Stability constant of some Metal Ion Complexes of (6-(2- Amino-2-(4-hydroxy phenyl)-acetamido)-3,3--dimethyl-7- oxo-4-thia-1-aza-bicyclo[3,2,0]heptanes-2- carboxylicacid(Amoxicillin) Basima M. Sarhan Dept. of Chemistry/College of Education for pure science (Ibn Al-Haitham)/ University of Baghdad Nada J. Kadhim College of Pharmacy / University of Karbala Enas J. Wheed Dept. of Chemistry/College of Education for pure science (Ibn Al-Haitham)/ University of Baghdad Received in : 28 April 2013, Accepted in : 24 July 2013 Abstract Measurement of stability constant of some complexes formed by (6-(2-amino-2-(4- hydroxy phenyl)-acetamido)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3,2,0] heptanes-2- carboxylic acid (Amoxicillin) with (Cr+3, Co+2, Ni+2, Cu+2,Ag+1, and Cd+2) ions, have been performed(Amoxicillin) was found to behave as bidentate ligand with ahardness parameter(α)of (0.46)and asoftness parameter(β)of (1.03) while complexes being formed were of (1:1)ratio. Keywords: Amoxicillin, Stability constant, Transation Metals 245 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Introduction Amoxicillin is a member of penicillin,s group which is a very important class of β lactamic antibiotics used in the therapy because of ite their specific toxicity towards bacteria[1].Most of the organic drugs used against bacterial and viral infection contain donor atoms (N,O,S) which easily coordinate with metal ions[2,3]. V.G.Alekseev and coworkers [4,5] studied and determined of stability constants of cobalt(II) and aluminum ions (III) with Amoxicillin , Glycine and cephelexin in aqueous solutions by using pH-Metric titration at 20C0 with 0.1(KNO3). And also S.V. Lapshin and coworkers [6] studied the stability constant of copper ions with ampicillinc, Amoxicillin and cephalexin (L)anions in aqueous solution at 20 C0 with 0.1 (KNO3) by using pH-potentiometry. Recently synthesis of some new Schiff bases derived from Amoxicillin tri hydrate with Cinnamaldehyde and p-Chlorobenzaldehyde and their complexes with bivalent transition metal ions Co(II), Zn(II), Ni(II), and Mn(II) , the ligand and their metal complexes were characterized on the basis of elemental analysis and micro analytical datas. [7] In this work we are interested mainly in measuring the stability constants(Kst) of complexes in aqueous solution of Amoxicillin , also to apply pearsons [8] hard-soft , acid-base postutute (HSAB) to explain the behavior of this ligand interms of misonos parameters[9] . Experimental Reagents: The ligand (Amoxicillin) was used (B.D.H) analar grade. Standard solutions of metal nitrate were prepared from analar reagents. Solution of metal nitrate were made with distilled water and carbonate free allkali solution and were standardized against pure potasium hydrogen phthalate[10]. Apparatus and proccdure: pH-Measurements were carried out with Philips pH-Meter. The pH-Meter was standardized before each run against buffer solutions of known pH values and was checked at the end of each run. Results and calculation The acid dissociation constant of (Amoxicillin) was calculated and the detailed calculation can be seen in Table(1). In order to determine stability constant of metal complexes, two founctions must be calculated.The concentrations of the free chelating species (L-)and the