Synthesis and Spectroscopic of Some new Metal Ions Complexes's with [N-(4-Methoxy Benzoyl Amino)-Thioxo Methyl] Leucine Basima M. Sarhan Hassan A. Hassan Bushra M. Fayyadh Dept. of Chemistry/ College of Education For Pure Science(Ibn-Al Haitham)/ University of Baghdad Received in :10 June 2013, Accepted in : 24 July 2013 Abstract A new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C- NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer. Key words: 4-Methoxy benzoyl isothiocyanate, leucine, complexes. 313 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Introduction Amino acids and their derivatives have been used for different purposes[1-3] and some amino acid derivatives and some of their metal complexes have been prepared[4], other derivatives have potential biological activity and had been evaluated as having anti bacterial, antifungal properties[5]. Safael and coworkers[6] were reported the synthesis and characterization of glycine derivative of bis(phenol) amine ligand and its complexes with iron(III), and new metal complexes derived from the reaction of N-benzoyl-N-glythiourea with Cu(II), Co(II), Ni(II), Zn(II) and Fe(II) ions have been synthesized[7]. Recently a new series of potential ligands [N-(sebacoyl amino)-thioxo methyl] amino acid (HL) where HL = histidine, L-glutamic acid, L-tryptophan, and L-lysine with Cu(II), Co(II) and Ni(II) ions were synthesized and characterized[8]. This work includes preparation of some new transition metals complexes of [N-(4-methoxy benzoyl amino)-thioxo methyl] leucine. Experimental Chemicals: All reagents were Analar or chemical pure grade by BDH, Merck and Fluka. Materials: (4- Methoxy benzoyl chloride, luciene acid) (Fluka). Mangesis chloride tetrahydrate (MnCl2.4H2O), Ferous chloride (FeCl2), Cobalt chloride hexahydrate (CoCl2.6H2O), Nickel chloride hexahydrate (NiCl2.6H2O), Copper chloride dihydrate (CuCl2.2H2O), Zinc chloride ( ZnCl2), Cadmium chloride hydrate (CdCl2.H2O) and Mercury chloride ( HgCl2). Instruments 1H and 13C-NMR was recorded using Ultra Shield 300 MHZ Switzerland at University of Al al-Bayt, Jordan. Melting point was recorded by using Stuart-melting point apparatus. FT-IR spectra were recorded as KBr disc using 3800 Shimadzu in the range of 4000-400 cm-1. Electronic spectra were obtained using UV-160 Shimadzu spectra photometer at 25 ˚C in 10-3M DMSO. Conductivity was measured by using Philips PW. Digital. Elemental analyses (C.H.N.S) were performed using acrlo Erba 1106 elemental analyzer. Magnetic susceptibility measurements were obtained by Balance magnetic susceptibility by model MSB-MKI. Metal contents of the complexes were determined by atomic absorption technique by using shimadzu (AA680G). Preparation of the ligand (MBL) 1- Preparation of the (4-methoxy benzoyl isothiocyanate)[4] Mixture of 4-methoxy benzoyl chloride (3.55ml, 1mmole) and ammonium thiocyanate (2g, 1mmole) in 25ml acetone was refluxed with stirring for 3 hours and then filtered; the filtrate was used for further reaction. 2- Preparation of [N-(4-methoxy benzoyl amino)-thioxo methyl] leucine (MBL) (3.44g, 1mmole) of leucine acid in 20ml acetone were rapidly added to the solution (20 ml) to the solution was refluxed for 6 hours. The resulting solid was collected, washed with acetone and recrystallized from ethanol (m.p. = 190-192 ˚C), yield 72%, %C found (56.00) while calculate (55.55), %H found (6.11) while calculate (6.17), %N found (9.85) while calculate (8.64) and %S found (10.00) while calculate (9.87). Synthesis of the metal complexes (0.648g, 2mmole) of ligand (MBL) was dissolved in 25ml of ethanol containing (0.12g, 