Abstract Structural and Electrical Properties of InSb Films Prepared By Flash Evaporation Technique Iman Hamed Khdayer Dept. of Physics/ College of Education for Pure Science(Ibn-Al-Haithem)/ University of Baghdad Maysoon Faisal Ahmed Alias Mati Nasir Makadsi Department of Physics/ College of Science /University of Baghdad Received in : 22May 2012, Accepted in 21 Janury 2013 Abstract Indium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K). The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction . The electrical properties of the films are studied with the varying Ts. It is found that the electrical conductivity of the films increased with the increase of Ts, while the activation energies decreased. The Hall Effect measurements showed that the type of all prepared films was n-type .The charge carrier concentration decreased with the increase Ts whereas, the carriers mobility increased. The drift velocity, mean free path and life time of the deposited films for all the range of Ts have been determined. From the measurements of the four point probe methods, the sheet conductivity increased with the increase of Ts. Key words: InSb thin films, D.C conductivity, Hall Effect. 77 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Introduction In recent years, searches have been made on various semiconductors to supplement silicon and germanium for use in electric applications. Among many elements appear particularly useful, interest has been focused on compounds formed from group III and V of the periodic Table, such as GaAs, GaP, InSb, etc. [1]. These compounds, such as, InSb has highest electron mobility and smallest band gap with large lattice constant[2], due to these characteristic, it is well established material system for mid- thermal imaging middle wavelength infrared (MWIR) applications, including IR thermal imaging obtained from InSb focal plan array (FPA) on Si, in the (3-5)µm wavelength ranges, military infrared systems, environmental gas monitoring [3], photocell[1], fast automatic recording instruments, infrared photonic detectors ,Hall generator, transport device ,such as magneto resistors ,magnetic sensor[4],glavanomagnetic device[5],high speed electronic devices operating at low temperature, free space communications[6], antenna- coupled infrared detectors, photo-electronic and magnet-electric conversion devices[7,8]. Thin films of InSb may be deposited by different methods like r.f. sputtering, molecular beam epitaxy (MBE), chemical vapor deposition (CVD), flash evaporation and vacuum evaporation[9].InSb films are very attractive for using in application as Hall Effect, magnetoresistance devices, and for tuning in infrared laser and detectors [10]. This paper investigates the effect of substrate temperatures on the structural and electrical properties of prepared InSb films by flash evaporation technique from its prepared alloy. Experimental procedure The compound is prepared as ingots by melting the components together (In and Sb) in stoichiometric proportion. The starting materials used were indium and antimony of high purity (99.9999%). The quartz tube was cleaned, then the appropriate weight of In and Sb were placed in quartz tube which was attached to the evacuated system, then sealed under (2x10-5) mbar vacuum [11]. The melting processes were done in an electric furnace type Heraeui. The temperature arises gradually to 1023 K. The furnace still about 12 h to complete the reaction. The temperature then was lowered slowly. The prepared ingots were of size 5.4 cm long and 0.6 cm diameter as shown in Fig.