degree of formation(n-) which is defind as the averge of ligand species bound per atom of metal. Concentration of free ligand species was calculated by equation previously used with thorium-glycinate [10] of the form: Log[L-]=(pH-PKa)+ Log{(L) T –[KOH]T}……(1) An expression for the degree of formation(n-) was used of the form:- n‾ = [L]T –[ [H+] Ka +1][L‾ ] [M]T … … … (2) Where [L]T,[L-],[M]T, are concentrations of total ligands, free ligands and total metal ion, respectively. For the present systems, the reported stability constants, β1, β2 and β3 were computed using the well known J.Bierum summation equation with[L-] an[n-] calculated at different pH values from equations (1)and(2) respectively. � � [n − n‾]βn[L]n‾ = 0 𝑛=𝑚𝑎𝑥 𝑛=0 � … … … (3) It can be shown after simple approximation that equation(3) may be written for the present system as: 246 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 1 β₃ + (n‾ − 1)[L] β1 β₃ + (n‾ − 2)[L]2 β2 β3 = (3 − n‾)[L]3 … … … . (4) Where β1, β2 and β3 are the corresponding stability constants equation(4) is of the form: C+ aX+ bY=Z Where 𝑋 = (𝑛− − 1)(L) 𝑛− 𝑌 = (𝑛‾ − 2)(L)2 𝑛− 𝑍 = (3 − 𝑛‾)(L)3 𝑛− All being experimentally determined functions and 𝑎 = β₁ β2 , b = β₂ β₃ and c = 1 β₃ In each system,the functions X,Y and Z were calculated from the experimentel data and where fitted to aggression equation using Cramemer’s rule for solving such equation. Typical titration results are summarized in Tables (2,3,4,5,6,7 and 8). Stability constants metal- Amoxicillin complexes and Hardness-softness parameter of Amoxicillin are calculated using Misonos equation[8] results which are shown in Table(9). Discussion The decrease in the PH value of solutions of (Amoxicillin) when aneutral salt solution of metal ions were added is a clear indication of complexe formation. The chemical equation representing the equllibrium could be written as follows. However, calculation of acidity as can be seen in Table (1) (Ka=9×10-9) indicates that Amoxicillin behaves as an acid. It is reasonable to expect acorrelation between the stability of the complex and the acidic dissociation constant of the conjugate acid of the ligand nHL + M+m ⇌ [MLn]m-n + nH+ considering the casc of Amoxicillin,the association which metal ions takes the following route: n (Amoxicillin) + M+m ⇌ [M(Amoxicillin)n]m-n + nH+ where[M(Amoxicillin)n]m-n represents From Table (9) the following conclusion could be drown because of the negative values of (β2, β3 , β4)….etc formation of (1:1) complex species between (Amoxicillin) and metal ions may be considered as the only species existing in solution. 247 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Hardness-Softness parameters The relationship between stability constant of complexes and the characteristics properties of their constituents was established by Pearson [9] he forwarded the interpretation of hard interaction as eleactrostic and soft one as covalent, Later, Drago and Wayland put forward a two parametes equation to represent their acid-base interactions[11]misano[8]has introduced aquantitative relationships for coordination compounds which can be expressed as follows PK= _Log K= αX + βy + γ…….