2mmole) of KOH, then the solution of following metal salts MnCl2.4H2O (0.2g, 1mmole), FeCl2 (0.13g, 1mmole), CoCl2.6H2O (0.24g,1mmole), NiCl2.6H2O (0.24g, 1mmole), CuCl2 .2H2O (0.2g,1mmole), ZnCl2 (0.14g, 1mmole), CdCl2.H2O (0.2g, 1mmole) and HgCl2 (0.3g, 1mmole) in ethanol, were added dropwise to the solution of the ligand (MBL-K+). The precipitate formed immediately after stirring the mixture at room temperature for 2 hours. The 314 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 precipitate was collected by filtration, washed with distilled water and ethanol and dried under vacuum. Physical properties were given in Table (1). Results and Discussion Synthesis and physical properties of the ligand [N-(4-methoxy benzoyl amino)-thioxo methyl leucine (MBL). The ligand was obtained by the reaction of one mole of (4-methoxy benzoyl isothiocyanate) with one mole of leucine acid scheme (1). 1) 2) Scheme (1): Preparation of the ligand [N-4-methoxy benzoyl amino)-thioxo methyl] leucine (MBL) Elemental analysis (C.H.N.S) confirmed the purity of the ligand (MBL) with the formula (C15H20N2O4S). The 1H and 13C-NMR spectrum of new ligand The 1H-NMR spectrum (in CDCl3 as a solvent) of ligand (MBL), Fig. (1) showed the following signals: doublet at δ( 0.97-1.01) ppm for (6H, 2CH3), Multiplet at δ(1.18-1.71) ppm for (1H, CH( CH3)2), triplet at δ(1.85-1.87) ppm for (2H, CH2), doublet at δ( 2.17-2.19) ppm for (1H, NH sec.amine), singlet at δ( 3.84) ppm for (3H, OCH3), quartet at δ(5.08-5.10) ppm for (1H, CHCOOH), two doublet pairs at δ(6.90-8.02) ppm for (4H, aromatic), singlet at δ(9.35) ppm for (1H, NH sec. amide ) and singlet at δ( 11.20) ppm for (1H, COOH). The 13C NMR spectrum (in CDCl3 as a solvent) of ligand (MBL), Fig. (2) showed the following signals: signals at δ(19.62-20.26) ppm for (2CH3), signal at δ(22.09-24.55) ppm for (CH(CH)3), signal at δ(38.06)ppm for (CH2), signal at δ(5l.23-53.10) ppm for (OCH3), signal at δ( 54.42) ppm for ( CHCOOH), signals at δ(74.20-75.04) ppm for the solvent (CDCl3), signals at δ(103.13-161.42) ppm for (C) aromatic, signal at δ( 164.22) ppm for ( C=O sec. amide), signal at δ( 173.76) ppm for (COOH) and signal at δ( 178.12) ppm for ( C=S). FT-IR spectrum of the ligand FT-IR spectrum of the free ligand (MBL), Fig. (3) showed bands due to υ(OH), υ(NH) amide, υ(C=O) and υ(C=S) which were observed at (3346) cm-1, (3238) cm-1, (1685) cm-1 and (1257) cm-1 respectively while another absorption band appeared at (1728) cm-1 could be explained as υ(COO) asym were the υ(COO)sym was noticed at (1309) cm-1[9-10]. The FT-IR spectra of complexes These spectra exhibited a marked difference between bands belonging to the stretching vibration of υ(NH) of the amine group in the range between (3423-3332 ) cm-1 shifted to higher frequencies by (185-94) cm-1 suggesting the possibility of the coordination of ligand through the nitrogen atom at the amine group[11] absorption assigned for υ(COO)sym was noticed at the range (1473-1354) cm-1 shifted to higher frequencies by (164-45) cm-1 while the NH4SCNH3CO C O Cl Acetone reflux, 3 hours H3CO C O N C S NH4Cl NH2 CH C H2 C OH O CH CH3 CH3 H3CO C O N C S Acetone reflux, 6 hours H3CO C O NH C S HN CH C H2 C OH O CH CH3 CH3 (MBL) 315 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 band caused by υ(COO)asym appeared between (1629-1535) cm-1 shifted to lower frequencies by (193-99) cm-1 which indicates to the coordination of the carboxylic group to the central ion[12]. The stretching vibration band υ(C=O) and υ(C=S) either show no change or very little in their frequencies (1653-1604) cm-1 and (1263-1253) cm-1 respectively, therefore