(1). The flash evaporation technique chosen in the present investigation, because, it ensures stoichiometry in deposited films even at low substrate temperatures [12] .The InSb films of 1.0μm thickness were prepared under pressure 2x10 -5 Torr. By using Balzer’s coating unit model (BAE 370) on corning glass substrates. All the samples were prepared under constant conditions (pressure, rate of deposition and thickness), the main parameters that control the nature of the film structure, is the substrate temperatures, which varied within the range (423- 498) K under vacuum of 2x10-5 Torr. The elemental composition of InSb alloy has been measured using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF) techniques. The structure of the alloy and deposited films has been examined by using Siemens X-ray diffraction (XRD) methods, which records the intensity as a function of Bragg angle. The inter planer distance (d) for a different plane (hkl) was measured by Bragg's law [13]: 2dsin θ=n λ (1) where n is the reflection order. The lattice constant (a) estimated from the relation: a=d (h2+k2+l2)1/2 (2) The InSb grain size dimension (D) could be calculated from diffraction line broadening using the Scherrer equation [13]: D=K1 λ/β1 cos θ (3) 78 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 where θ is the diffraction angle, K1 is the shape factor, which takes value about 0.9; β1 is the line ,The D.C conductivity for the films deposited on the glass substrate with Al electrode could be calculated by measuring the electrical voltage and current by using Keithley 616 digital electrometer as a function of temperature range (303-513) K. Also the resistivity of the films deposited at Si p-type substrate has measured by four-point probe techniques by using, Veeco, Fpp-5000, instruments, Inc. The concentration, type carrier and mobility of InSb films deposited on glass can be obtained using Hall Effect experiment. We calculated the mobility, drift velocity, free mean path and carrier lifetime from the mobility [11]. Results and Discussion Table (1) illustrates the theoretical and experimental values of In and Sb concentration in alloy examined by the two techniques XRD and XRF. We can notice that theoretical value was close to that examined by XRF technique. From the X-ray diffraction pattern of InSb alloy powder we can find that this alloy had polycrystalline structure in nature and it had zinc blend structure and the preferential orientation was in the (111) direction, as shown in Fig.(2). We can observe that values of lattice constant (a)and the grain sizes (D) and 2θ for InSb alloy nearly similar to that in the ASTM cards as shown in the Table (2) . The XRD pattern of deposited InSb films of different Ts is illustrated in Fig. (3).This figure showed the films had two phases amorphous and polycrystalline structure of all samples. This result is in agreement with Senthilkumar et.al.[14] . XRD pattern for film deposited at Ts=423 K appeared no specified orientation. The same behavior noticed for the other substrates temperatures equal to (448,473 and 489) K as shown in part b, c, d of the figure except in the 448 K there is a peak in the (311) direction of small intensity but it disappear in other cases. We can deduce from Fig. (3), that in general the intensity of peak, (220) is decreased as Ts is increased with no indication of separate phase during the process of prepared alloys. This implies the compositions of the prepared alloys are stoichiometry and no re-evaporation was occurred from the growing layer of these alloys. The variation of various structural parameters of the prepared alloys with various Ts using XRD technique is showed in Table (3). We could explain the variation of grain size (D) with Ts in according to preferred direction (111) peaks. It decreased with the increase of Ts from 423 K to 448 K, whereas it increased with increasing the substrate temperature from 448 K to 498 K. This result goes in line with outcomes of other researchers [14-16]. Just opposite to above trade occured for the peak intensity (111) of the prepared alloys as shown in Fig.( 4) , that is , the peaks intensity is increased with the increase of the substrate temperatures during the range 423 -448 K while its decreased when the substrate temperature increased from 448 K up to 498 K. Same kind of behaviors were nearly found by Rao et.al.[17]. The plots of ln σ versus 103/T at different Ts (423,448,473, and 498) K for InSb films are shown in Fig.