(5) Where k is the ((stability constant)) of the complex, X and Y are parameters of metal ion, (α) and (β)those of the ligand .The parameter(γ) is characteristic of Ligand and used to adjust the PKs ,so that all lie on the same scale, .The(Y) parameter is considered to be measure of softness and may be evaluated from atomic parameters including the radius of the ion from atomic parameters including the radius of the ion ,our results for the soft and hard parameters(Y) is complete agreement with those published by misono [8] .The analogous ligand parameter(B) like wise shows the expected increase in values from hard to soft species: OH-=0.4, NH3=1.08, Cl-=2.4, Br-=5.58,I-=7.17, S2O3= =12.4[12] Softness parameter(B)of(Amoxicillin) Ligand under investigation has value of (1.03) in reminiscent to between of Glycine as ligand [13] (B=1.23)and amine as ligand (B=1.08). The(α)and(X)parameters were interpreted by Misono as hardness parameters of ligand and Metal ion respectively although it includes the inherent acids-base strength of the ligand and metal ion. Thus(x)is closely related to the electronegativity of the ion and measures the tendency of metal ion to accept electrons from the ligand. Calculated hardness parameter (α)for ligand (Amoxicillin) was found to be (α =0.46) a value comparable to (0.455)of the (N,N- bis (2-hydroxy ethyl)Glycine[14] the weakly acidic ligand. References 1. Parashuram, M.A. (2010) ((Biocoordination computational modeling and antibacterial sensitivities of cobalt(II), Nikel(II), Copper(II) and bismuth(v) with gentamicin and amoxicillin antibiotics mixed ligands)),International Journal of pharmaceutical sciences Review and Resarch, vol.3(2):145. 2. Nadia, E.A. (2010) ((Metal chelates of ampicillin revsus amoxicillin :synthesis, structural investingation and biological studies)),Journal of coordination chemistry; vol. 63(3): 534-543. 3. Muhammad, Z. I. (2009) ((Synthesis, spectroscopic and biological studies of transition metal complexes of novel Schiff bases derived from amoxicillin and sugars)); Journal of the chemical society of Pakistan ; vol.31(3):33. 4. Alekseev, V.G. and Samuilova, I.S. (2008) ((Complexes formation in systems cobalt(II)- Glycine-Beta-Lactam Antibioties)), Russian journal of Inorganic chemistry; vol.53(2):327- 329. 5. Alekseev, V.G. and Zamyslov, V.G. (2007) ((Al(III)complexes with the ampicillin, amoxicillin and cephelexih anion)),Russian Journal of coordination chemistry, vol.33(4):12. 6. Lapshin, S.V. and Alekseev, V.G. (2009) ((Copper(II)complexes at ion with ampicillin, amoxicillin and cephalexin)); Russian Journal of Inorganic chemistry; vol.54(7):44. 7. Sunil, J. ; Vatsala , P. and Uma, V., (2013) ((Synthesis, Characterization and biological studies of schiff bases metal complexes Co (ii), Zn (ii), Ni (ii), and Mn (ii) derived from amoxicillin trihydrate with various aldehydes)), international journal of pharma and bio sciences, vol.62(1):8. 8. Pearson, R.G. (1963) ((Absolute electronegativity and hardness correlated with molecular orbital theory )) ,J.Am.chem.soc; vol.85(3) :3353-3539. 248 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 9. Misono, M. (1967) ((A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness)), J. Inorg. Nucl. Chem.,vol.29(2):2685. 10. Majed, Y.A.and Zaki, N.S., (1980) ((Studies on thorium Glycinate from stability constants measurements)) , J.Iraqi chem. soc; vol.5(1&2): 27-36. 