indicating to do not coordinate to the metal ions[13]. Metal-nitrogen and metal-oxygen bands were confirmed by the presence of the stretching vibration of υ( M-O) and υ(M-N) around (559-430) cm-1 and (514-414) cm-1 respectively. Table (2) describes the important bands and assignments for free ligand (MBL) and its complexes. Fig. (4) showed the FTIR spectrum of [Ni(MBL)]. Electronic spectral The UV-Visible spectrum of the ligand (MBL), Fig. (5) in DMSO solution exhibited absorption band at (300nm, 33333cm-1) which is due to n π* transition[14]. The UV-Visible spectrum of Mn+2 complex showed two bands at (288nm, 34722cm-1) and (796nm, 12562 cm-1 ) are due to the C.T ligand filed and 6A1 4T2(D) respectively[15]. The UV-Visible spectrum of Fe+2 complex, Fig. (6) shows bands at (264nm, 37878 cm-1) and (628nm, 15923cm-1) due to charge transfer (C.T) and 5E 5T2[16]. The UV-Visible spectrum of Co+2 complex gave four bands at (275nm, 36363cm-1), (450nm, 22222cm-1), (657nm, 15220cm-1) and (1009nm, 9910cm-1) attributed to (C.T), 4A2 V3 4T1(P), 4A2 V2 4T1(F), 4A2 V1 4T2(F) respectively and the rach interelectronic repulsion parameter (Bˉ) was found to be (514.13) cm-1, from the relation β = Bˉ / Bo was found to be equal (0.51). These parameters are accepted to Co(II) tetrahedral complex[17]. The UV-Visible spectrum of N+2 has revealed the following electronic transitions, C.T, 3T1(F) V3 3T1(P), 3T1(F) V2 3A2 and 3T1(F) V1 3T2(F) transition at(291nm, 34364cm-1) (400nm, 25000 cm-1), (723nm, 13831cm-1) and (971nm, 10298cm-1) respectively, the Bˉ value found to be (529.13) cm -1 while (β) was equal to (0.51). These are characteristic for tetrahedral complexes of Ni (II)[18]. Cu+2 complex appeared bands at (278nm, 35971cm-1), (663nm, 15082cm-1) and (811nm, 12330cm-1) are due to C.T, 2B1g 2A1g and 2B1g 2B2g transitions respectively[19]. The UV-Visible spectra of Zn+2, Cd+2 and Hg+2 complexes showed shifted bands compared[20] with free ligand (MBL) are due to charge transfer Table (3). The molar conductance of all complexes in DMSO was found to be low which indicates the non-electrolyte behavior of these complexes. The μeff value of Mn, Fe, Co, Ni and Cu complexes are in the range (5.91, 5.11, 4.76, 2.82 and 1.73) B.M. respectively, the physical properties of the ligand (MBL) with their metal complexes are given in Table (1). Study of complexes formations in solution Complexes of ligand (MBL) with metal ions were studied in the solution using ethanol as a solvent in order to determine [M/L] ratio in complexes follow molar ratio method[21], A series of solutions were prepared having a constant concentration (10-3M) of metal ion and ligand. The [M/L] ratio determined from the relationship between the absorption of the absorbed light and the mole ratio of [M/L]. The results of complexes in ethanol suggest that the metal to ligand ratio was [1:2] for all complexes which were similar to that obtained from solid state study. According to spectral data as well as those obtained from elemental analyses the chemical structure of the complexes may be suggested as tetrahedral for [M(MBL)2] where M+2 = Mn, Fe, Co , Ni, Zn, Cd and Hg), Fig. (7) while copper complex has square planer. 316 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 References 1. Kazmair, U. and Zumple, F. L. (2001) “chelated Enolates of amino acid Esters new Efficient Nucleophiles for isomerization free stereo selective Palladium – catalyzed – Allylic substitutions” Eur. J. Org. Chem., 4067. 2.Deepak ,M.; Roand, F.; and Gunter, H. (2004) “Highly efficient stero conserrative Amidation and Deamidion of amino acid”,Org. Lett., (6 ): 3675 – 3678 . 