(5).The electrical conductivity is increased with the increase Ts for all deposited films .It was elevated about two times of magnitude. Other noticeable behavior one can be drawn from Figure 6, there are two values of activation energy in the range of temperature (303-383) K and (393-493) K. Accordingly one can deduce that there are two mechanisms of transport, one at higher temperature range (383-493) K the conduction mechanism of this stage is due to carriers excited into extended states beyond the mobility edge [18]and the second one lies with the range of temperature (303-383) K, this conduction mechanism might be due to carriers excited into the localized states at the edge of the band and hopping [19]. 79 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 One can draw from the data shown in Table (4) that the activation energies decrease with the increase of Ts about one and half times, this is might be due to the increase of the density of states in the gap or saturate the dangling bond .Similar behavior was found by Sharma and Reddy [15]. Also the data shown in Table (4) indicated that the activation energy became less than the band gap of the material (0.18eV) with the increase of substrate temperature .This behavior leads to conclusion that the transformation is due to impurity levels which is located within the band gap of InSb films, to valence band. This outcome result is emphasized by M Singh and Y K Vijay [7]. Table (4) moreover illustrates the variation of conductivity at room temperature (σR.T) for InSb films as a function of Ts. These data show that σR.T of films increased about one order of magnitude with varying Ts from 423 K to 498 K . It was clear from this Table that σR.T increased monotonically with the increase of Ts. This behavior could be attributed to the improvement in the films structure with the increase of Ts, and this might be due to reduce of dangling bonds, voids and defects. This result is in agreement with Sharma and Reddy[15] . Hall measurements are carried out to investigate the type of charge carriers, concentration(nH) , Hall mobility (µH) ,drift velocity (vd) ,lifetime(τ) ,and mean free path (l) of charge carriers for deposited InSb films at different Ts .The result of such measurement and calculation is illustrated in Table (5). We can notice from this Table that the all deposited films at various Ts have n-type charge carriers. The mobility will the increase of with the increase of Ts because the coalescence of InSb islands and in turn is producing larger grains with temperature elevation and this leads to increase the Hall mobility of these preparing films The carrier concentration will decrease with the increase of Ts .This might be due to the increase of the carrier mobility. This result is in agreement with outcomes of results published by Burvenich[20]. A four point prop method was used to measure the sheet resistivity (R'), resistivity (ρ) and conductivity (σ ) of InSb films deposited on Si p-type wafer at different Ts . The result of this measurement is shown in Table (6). We can notice from data of this table that the sheet resistivity of the films was decreased with the increase of Ts, while the conductivity was increased. This might be due to the increase in the density of states as well as the high lattice mismatch and thermal expansion coefficient. This result is in agreement with outcomes of other researcher [20]. Another noticeable remark, shown in Table (6), is that the electrical conductivity (σ) increased with the increase of the temperature. Conclusions We prepared successfully InSb alloy and then films were prepared by flash evaporation technique. The effect of substrate temperature on structural and electrical properties for prepared InSb films were studied .The outcome of this investigation can be summarized as follows: • The structure of InSb film was polycrystalline at various Ts and the preferential orientation was in (111) direction. • All the samples were prepared at various Ts were n-type. • DC conductivity is increased with the increase of Ts. • There were two activation energies and they were decreased with the increase of Ts. • The carrier concentration of films decreased with the increase of Ts, while the mobility increased. • The sheet resistivity of the films was decreased with the increase of Ts. 80 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 References 1. King,R.E.J. and Bartlett,B.E.