11. Drago, R.S. ;Waland, B.B. (1965) ((Hexamethyl phosphoramide as proton acceptor.part 1. A near-IR study of its hetro association with ordinary and halogenated valcohols)) , j.Am. chem.soc.; vol. 87(4): 3571. 12. Huheeg, G. (1978) ((Introduction chemistry))2 nd edition,Harper International New York ,Hagerstone ,San Fracisco ,London. 13. Majid, Y.A.; Kawkab, A.g. and Ahmed A.g. (1996) ((Studies on thorium Glycinate from stability constants measurements)) , J.coll. Educ. For women, univ.Baghdad, vol.7(2):33. 14. Sarhan, B.M. (2001) ((Stability constant of some metal ion complexes of N-N bis(2- hydroxy ethylGlycine)); Ibn-Al-Hatham, j.for pure lappl. Sci; vol.14(4A):89-99. 15. Gordy, W. and Thomas, J.O; J.chem.phys 1956; , (( Electronegativities of the elements)) ,vol.(24) :43. 16. Stockarg, K.H. and Schnider, E. A. (1950) "Synthesis of Morphinan" , Chem.Acta.; vol.33(2):1437-1448. 17. Seymour, L. (1968) Schaums outline series linear 4 th edition , Kindle edition. Table No.(1):Determination of the disscociation of Aomoxicine.20ML(0.025M)of Amoxiciline +27.5ml of water temp.:25C0 , μ =0.1 HL⇌ H+ + L- pKa=pH + Log [𝐻𝐿]+[𝑂𝐻]‾ [𝐵]−[𝑂𝐻]‾ 1 2 3 4 5 6 7 Ml KOH 0.085M pH Stoichiometric [B] [HL] [OH -] [𝐻𝐿] + [𝑂𝐻]‾ [𝐵] − [𝑂𝐻]‾ pKa=pH+ Logcol 6 0 6.66 0 1.05×10-2 4.5×10-8 0 0 0.5 7.06 8.85×10-4 1.04 1.148×10-7 10.7539 8.09 1 7.35 1.74×10-3 1.03 2.23×10-7 4.922 8.04 1.5 7.57 2.60 1.02 3.71×10-7 2.9345 8.03 2 7.74 3.43 1.01 5.49×10-7 1.8753 8.01 2.5 7.91 4.25 1×10-3 8.12×10-7 1.3534 8.04 3 8.09 5.05 9.9 1.23×10-6 0.9625 8.04 pKa=8.04 , Ka=9×10-9 Table No.(2):Titration of 30ml(0.025M)of Amoxiciline and 5Ml(0.05M)M(NO3)n solutions with 0.085M KOH solutions Temp. :25C0 ,Vol.47.5ml=0.1 ,μ=0.1 Ml KOH (0.085M) Ag+ Co+2 Ni+2 Cu+2 Cd+2 Cr+3 0.0 4.38 6.05 5.86 3.31 6.22 4.46 0.5 5.26 6.46 6.13 3.41 6.55 4.56 1.0 6.41 6.7 6.40 3.52 6.75 4.68 1.5 6.85 6.87 6.61 3.68 6.89 4.85 2.0 7.11 6.99 6.74 3.83 7.04 5.04 2.5 7.27 7.08 6.85 4.02 7.16 5.25 3.0 7.41 7.18 6.97 4.24 7.19 5.48 3.5 7.51 7.22 7.08 4.57 7.19 5.61 4.0 7.61 7.32 7.18 4.89 ppt 5.73 4.5 7.73 7.40 7.29 5.19 - 5.83 5.0 7.83 7.44 7.40 5.50 - 5.86 249 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Seymour%20Lipschutz&search-alias=books&sort=relevancerank Table No.(3):Titration of (0.025M) Amoxiciline and (0.05M) Ag(NO3) solution with 0.085M KOH solution.Temp.:25C0, μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 4.38 0 5.26×10-3 1.57×10 -4 4631.88 0 0 0.5 5.26 8.85×10-4 5.21 1.56 610.6 2.44×10-5 0.1274 1.0 6.41 1.74×10-3 5.15 1.54 43.22 3.2×10-4 0.2407 1.5 6.85 2.60 5.10 1.53 15.69 8.19×10-4 0.3165 2.0 7.11 3.43 5.05 1.51 8.62 1.37×10-3 0.3782 2.5 7.27 4.25 5.00 1.50 5.96 1.82×10-3 0.4587 3.0 7.41 5.05 4.95 1.48 4.32 2.28×10-3 0.5334 3.5 7.51 5.83 4.90 1.47 3.43 2.61×10-3 0.6333 4.0 7.61 6.60 4.85 1.47 2.72 2.93×10-3 0.7384 4.5 7.73 7.35 4.81 1.44 2.06 3.45×10-3 0.7970 5.0 7.83 8.09 4.76 1.42 1.64 3.76×10-3 0.8937 1) Calculation of Free Ligand [L-] from equation Log[L-]=(pH-pKa) +Log[L]T-[KOH]T 2) Calculation of the degree of formation (n‾)was used of the from n- = [L]T−[ [H+] 𝐾𝑎 +1][L−] [M]T Table No.