3. Stoiz, D.; Kazmaier, U. and Pick, R. (2006), “Aromatic nitro groups and their reactions with chelated ester enolates”, Synthesis, , (1): 3341- 3347 . 4. Kabbani, A.T.; Ramadan, H.; Hammud, H. H.; Ghannour, A. M. and Mouneimne, Y. (2005) “Synthesis of some metal complexes of [N-(benzoyl amino)-thioxo methyl] amino acid [HL]” J. Univ. Chem. Tech. and Met. 40: 339-344. 5. Chohan, Z.; Arif, M.; Akhtar,; M. and Supuran,G. (2006) “Metal based anti bacterial and anti fungal agents ; systhsis , characterization and invitro biological evalution of Co(II) , Cu(II), Ni (II) and Zn(II) complexes with amino acid derived compounds ”, New York 1-11. 6. Safacel, E.; Shexkhi, H.; Wojtezak, A. and Aglicic. J. (2011) “Synthesis and characterization of an iron (II) complex of glycine derivative of bis(phenol) amine ligand in vedevance to catechol dioxygenase active site” Polyhedron, 30 (7): 1219-1224. 7. Nawar, N.; EI-Swah, I. I.; Hosny, N. M. and Mostafan, M. M. (2011) “Novel mono- and binuclear complexes derived from N-benzoyl-N-glycylthiourea (BGH) with some transition metal ions”, Arabian J. of chem. (10): 1-8. 8. AL-Haidery, N. H. (2012) “Synthesis of some metal complexes of [N-(scbacoyl amine) thioxo methyl] amino acid”, J. of Basrah Researches (Sciences) 38 (1A):99-105. 9. Silverstein, R. M.; Bassler, G. C. and Morrill,T. C. (1981) “Spectrometric Identification of Organic Compound”, 4th Ed., John Wiley and Sons, Inc., New York. 10. Dyer, R. J. (1965) “Application of Absorption Spectroscopy of Organic Compounds” Prentice-Hall, Inc., Englwood Cliffs, London. 11. Nakamoto, K. (1996) “Infrared Spectra of Inorganic and Coordination compound”, 4th Ed., John Wiley and Sons, New York. 12. Nakamoto, K. and Kleft, J. (1967) “Infrared spectra of some platinum (II) glycine complexes”, J. Inorg. Nucl. Chem., 29:2561-2567. 13. Al-Mudhaffar, D. M.; Al-Edani , D. S. and Dawood, S. M. (2010) “Synthesis, characterization and biological activity of some complexes of some new amino acid derivatives”, J. Chem. Soc., 54 (5): 506-514. 14. Nichllis, D. (1979) “Complexes and First-row Transition Elements” 1st Ed., Macmilolan Chemistry Text, London. 15. Al-Hashimi, S. M.; Sarhan, B. M. and Jared, A. J. (2004) “Synthesis and identification of complexes of N-acetyl glycine with some metal salts”, Ibn-Al Haitham J. for Pure and Apl. Sci. 17 (2): 50-60. 16. Lever A. B. P. (1968) “Inorganic Electronic Spectroscopy” Elsevier, Publishing Company Amsterdam, London, New York. 17. Sarhan, B. M.; A waad, M. A. and Hammed, W. K. (2012) “Synthesis and characterization of complexes of [N-tris (hydroxyl methyl] methyl-2-amino ethane sulphonic acid]”, J. of College of Education; (5): 468-481. 18. Mukhlis, A. J.; Sarhan, B. M. and Rumez, R. M. (2012) “Synthesis and characterization of some new metal complexes of (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-endibenzoate” Ibn-Al- Haitham J. for Pure and Apl. Sci. 25 (2): 316-327. 19. Massy, A. C. and Johnson, B. F. G. (1975) “The Chemistry of Copper, Silver and Gold”, Pergamon Press, Oxford, 20 and 41. 20. Huheey, J. E. (1981) “Inorganic Chemistry, Principles of Structure and Reactivity” 3rd Ed., 1983, Harper International SI Edition: Maryland. 