(1961)Properties and application of InSb, Phihps Techincal Review , 22, 217-225. 2. Okamoto,B.V ;Rao, T .; Shinmura,A .; Gruznev ,D .; Mori, M.; Tambo, T . and Tatsuyama ,C .(2000)Growth temperature effect on the heteroepitaxy of InSb on Si(111), ,Applied Surface Science, 159(160): 335-340. 3.Yoon Soo Park, (1998)Current status of Infrared detectors and focal plane arrays, Journal of the Korean Physical Society , 32(3): 443-451. 4. Rogalski, .A. and Chrzanowski, (2002)Infrared devices and techniques, Opto-Electronic Review , 10 (2):111-136. 5.James, C.Pickel, (2003)Radiation effects on photonic images-A historical perspective”, IEEE Transactions on Nuclear Science , 50(3):671-688. 6. Michel,E. and Mohesei,H.(1997), Electrical properties of InSb quantum wells remotely doped with Si, Mat .Res .Soc. Symp. Proc.450, 97. . 7. Singh,M and Vijay,Y. K.(2004),Electrical, optical and structural of indium-antimonide (In- Sb) bilayer film structure, Indian Journal of Pure and Applied Physics, 42, 610-614. 8. Singh, M and Vijay,Y. K.(2005), Magneto-resistance and I-V characteristic studies of AlSb and InSb thin film bilayer structure”, Indian Journal of Pure and Applied Physics, 43, 383- 385. 9. Mangal,R. K.; Vijay,Y. K.;Avasthi., D. K. and Shekhar, (2007),Rutherford back scattering and optical band gap of In/Sb thin films”, Indian Journal of Engineering and Materials Sciences,14, 253-256. 10.Shosan Lida , (1989)Study on the dependence of electrical properties on dislocation levels in InSb films vacuum deposited on glass, J. Appl. Phys., 65(2):636-641. 11. Iman Hameed Khdayer, (2005),Photoconducting properties of InSb Junction with some single crystal semiconductor, Ph.D. thesis,University of Baghdad. 12. Sharma,A.K. and Jayarama Reddy,P.(1980)Electrical properties of amorphous and crystalline InSb and InAs thin films, Journal of Non-Crystalline Solids , 41,13-30. 13. CULLITY,B. D.(1956)ELEMENTS OF X-RAY DIFFRACTION,1, ADDISON- WESLEY PUBLISHING COMPANY, INC. 14.Senthilkumar,V.;Venkatachalam,S.;Viswanathan,C.;Gopal.S.D.;Mangalaraj, Sa.K. Narayandass, (2005), Effect of Substrate Temperature on the Properties of Vacuum Evaporated InSb Thin films, Crystal Research and Technology, 40(6): 573-578. 15. Sharma,A.K. and Jayarama Reddy,P. (1983),Temperature and Thickness Dependence of Electrical Conductivity of Flash-Evaporated InSb Films, physica status solidi (a), 79 (1):183-188. 16.Al-Ani .S. K J, Obaid. Y.N., Kasim. S. J., Mahdi. M. A., (2009) Electrical and structural properties of flash evaporation InSb thin films ,Int. J. Nanoelectronics and Materials ,.2(1): 99-109. 17. Rao,B.V.;Gruznev,D.;Tamo,T. and Tatsuyama,C. (2001), Growth of high-quality InSb films on Si(111) substrates without buffer layers, Journal of Crystal Growth , 224,.224, 316- 322. 18. Yanping Yao, Chunling Liu, Haidong Qi, Xi Chang, Chunwu Wang, and Guangde Wang, , (2011), Electrical conduction mechanism and photon-generated carrier recombination process in amorphous InSb films, Current Applied Physics ,11,620-623. 19- Mott, M. and Davis ,E. (1979)Electronic Process in Non-Crystalline Materials, 2nd edition, Univers, Press Oxford 20. Burevich,K.M. (1975)Influence of substrate temperature on the electrical properties of thin InSb films flash-evaporation onto glass, Thin Solid Films , l.27(27):129-134. 