(4):Titration of (0.025M) Amoxiciline and (0.05M) Cd(NO3)2 solution with 0.085M KOH solution Temp.:25C0 ,Vol.47.5ml=0.1 , μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 6.22 0 5.26×10-3 1.57×10-4 66.951 0 0 0.5 6.55 8.85×10-4 5.21 1.56 31.315 4.76×10-4 0.0408 1.0 6.75 1.74×10-3 5.15 1.54 19.758 7 0.1665 1.5 6.89 2.60 5.10 1.53 14.31 8.99 0.3009 2.0 7.04 3.43 5.05 1.51 10.133 1.167×10-3 0.41738 2.5 7.16 4.25 5.00 1.50 7.68 1.41 0.5398 3.0 7.19 5.05 4.95 1.48 7.17 1.37 0.7167 3.5 7.19 5.83 4.90 1.47 7.17 1.25 0.91094 Table No.(5):Titration of (0.025M) Amoxiciline and (0.05M) Cu(NO3)2 solution with 0.085M KOH solution. Temp.:25C0 ,Vol.47.5ml=0.1 , μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 3.31 0 5.26×10-3 1.57×10-4 54419.8 0 0 0.5 3.41 8.85×10-4 5.21 1.56 43227.2 3.44×10-7 0.1321 1.0 3.52 1.74×10-3 5.15 1.54 33.5550 4.12 0.3058 1.5 3.68 2.60 5.10 1.53 23214.4 5.54 0.4764 2.0 3.83 3.43 5.05 1.51 16434.5 7.19 0.6482 2.5 4.02 4.25 5.00 1.50 10611.02 1.02×10-6 0.8224 3.0 4.24 5.05 4.95 1.48 6393.7 1.54 1.0004 3.5 4.57 5.83 4.90 1.47 2990.5 3.00 1.1684 4.0 4.89 6.60 4.85 1.47 1431.3 5.59 1.3379 4.5 5.19 7.35 4.81 1.44 717.39 9.95 1.506 5.0 5.50 8.09 4.76 1.42 351.36 1.76×10-5 1.6787 250 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Table No,(6):Titration of (0.025M) Amoxiciline and (0.05M) Ni(NO3)2 solution with 0.085M KOH solution. Temp.:25C0 ,Vol.47.5ml=0.1 , μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 5.86 0 5.26×10-3 1.57×10-4 153.37 0 0 0.5 6.13 8.85×10-4 5.21 1.56 82.36 1.8×10-4 0.0974 1.0 6.40 1.74×10-3 5.15 1.54 44.23 3.1 0.2419 1.5 6.61 2.60 5.10 1.53 27.27 4.7 0.3844 2.0 6.74 3.43 5.05 1.51 20.21 5.84 0.5326 2.5 6.85 4.25 5.00 1.50 15.69 6.94 0.6826 3.0 6.97 5.05 4.95 1.48 11.90 8.2 0.8514 3.5 7.08 5.83 4.90 1.47 9.24 9.72 0.9675 4.0 7.18 6.60 4.85 1.47 7.34 1.09×10-3 1.1144 4.5 7.29 7.35 4.81 1.44 5.698 1.25 1.2479 5.0 7.40 8.09 4.76 1.42 4.423 1.39 1.3885 Table No.(7):Titration of (0.025M) Amoxiciline and (0.05M) Co(NO3)2 solution with 0.085M KOH solution. Temp.:25C0 ,Vol.47.5ml=0.1 , μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 6.05 0 5.26×10-3 1.57×10-4 96.77 0 0 0.5 6.46 8.85×10-4 5.21 1.56 38.52 3.87×10-4 0.0579 1.0 6.70 1.74×10-3 5.15 1.54 22.169 6.24 0.1812 1.5 6.87 2.60 5.10 1.53 4.98 8.58 0.3082 2.0 6.99 3.43 5.05 1.51 11.369 1.04×10-3 0.44259 2.5 7.08 4.25 5.00 1.50 9.241 1.17 0.5855 3.0 7.18 5.05 4.95 1.48 7.341 1.34 0.7220 3.5 7.22 5.83 4.90 1.47 6.695 1.34 0.8956 4.0 7.32 6.60 4.85 1.47 5.318 1.505 1.029 4.5 7.40 7.35 4.81 1.44 4.42 1.615 1.179 5.0 7.44 8.09 4.76 1.42 4.03 1.54 1.3463 Table No.(8):Titration of (0.025M) Amoxiciline and (0.05M) Cr(NO3)3 solution with 0.085M KOH solution. Temp.:25C0 ,Vol.47.5ml=0.1 , μ =0.1 Ml KOH 0.085M pH [KOH]T [M]T [L]T 𝐻 + 𝐾𝑎 [L]‾ n‾ 0.0 4.46 0 5.26×10-3 1.57×10-4 3852.6 0 0 0.5 4.56 8.85×10-4 5.21 1.56 3060.2 4.87×10-6 0.13124 1.0 4.68 1.74×10-3 5.15 1.54 2321.4 5.96 0.30135 1.5 4.85 2.60 5.10 1.53 1569.48 8.19 0.4779 2.0 5.04 3.43 5.05 1.51 1013.34 1.16×10-5 0.6460 2.5 5.25 4.25 5.00 1.50 624.8 1.74 0.8178 3.0 5.48 5.05 4.95 1.48 367.9 2.68 0.9885 3.5 5.61 5.83 4.90 1.47 272.7 3.29 1.1589 4.0 5.73 6.60 4.85 1.47 206.89 3.86 1.3351 4.5 5.83 7.35 4.81 1.44 164.3 4.34 1.4995 5.0 5.86 8.09 4.76 1.42 153.37 4.03 1.6740 251 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Table No.