317 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 21. Doglas, S.; Donald, W.; Holler, F. and Greuehs, C. (2004) “Fundamentals of Analytical Chemistry” 8th Ed., Saunders College, New York. Table (1): Physical properties for free ligand and its complexes Complex M. w t Color M.p˚C or dec. M% Calculate (Found) Molar conductivity ohm-1 cm2 mole-1 μeff (B.M.) Ligand (MBL) 324 Yellow 190 -192˚C - 4 - [Mn(MBL)2] 702.94 Deep- yellow 238(dec.) 7.83 (8.01) 7 5.90 [ Fe(MBL)2] 703.85 Brown 162(dec.) 7.95 (8.01) 13 5.10 [Co(MBL)2] 706.93 Deep- Brown 170(dec.) 8.35 (8.33) 20 4.75 [ Ni(MBL)2 ] 706.71 Deep-Green 164(dec.) 8.33 (9.01) 13 2.82 [Cu(MBL)2] 711.54 Green 166˚C 8.95 (9.41) 14 1.73 [Zn(MBL)2] 713.37 Yellow 160˚C 9.18 (9.13) 12 0 [Cd(MBL)2] 760.4 Yellow 170˚C 14.82 (14.37) 20 0 [Hg(MBL)2] 848.6 Yellow 150˚C 23.69 (23.12) 21 0 Table (2): the characteristic infrared band for the ligand and its complexes Complex υ(COO) asym υ(COO) sym υ(N-H) υ(M-N) υ(M-O) Ligand (MBL) 1728(m) 1309(s) 3238(m) - - [Mn(MBL)2] 1629(m) 1398(m) 3423(b) 416(w) 478(m) [ Fe(MBL)2] 1628(m) 1400(s) 3361(b) 416(w) 441(w) [Co(MBL)2] 1535(m) 1458(s) 3429(b) 418(w) 443(w) [ Ni(MBL)2 ] 1604(s) 1455(s) 3363(b) 424(w) 489(w) [Cu(MBL)2] 1610(m) 1473(m) 3332(b) 414(w) 439(w) [Zn(MBL)2] 1575(m) 1465(m) 3405(b) 418(w) 513(m) [Cd(MBL)2] 1604(m) 1413(s) 3387(m) 514(w) 559(w) [Hg(MBL)2] 1602(m) 1354(s) 3410(b) 416(w) 430(w) Where: s = strong, m = medium, w = weak, b = broad Table (3): UV-Visible absorption for the ligand (MBL) and its complexes in DMSO 318 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 10-3M Complex λ (nm) υ (cm-1) Є max (L.mol-1 cm-1) Assignment Ligand (MBL) 300 33333 2397 n π* [Mn(MBL)2] 288 796 34722 12562 2057 10 C.T 6A1 4T2(D) [ Fe(MBL)2] 264 628 37878 15923 409 20 C.T 5E 5T2 [Co(MBL)2] 275 450 657 1009 36363 22222 15220 9910 1559 60 22 10 C.T 4A2 V3 4T1(P) 4A2 V2 4T1(F) 4A2 V1 4T2(F) [ Ni(MBL)2 ] V1 V2 291 400 723 971 34364 25000 13831 10298 1968 75 16 10 C.T (ligand filed) 3T1 V3 T1(P) 3T1 V2 3A2 3T1 V1 3T2(F) [Cu(MBL)2] 278 663 811 35971 15082 12330 1950 44 24 C.T 2B1g 2A1g 2B1g 2B2g [Zn(MBL)2] 291 34364 2072 C.T [Cd(MBL)2] 291 34364 2076 C.T [Hg(MBL)2] 289 34602 2122 C.T Mixed C.T. 319 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Figure No. (1): 1HNMR spectrum of ligand (MBL) Figure No. (2): 13CNMR spectrum of ligand (MBL) Figure No. (3): FTIR spectrum of ligand (MBL) 320 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Figure No. (4): FTIR spectrum of [Ni(MBL)2] Figure No. (5): Electronic spectrum of ligand (MBL) Figure No. (6): Electronic spectrum of [Fe(MBL)2] 321 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 OCH3 CO NH CS HN CH C H2 C O O CH CH3 CH3 OCH3 C O HN C S NH CH C H2 C O O CH CH3 CH3 M Figure No. (7): Suggested structure of complexes [M(MBL)2] where M+2 = [Mn, Fe, Co, Ni, Zn, Cd, Hg] 322 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 میثوكسي -[N– (4 تحضیر ودراسة طیفیة لبعض المعقدات الفلزیة الجدیدة مع لیوسین] ثایواوكسو مثیل) –بنزویل أمینو باسمة محسن سرحان حسن احمد حسن بشرى مخلف فیاض جامعة بغداد /كلیة التربیة للعلوم الصرفة ( ابن الھیثم ) /قسم الكیمیاء 2013تموز 24، قبل البحث في : 2013حزیران 10استلم البحث في : الخالصة -4ثایواوكسو مثیل) لیوسین وذلك من مفاعلة ( -میثوكسي بنزویل أمینوMBL) ( -4)-Nحضر اللیكاند الجدید ( ) وشخص بوساطة التحلیل الدقیق للعناصر 1:1میثوكسي بنزویل ایزوثایوسیانات) مع الحامض االمیني اللیوسین وبنسبة ( )C.H.N.S اطیسي. كما حضرت المرئیة وطیف الرنین النووي المغن -) واألشعة تحت الحمراء واألشعة فوق البنفسجیة ) مع Hg ,Cd ,Zn ,Cu ,Ni ,Co ,Fe ,Mnوشخصت معقدات أمالح بعض ایونات العناصر االنتقالیة الثنائیة التكافؤ ( المرئیة -) وشخصت المعقدات المحضرة باستخدام األشعة تحت الحمراء واألشعة فوق البنفسجیة MBLاللیكاند ( یة واالمتصاص الذري وتحلیل النسبة المولیة واستنتج من التحالیل إن المعقدات والتوصیلة الموالریة والحساسیة المغناطیس ) معطیا الشكل المربع المستوي.Cu) ثنائي السن ما عدا (MBLلھا شكل رباعي السطوح حول االیون الفلزي مع اللیكاند ( میثوكسي ایزوثایوسیانات، المعقدات الفلزیة، لیوسین 4- الكلمات المفتاحیة: 323 | Chemistry @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013