81 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.sciencedirect.com/science/article/pii/S016943320000074X http://www.google.com/url?sa=t&rct=j&q=mat+res+soc+symp+proc+%22Michael+%22+%221997+%22+450+Si++++InSb+&source=web&cd=3&cad=rja&ved=0CD8QFjAC&url=http%3A%2F%2Fwww.nhn.ou.edu%2F%7Ejohnson%2FResearch%2FAir_SPM%2FIII-Vs%2FGoldammer98.pdf&ei=M27oUMK0IdOk0AXX04GwAw&usg=AFQjCNFwH8KKrE7NMKtEESPM2TBV7iYzYg http://www.google.com/url?sa=t&rct=j&q=mat+res+soc+symp+proc+%22Michael+%22+%221997+%22+450+Si++++InSb+&source=web&cd=3&cad=rja&ved=0CD8QFjAC&url=http%3A%2F%2Fwww.nhn.ou.edu%2F%7Ejohnson%2FResearch%2FAir_SPM%2FIII-Vs%2FGoldammer98.pdf&ei=M27oUMK0IdOk0AXX04GwAw&usg=AFQjCNFwH8KKrE7NMKtEESPM2TBV7iYzYg http://www.myjurnal.my/public/article-view.php?id=17949 http://www.myjurnal.my/public/article-view.php?id=17949 Table No. (1) Illustrates the composition of InSb alloys by AAS and XRF techniques Theoretical concentration of element% Experimental concentration of element% by AAS Experimental concentration of element% by XRF Sb 50 47.57 50 In 50 52.43 50 Total% 100 100 100 Table No. (2) The X-ray diffraction parameters of InSb alloys 2θ (hkl) I/Io stand. d stand.( Å) d exp.( Å) I/Io a (Å) D (nm) 23.65 111 100 3.740 3.735 100 6.469 20.278 39.40 220 80 2.290 2.271 77.27 6.424 21.079 46.50 311 55 1.953 1.952 36.36 6.474 21,599 56.82 400 16 1.620 1.619 18.18 6.476 18,056 62.60 331 20 1.486 1.483 7.58 6.463 23.257 Table No.(3) Parameters form XRD pattern for InSb films versus Ts. Ts(K) hkl I/Io stand. d (Å) stand. 2θ d(Å)exp. I/Io a(Å) D(nm) 423 111 100 3.740 23.8 3.734 100 6.467 8.112 220 40 2.290 44 2.055 60 5.812 25.942 448 111 100 3.740 23.6 3.765 100 6.521 1.308 220 80 2.290 39.2 2.295 28.57 6.491 14.043 311 55 1.953 46.2 1.963 19.05 6.511 10.787 473 111 100 3.740 23.8 3.734 100 6.467 1.560 220 80 2.290 39.3 2.289 53.33 6.474 8.929 498 111 100 3.740 23.7 3.749 100 6.493 1.763 220 80 2.290 39.4 2.284 30 6.460 8.431 Table No.(4) The electrical conductivity and Ea for InSb films versus Ts Ts(K) σ R.T (Ω.cm) -1 Ea1(eV) Temp. range (K) Ea2(eV) Temp. range(K) 423 0.0217 0.0916 303-383 0.185 393-493 448 0.0372 0.0671 303-383 0.174 393-493 473 0.0869 0.0594 303-383 0.154 393-493 498 0.1818 0.0576 303-383 0.149 393-493 Table No. (5) Hall Effect parameters for InSb films versus Ts Ts(K) nH(cm -3) µH x 10 3(cm2/V.s) vd (cm/s) τ(s) l(cm) type 423 3.210x1016 2.191 483.5 2.0x10-9 9.66x10-7 n 448 1.092x1015 5.176 346.8 3.4x10-10 1.18x10-7 n 473 4.460x1014 25.469 2461.9 1.0x10-10 2.46x10-7 n 489 2.677x1014 53.060 12822.8 3.0x10-9 3.84x10-5 n Table No. (6) The variation of sheet resistivity, resistivity and conductivity versus Ts Ts ( K) R'(Ω/□)x104 ρ(Ω.cm) σ(Ω.cm)-1 423 1.58 0.375 2.666 448 1.23 0.342 2.923 473 1.01 0.328 3.048 498 0.98 0.228 4.385 82 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Figure No. (1) As grown InSb ingot Figure No.(2) XRD patterns of InSb alloys 83 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Figure No.(3) XRD patterns of InSb films at different Ts. Figure No.(4) The variation of the (111)peak intensity versus Ts. Figure No.(5): lnσ vs 103/T for InSb films versus Ts. 100 200 300 400 500 600 700 400 420 440 460 480 500 Substrate Temperaure (K) p e a k ( 1 1 1 ) in te n si ty 84 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 لخصائص الكھربائیة والتركیبیة الغشیة االندیوم انتیموناید المحضرة بتقنیة ا التبخیر الومیضي ایمان حمید خضیر جامعة بغداد / )ابن الھیثم(للعلوم الصرفة كلیة التربیة /قسم الفیزیاء میسون فیصل احمد الیاس متي ناصر مقادسي جامعة بغداد / كلیة العلوم /قسم الفیزیاء 2013كانون الثاني 21، قبل البحث في : 2012ایار 22استلم البحث في : الخالصة اغشیة االندیوم انتیموناید بتقنیة التبخیر الومیضي على ترندیوم انتیموناید بنجاح، وكذلك حضسبیكة االحضرت كیز تر وحدد. كلفن,423,448,473) 498( عند درجات حرارة اساس مختلفة النوع ارضیة من الزجاج والسلیكون موجب .، وفلورة االشعة السینیة مطیاف االمتصاص الذري باستخداممركبات السبیكة عناصر عند مختلف درجات حرارة االساس ذيمن تحلیل حیود االشعة السینیة تبین ان تركیب السبیكة وجمیع االغشیة المرسبة .)111 (، واالتجاه المفضلتركیب متعدد التبلور غشیة وجد ان التوصیلیة الكھربائیة لألعند مختلف درجات حرارة االساس، غشیةلألدراست الخصائص الكھربائیة ، بینما تقل طاقة التنشیط.داد مع زیادة درجات حرارة االساس تز من النوع السالب. تقل تراكیز حوامل الشحنة مع زیادة درجات حرارة المحضرة بینت قیاسات ھول ان االغشیة .حضرةغشیة الماالنجراف ومعدل المسار الحر لأل عینت.، بینما تزداد حركیة الحواملاالساس توصیلیة تزداد مع زیادة درجات حرارة االساس.المن قیاسات طریقة المجسات االربعة تبین ان : اغشیة االندیوم انتیموناید الرقیقة، التوصیلیة المستمرة، تاثیر ھول.تاحیةمفالكلمات ال 85 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013