(9): Mesonos Metal-Amoxiline parameters calculation according to the equation LogK=αx + βy + γ ,Where K being the first association(β1). *X is related to the electronegatively of the ion and is obtained from the equation (10X)1/2 =X0m + (In) 1/2 ,Where X0m is the electronegativity of the metal taken from Gordy and Thomas[15] and (In) is the ionization energy (e.v)[16]. **Y =10{ In In+1 }{ ri n 1 2 } Where(ri) is the ionic radius of metal ion and (n).is the formal charge *** values of ligands paramers were calculated using the least squares solution of an over determined system of linear equations to derive the normal equation[17] . Metal ion β1 Metal parameter Notes Ag+ 3.25×103 *X **Y Β2, β3 ,βn ……etc Have negatives values. Cd+2 5.84×103 4.80 3.99 Cu+2 1.63×109 4.87 3.04 Ni+2 3.67×104 5.31 2.80 Co+2 3.307×104 4.73 2.82 Cr+3 3.09×106 4.39 2.59 ***Ligand parameters 8.39 2.70 α 0.46 β 1.03 γ 3.766 252 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 -4(-2 -امینو-2(-6( تعیین ثوابت االستقراریة لبعض المعقدات الفلزیة مع ثنائي -ازا -1-ثایا -4-وكسو -7-ثنائي مثیل -3,3-استیمایدو)ھیدروكسي فینول) حامض الكاربوكسیلك (اموكسلین) -2-) ھبتان0,2,3الحلقة ( باسمة محسن سرحان قسم الكیمیاء/كلیة التربیة للعلوم الصرفة ابن الھیثم/جامعة بغداد ندى جاسم كاظم جامعة كربالء لة/ كلیة الصید ایناس جاسم وحید جامعة بغداد /) ابن الھیثم(كلیة التربیة للعلوم الصرفة / الكیمیاءقسم 2013تموز 24قبل البحث في : ، 2013نیسان 28استلم البحث في : الخالصة Cd+2 and Ag+1 ,Cu+2, Ni+2 ,Co+2 ,Cr+3 وثوابت 0م25ُعیَِن ثابت التفكك لالموكسلین في درجة مع ان ھذا اللیكاند یتصرف وكانھ ثنائي السن وانھ یكون مع معظم المعقدات معقدات ثابتة للمعقدات التي یكونھا االستقراریة ) تساويα) مع االیونات اعاله وحسبت معامالت الصالدة واللیونة للیكاند وقد وجد ان قیمة معامل الصالدة (1:1بنسبة ( ).1.03() تساويβ) وان معامل اللیونة (0.46( ثوابت االستقراریة، المعقدات الفلزیة االموكسلین،-الكلمات المفتاحیة: 253 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 10. Majed, Y.A.and Zaki, N.S., (1980) ((Studies on thorium Glycinate from stability constants measurements)) , J.Iraqi chem. soc; vol.5(1&2): 27-36. 11. Drago, R.S. ;Waland, B.B. (1965) ((Hexamethyl phosphoramide as proton acceptor.part 1. A near-IR study of its hetro association with ordinary and halogenated valcohols)) , j.Am. chem.soc.; vol. 87(4): 3571. 12. Huheeg, G. (1978) ((Introduction chemistry))2 nd edition,Harper International New York ,Hagerstone ,San Fracisco ,London. 13. Majid, Y.A.; Kawkab, A.g. and Ahmed A.g. (1996) ((Studies on thorium Glycinate from stability constants measurements)) , J.coll. Educ. For women, univ.Baghdad, vol.7(2):33. 14. Sarhan, B.M. (2001) ((Stability constant of some metal ion complexes of N-N bis(2-hydroxy ethylGlycine)); Ibn-Al-Hatham, j.for pure lappl. Sci; vol.14(4A):89-99. 15. Gordy, W. and Thomas, J.O; J.chem.phys 1956; , (( Electronegativities of the elements)) ,vol.(24) :43. 16. Stockarg, K.H. and Schnider, E. A. (1950) "Synthesis of Morphinan" , Chem.Acta.; vol.33(2):1437-1448. 17. Seymour, L. (1968) Schaums outline series linear 4 th edition , Kindle edition. Table No.(1):Determination of the disscociation of Aomoxicine.20ML(0.025M)of Amoxiciline +27.5ml of water temp.:25C0 , μ =0.1 HL⇌ H+ + L- pKa=pH + Log ,,𝐻𝐿.+,𝑂𝐻.‾-,𝐵.−,𝑂𝐻.‾. Table No.(2):Titration of 30ml(0.025M)of Amoxiciline and 5Ml(0.05M)M(NO3)n solutions with 0.085M KOH solutions Temp. :25C0 ,Vol.47.5ml=0.1 ,μ=0.1 Table No.(3):Titration of (0.025M) Amoxiciline and (0.05M) Ag(NO3) solution with 0.085M KOH solution.Temp.:25C0, μ =0.1 1) Calculation of Free Ligand [L-] from equation Log[L-]=(pH-pKa) +Log[L]T-[KOH]T