالتھاب المجاري تشخیص سالالت البكتریا المعزولة من المرضى المصابین للمضادات الحیویة البولیة ودور البالزمیدات في مقاومتھا زینة غازي فیصل فالح عبد الجبار عطاوي غالب حمزة البكري جامعة النھرین /كلیة العلوم /قسم التقانة األحیائیة 1999تموز 26:قبل البحث في 1999تموز 26:استلم البحث في الخالصة عزلت مائة وخمس�ون س�اللة بكتری�ا م�ن المص�ابین بالتھ�اب المج�اري البولی�ة، ت�م تش�خیص ھ�ذه الس�الالت فوج�د أنھ�ا تع�ود لعش��رة أن���واع م���ن البكتری���ا الس���البة لص��بغة ج���رام، وإل���ى جنس���ین م���ن البكتری��ا الموجب���ة لص���بغة ج���رام. وج���د أن بكتری���ا E. coli م��ن جمی��ع الح��االت . وج��اءت البكتری��ا 40%ھ��ي المس��بب ال��رئیس اللتھاب�ات المج��اري البولی��ة حی��ث كان��ت تمث�ل Klebsiella pneumonia, Proteus mirabilis على التوالي. أما 18%و 18.67%بالمرتبتین الثانیة والثالثة وبنسب ,Enterobacter, Acinitobacterد لألجن��اس أن��واع البكتری��ا الس��البة لص��بغة ج��رام األخ��رى المعزول��ة كان��ت تع��و Serratia, Citrobacter, Pseudomonas عش�رة ع�زالت كان�ت تع�ود للج�نس .Staphylococcus 6.67%وبنس�بة (64%) 96حال�ة كان�ت 150 م�ن مجم�وع. 4.66%وبنس�بة Streptococcusفي حین عزلت سبعة سالالت تعود للجنس ساللة معزولة من الرجال. 54 (36%)انت منھا معزولة من النساء في حین ك أظھرت جمیع الع�زالت نس�بة مقاوم�ة عالی�ة لجمی�ع المض�ادات الحیوی�ة المس�تخدمة ف�ي الدراس�ة باس�تثناء النتروفیورانیش�ن، م�ن الس�الالت 25%حیث كانت جمیع السالالت المعزولة حساسة لھ. أما حامض النالیدكسیك فجاء ثانیاً م�ن حی�ث الفعالی�ة ( م�ن الس�الالت مقاوم�ة ل�ھ. كم�ا أظھ�رت الدراس�ة أن 39%مة لھ) في حین جاء الجنتمایسین بالمرتبة الثالثة حی�ث كان�ت مقاو م�ن مجم�وع الس�الالت مقاومتھ�ا لالمبیس�یلین. أن النس�ب العالی�ة للمقاوم�ة للمض�ادات 86%و E. coliم�ن س�الالت %75 ما یشجع على زیادة نسب المقاومة في البكتریا.الحیویة ھي إنعكاس لسوء استخدام المضادات الحیویة م تحت���وي عل���ى بالزمی���د اقتران���ي یحم���ل الجین���ات المقاوم���ة للتتراس���ایكلین E. coliأظھ���رت نت���ائج االقت���ران أن س���الالت عزول�ة والكلورامفافینیكول والستربتومایسین والترایمیثوبریم معاً ویبدو أن ھذا البالزمید یتواجد بشكل واسع في السالالت الم .Eالتي تمت دراستھا. لم تحصل عملیة االقتران بین بكتریا E. coliمن العراق حیث أنھ وجد في السالالت الثالثة لبكتریا coli والبكتریا العائدة للعائلة المعویة من األجناسAcinitobacter ،Proteus وSerratia. الحیویة، البالزمیداتالبكتریا، المقاومة للمضادات الكلمات المفتاحیة: 8 | Biology @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice